Дослідження ефективності моделей нейронних мереж для побудови класифікатора офтальмологічних патологій
DOI:
https://doi.org/10.15276/aait.08.2025.8Ключові слова:
офтальмологічні захворювання, медичні зображення, інтелектуальна система, моделі машинного навчання, ідентифікація і діагностика захворюваньАнотація
Це дослідження представляє розробку та оцінку системи на основі машинного навчання для класифікації офтальмологічних захворювань за допомогою фундусних зображень. Набір даних складається з зображень, що поділяються на чотири основні класи: катаракта, діабетична ретинопатія, глаукома та здорова око. Для забезпечення точності та надійності моделей дані пройшли етапи попередньої обробки, включаючи виявлення викидів, нормалізацію, балансування та поділ на тренувальні та тестові набори. Для класифікації захворювань було використано три моделі глибокого навчання: VGG16, VGG19 та EfficientNet. Експериментальні результати показали високу точність передбачень у різних категоріях захворювань, причому EfficientNet досяг найвищих результатів (до 96,94% для діабетичної ретинопатії). Система дозволяє користувачам завантажувати зображення ока, вибирати модель та отримувати діагностичні прогнози з вказаним рівнем точності. Моделі були ретельно протестовані за допомогою фреймворку Python unittest, що підтвердило їхню стабільність і надійність. Результати підкреслюють потенціал машинного навчання для покращення діагностики офтальмологічних захворювань, скорочення часу діагностики та підвищення ефективності прийняття медичних рішень. Інтеграція цих моделей у медичну практику може значно покращити якість медичних послуг та допомогти лікарям надавати більш ефективні та точні діагнози.