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ABSTRACT 
 

The paper presents solutions to the actual problem of intelligent analysis of telemetry data from small satellites in order to detect 

its technical states. Neural network models based on modern deep learning architectures have been developed and investigated to solve 

the problem of binary classification of telemetry data. It makes possible to determine the normal and abnormal state of the small 

satellites or some of its subsystems. For the computer analysis, the data of the functioning of the small satellites navigation subsystem 

were used: a time series with a dimension of 121690 × 9. A comparative analysis was carried out of fully connected, one-dimensional 

convolution and recurrent (GRU, LSTM) neural networks. We analyzed hybrid neural network models of various depths, which are 

sequential combinations of all three types of layers, including using the technology of adding residual connections of the ResNet family. 

Achieved results were compared with results of widespread neural network models AlexNet, LeNet, Inception, Xception, MobileNet, 

ResNet, and Yolo, modified for time series classification. The best result, in terms of classification accuracy at the stages of training, 

validation and testing, and the execution time of one training and validation epoch, were obtained by the developed hybrid neural 

network models of three types of layers: one-dimensional convolution, recurrent GRU and fully connected classification layers, using 

the technology of adding residual connections. In this case, the input data were normalized. The obtained classification accuracy at the 

training, validation and testing stages was 0.9821, 0.9665, 0.9690, respectively. The execution time of one learning and validation 

epoch was twelve seconds. At the same time, the modified Inception model showed the best alternative result in terms of accuracy: 

0.9818, 0.9694, 0.9675. The execution time of one training and validation epoch was twenty seven seconds. That is, there was no 

increase in the classification accuracy when adapting the well-known neural network models used for image analysis. But the training 

and validation time in the case of the best Inception model increased by more than two times. Thus, proposed and analyzed hybrid 

neural network model showed the highest accuracy and minimum training and validation time in solving the considered problem 

according to compared with a number of developed and widely known and used deep neural network models.  
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INTRODUCTION 

One of the most important tasks at all stages of 

the life cycle of small spacecraft (SS) is the analysis 

of their telemetry data (TD) about the functioning of 

the SS in terms of determining their technical state to 

ensure safe operation and correct control. The rele-

vance is primarily because one of the main reasons 

for the loss of SS are failures and incorrect operation 

of the SS. 

A large amount of information, arriving from SS 

and accumulating in specialized databanks, can be ef-

fectively used to improve the process of determining 

the technical state of the small spacecraft and its sub-

systems. 

The functioning data of the small spacecraft, in-

cluding telemetric data, are heterogeneous irregular 

multidimensional data.   
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Therefore relevant is the research, development 

and application of models that allow you to analyze 

this kind of data. It gives the ability to extract useful 

information from them and then build classification 

and predictive models using them in order to deter-

mine the technical state of the SS for making correct 

control and operational decisions in the process of SS 

operation. 
Methods of machine learning, artificial intelli-

gence and bioinspired models are currently one of the 
most promising and widely used approaches in data 
analysis of high-tech systems. Vivid and well-known 
examples of their application are the developments of 
such companies as Facebook, Google, Amazon, Yan-
dex, and research centers of Massachusetts Institute 
of Technology, universities of Cambridge, Stanford, 
Berkeley, Princeton, Southern California, Montreal, 
Moscow Institute of Physics and Technology, Higher 
School of Economics, Bauman Moscow State Tech-
nical University. 
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Today, to solve the listed tasks, to ensure the re-

quired degree of autonomy, quality and efficiency of 

control of such complex objects as small spacecraft, 

it is necessary to perform complex automation and in-

tellectualization of the estimation processes and 

multi-model analysis of SS telemetric information 

data. However, in most cases, in practice, automation 

is performed, at best, only partially, and much is done 

often manually, based on heuristic rules [1]. At the 

same time, in accordance with GOST 1410-002-2010 

and the Strategy for digital transformation of the 

rocket and space industry until 2025 and the prospect 

until 2030 of the state corporation Roscosmos, an im-

portant task is to create a so-called information sys-

tem on the technical state and the reliability of space 

complexes (SC) and their constituent products [2, 3]. 

Thus, the task of intelligent analysis of small 

spacecraft telemetry data in order to determine the 

technical state of small spacecraft is relevant and in 

demand. At the same time, the development and ap-

plication of methods for analyzing TD SS based on 

models of artificial intelligence, machine learning and 

bioinspired systems allows solving the problem at a 

new scientific and engineering theoretical and applied 

levels and increasing the efficiency of the control and 

operational processes for SS ground control systems. 

1. STATEMENT OF THE TD SS BINARY 

CLASSIFICATION PROBLEM 

The initial telemetry data is a time series, which 

can be represented as a matrix  𝑿 = (𝑥𝑖𝑗), where i–th 

row 𝑿𝑖 is the analyzed vector of telemetry indicators 

at the i-th moment of time, the j index corresponds to 

the  j-th  indicator of the  telemetry at the i-th  vector 

𝑿𝑖. 

Definition 1. One-dimensional time series 𝑿 =
(𝑥1, 𝑥2, … , 𝑥𝑇) - an ordered set of real values. The 

length of 𝑿 is equal to the number of real values T. 

Definition 2. An M-dimensional time series 𝑿 =
(𝑿1, 𝑿2, … , 𝑿𝑀) consists of M different one-dimen-

sional time series 𝑿𝑗 ∈ 𝑅𝑇. 

Obviously that considering TD time series is M-

dimensional time series 𝑿 = (𝑿1, 𝑿2, … , 𝑿𝑀), each 

element of which 𝑿𝑗  is a column of the TD matrix 𝑿 

and at the same time a univariate time series describ-

ing the behavior of the  j-th  telemetry indicator on an 

interval of discrete times [1, 𝑇]. 

For each vector of telemetry indicators at the i-th 

moment of time 𝑿𝑖, a label of the class 𝑦𝑖 ∈ 𝒀 is as-

signed, which characterizes the SS functioning state 

analyzed basing on the SS telemetry data or its sub-

systems. 

We consider the case of a binary classification, 

since the final goal is to determine whether the ana-

lyzed vector 𝑿𝑖 of the M-dimensional time series 𝑿 

belongs to the failure-free or failure state. In this case, 

the number of classes 𝐾 = 2 and, therefore, 𝒀∈ {0,1}, 

where 0 denotes a failure-free state and 1 - a failure 

state of the SS system under analysis. 

Thus, the task is to find out the classification 

model of the following mapping: 

𝑦:𝑿 → 𝒀.                               (1) 

To encode class labels, we use One Hot encod-

ing. In this case the vector 𝑿𝑖 of the M-dimensional 

time series 𝑿 is labelled by the vector 𝒀𝑖 = (𝑦𝑖0, 𝑦𝑖1) 
of dimension 𝐾 = 2. The vector 𝒀𝑖 contains only one 

value 1, which corresponds to the class label 0: (1,0) 

or 1: (0,1) (Fig.1). 

 

Fig.1. Example of One Hot encoding of           

class labels  
Source: compiled by the author 

2.  MACHINE LEARNING MODELS IN THE 

CLASSIFICATION PROBLEM OF TIME 

SERIES 

Over the past two decades, time series classifica-

tion has been considered as one of the most difficult 

problems in the area of data mining [4, 5]. With the 

increasing availability of temporal data [6], hundreds 

of algorithms have been proposed since 2015 [7]. In 

fact, any classification problem using data that is rec-

orded taking into account some notion of ordering can 

be viewed as a time series classification problem [8]. 

Time series are found in many real applications: data 

processing of electronic medical records, recognition 

of human activity, classification of acoustic scenes, 

cybersecurity, SS functioning states analysis accord-

ing to TD [9, 10], [11, 12], [13, 14]. 

Recent publications have been focused on the 

development of ensemble methods [15, 16], [17, 18]. 

These approaches use either an ensemble of decision 

trees (random forest) or an ensemble of different 
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types of discriminant classifiers (support vector ma-

chines (SVMs), k-nearest neighbors (kNN) classifiers 

with several distance functions) on one or more fea-

ture spaces. Most of these approaches have a data 

transformation step that transforms the original time 

series. 

This approach stimulated the development of an 

ensemble of 35 COTE classifiers (Collective Of 

Transformation-based Ensembles) [15], which not 

only combines different classifiers for the same trans-

formation, but instead combines different classifiers 

for different representations of different time series. 

In [19, 20], the advantages of COTE were improved 

using a hierarchical voting system, having received 

the HIVE-COTE method. HIVE-COTE. HIVE-

COTE is currently considered as the leading time se-

ries classification algorithm among classical machine 

learning models when evaluating 85 datasets from the 

UCR/UEA archive [7]. To achieve high accuracy, 

HIVE-COTE becomes extremely computationally 

demanding and impractical for solving real problems 

of intelligent analysis of big data [7]. 

This approach requires the training of thirty-

seven classifiers, as well as cross-validation of each 

hyperparameter of these algorithms, which makes it 

impossible to train this approach in some situations. 

To emphasize this impossibility, note that one of 

these thirty-seven classifiers is the Shapelet transfor-

mation [16], the time complexity of which is 

𝑂(𝑛2𝑙4), where n is the number of one-dimensional 

time series in the dataset, and l – the length of the time 

series. 

Having analyzed the current state-of-the-art of 

classical non deep classifier models, we have estab-

lished the impracticality of advanced approaches in a 

number of cases of solving the real big data analysis 

problems for classifying the time series. Therefore, let 

us focus further on models of deep learning or neural 

network models, which have been widely used in re-

cent years to solve various problems of big data min-

ing [21]. This motivated their use for solving the 

problems of time series analysis [8, 11], [22]. 

3. DEEP LEARNING NEURAL NETWORK 

MODELS  

Artificial neural networks are a convenient and 

natural basis for representing information models. 

Definition 3. An artificial neural network (neural 

network model, ANN) is a system consisting of a set 

of elementary processors connected by the type of 

nodes of a directed graph, called artificial or formal 

neurons, and capable of generating output infor-

mation in response to the input action. 

Each neuron is characterized by its current state, 

by analogy with the nerve cells in the brain, which 

can be excited or inhibited. It has a group of synapses 

– unidirectional input connections connected to the 

outputs of other neurons, and also has an axon – an 

output connection of a given neuron, from which a 

signal (excitation or inhibition) enters the synapses of 

the following neurons. 

An artificial neuron imitates the properties of a 

biological neuron. Here, a set of input signals, indi-

cated as ix , ni ,1 , are fed to an artificial neuron. 

These input signals, collectively denoted by the vec-

tor 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), correspond to signals arriv-

ing at the synapses of a biological neuron. Each syn-

apse is characterized by the magnitude of the synaptic 

connection or its weight 𝑤𝑖. Every input signal is mul-

tiplied by the corresponding weight 𝑤𝑖, and supplied 

to the adder block. Each weighting factor corresponds 

to the “strength” of one biological synaptic connec-

tion and is analogous to the synapse of biological neu-

rons. If the value of the coefficient is negative, then it 

is customary to consider the i-th connection as inhib-

itory, if positive – as exciting. The set of weights in 

the aggregate are denoted by the vector �⃗⃗� . The adder 

block corresponds to the body of a biological neuron. 

It adds the weighted inputs algebraically, creating the 

value S. The resulting value S is fed to the activation 

output function )(Sa  of the neuron, simulating the 

process of activation or inhibition of input impulses 

or the nonlinear transfer characteristic of a biological 

neuron. 

Thus, the mathematical model of an artificial 

neuron can be represented by the expression 

)()(
1





n

i
ii bxwaSay ,                 (2) 

where: y is the output signal of the neuron; b – initial 

bias  of the neuron. 

In an enlarged form, ANN performs a functional 

mapping between input and output, and can serve as 

an information model of the mapping (1). According 

to [23, 24], the function determined by the neural net-

work can be arbitrary with easily met requirements 

for the structural complexity of the network and the 

presence of nonlinearity in the transient (activation) 

functions of neurons. 

Thus, a neural network model consisting of a set 

of interconnected artificial neurons is a bioinspired 

model of neural biological systems. At the same time, 

modern neural network models have found wide ap-

plication in the theory and practice of data mining and 

machine learning, including in classification prob-

lems of time series of various nature [8, 9], [10, 11], 

[12, 13], [14], [21, 22]. 
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In the process of development and analysis, we 

shall consider neural network models from simple to 

more complex, starting with the basic neural network 

models now: 

– fully connected neural networks/layers 

(FCNN); 

– one-dimensional convolutional neural net-

works/layers (1D CNN); 

– recurrent neural networks/layers (RNN) like 

Long Short-Term Memory (LSTM) and Gated Recur-

rent Units (GRU), and continuing them with combi-

nations of all basic layers, including, based on the 

method of using the residual connections of the fam-

ily ResNet. 

A comparative analysis will also be carried out 

with the well-known models AlexNet, LeNet, Incep-

tion, Xception, MobileNet, ResNet, Yolo. 

Fully connected neural networks/layers can be 

considered using the example of the following  

2-layer network, which is shown in Fig. 2 and is given 

by the formulas: 

𝑿 = (𝑥1, 𝑥2, 𝑥3) – input vector of input layer; 

definition of hidden layer: 

 𝒁1 = 𝑾1𝑿 + 𝒃1;  𝑨𝟏 = 𝑎1(𝒁
1);  

definition of output layer: 

 𝒁2 = 𝑾2𝑨𝟏 + 𝒃2; 
  �̂� = 𝑨𝟐 = 𝑎2(𝒁

2),  
where: 𝑾𝑖 − weighting coefficient values;  

𝒃𝑖 – bias values; 

𝑎𝑖(𝒁
𝑖) − activation functions of layers. 

 

Fig.2. An example of a two-layer fully-connected 

neural network 
Source: compiled by the author 

We shall use the following widely used activa-

tion functions in our models [25, 26]: 

– function relu – rectified linear unit  

𝑟𝑒𝑙𝑢 (𝑧)  =  𝑚𝑎𝑥 (0, 𝑧) ; 
– generalization of the logistic function for One 

Hot encoding of class labels 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗1

𝑗=0

, 

where: 𝑧𝑖 = 𝑊𝑖𝑌 – the value of the i-th component of 

the output layer; 𝑌 – the output vector of the previous 

layer or the input vector in the case of a single-layer 

neural network or regression model; 𝑊𝑖 – vector of 

weighting coefficients of connections from vector Y 

to output 𝑧𝑖.  
As the loss function, we shall use the binary 

crossentropy function, since we are solving the binary 

classification problem [25, 26]. 

Unlike 2D convolutional neural networks/layers 

used in image analysis, we will explore one-dimen-

sional convolutional networks/layers [5, 26]. Similar 

to 2D convolutions that extract 2D templates from 

image tensors and apply identical transformations to 

every such template, one-dimensional convolutions 

can be used to extract one-dimensional templates 

(subsequences) from time series. This type of one-di-

mensional convolutional layers are capable of recog-

nizing local patterns in a sequence. 

 

Fig.3. How a 1D convolutional neural  

         network/layer works 
           Source: compiled by [26] 

In contrast to fully connected networks, the same 

convolution (the same filter values w and b) will be 

used to find the result for all time stamps t ∈ [1, T]. 

This is a very powerful property of 1D CNN, which 

allows them to study time-invariant filters. When 

considering a time series as input to a convolutional 

layer, the filter no longer has one dimension (time), 

but also has dimensions that are equal to the number 

of dimensions in the input time series. Since the same 

transformations are applied to each template, one or 

another template found at some position in the se-

quence can later be recognized at a different position, 

which makes the transformations performed by 1D 

CNN networks/layers invariant (in time). For exam-

ple, a 1D CNN network that processes a sequence of 

values and uses a convolution window with a size of 

5 is able to memorize subsequences of a series of up 

to 5 elements and recognize them in any context in 

the input sequence of a time series (Fig. 3). 

 𝐻𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝒁1 

𝑨𝟏 = 𝑎1(𝒁
1
) 

 𝒚 = 𝑨
𝟐
= 𝑎2(𝒁

2
) 

Input 
layer 
 

𝑂𝑢𝑡𝑝𝑢𝑡  

𝑙𝑎𝑦𝑒𝑟 𝒁2 
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Instead of manually adjusting the ω filter values, 

these values should be learned automatically as they 

are highly dependent on the target dataset. For exam-

ple, one dataset will have an optimal filter of    (1, 2, 

2), while another dataset will have an optimal filter of 

(2, 0, -1). By optimal, we mean a filter, the application 

of which will allow the classifier to easily distinguish 

between the classes of the data set [5, 26]. 

The information extracted by the convolution is 

fed, as in the case of a fully connected ANN, to the 

input of the activation function a(Z). A block of 1D 

CNN layers must be followed by a discriminant clas-

sifier, which is usually a block of fully connected lay-

ers. It can be preceded by an aggregation operation 

(Pooling), which can also be present as an intermedi-

ate layer between 1D CNN blocks of layers. Pooling 

average (AveragePooling) or maximum (MaxPool-

ing) takes an input time series and reduces its length 

T by aggregating in a sliding window of the time se-

ries. For example, if the length of the sliding window 

is 3, the resulting merged time series will have a 

length equal to T/3 (this is true only if the step is equal 

to the length of the sliding window). The essence of 

aggregation is element-wise multiplication in a slid-

ing window of a subsequence by a mask, calculating 

the average or maximum value and replacing the sub-

sequence with it. 

A distinctive feature of the neural networks/lay-

ers that we have looked at is the lack of memory. Each 

input is processed independently without saving the 

state between them in this case. A recurrent neural 

network processes a sequence, iterating over its ele-

ments and preserving the state obtained when pro-

cessing previous elements. In fact, RNN is a kind of 

neural network with an internal state [25, 26] (Fig. 4).  

 

Fig.4. General diagram of a recurrent neural net-

work/layer 
Source: compiled by [25] 

One of the well-known RNN models is the 

LSTM RNN (Long Short-Term Memory). The 

LSTM cell is shown in Fig. 5 and consists of three 

main gate nodes: an input gate, a logic gate, and an 

output gate, which form a recurrent cell with a hidden 

state. 

 

Fig.5. LSTM cell structure 
    Source: compiled by [25] 

At the same time, RNN resembles micro-elec-
tronic sequential circuits with memory, decomposed 
into its combinational iterative equivalent. 

If we denote by 𝑥𝑡 input vector at time t, ℎ𝑡  – 
hidden state vector at time t, weight matrices: 
in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒: 
𝑊𝑥𝑐 –  from the input vector 𝑥𝑡, 𝑊ℎ𝑐 – from the hid-
den state vector at the moment of time t-1; 
in 𝑖𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒:  
𝑊𝑥𝑖 –  from the input vector 𝑥𝑡, 𝑊ℎ𝑖 – from the hidden 
state vector at the moment of time t-1; 
in 𝑓𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒:  

𝑊𝑥𝑓 –  from the input vector 𝑥𝑡, 𝑊ℎ𝑓 – from the hid-

den state vector at the moment of time t-1; 
in 𝑜𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒: 
𝑊𝑥𝑜 –  from the input vector 𝑥𝑡, 𝑊ℎ𝑜 – from the hid-
den state vector at the moment of time t-1, 
𝑏𝑐′, 𝑏𝑖, 𝑏𝑓 , 𝑏𝑜 – vectors of biases in cells 

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒, 𝑖𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒,  𝑓𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒, 
𝑜𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 accordingly, 
we get the following formal definition of how the 
LSTM works on the next input 𝑥𝑡, having the hidden 
state from the previous step  ℎ𝑡−1 and the actual state 
of the cell 𝑐𝑡−1, we sequentially calculate [25]: 

𝑐𝑡
′ = tanh(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐′)   

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒,    
𝑖𝑡 = σ(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)                   𝑖𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒,  
𝑓𝑡 = σ(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)            𝑓𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒,  

𝑜𝑡 = σ(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜)         
𝑜𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒,  
𝑐𝑡 = 𝑓𝑡°𝑐𝑡−1 + 𝑖𝑡°𝑐𝑡

′                                      𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒,  
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ℎ𝑡 = 𝑜𝑡°tanh (𝑐𝑡)                                      𝑏𝑙𝑜𝑐𝑘 𝑜𝑢𝑡𝑝𝑢𝑡. 
In work [27] in 2014, a modification of LSTM 

recurrent networks – Gated Recurrent Unit (GRU) 

was proposed, which reduced the complexity of 

LSTM model and training time. In this architecture, 

the hidden state ℎ𝑡 aligned with memory value 𝑐𝑡.  

 

Fig.6. GRU cell structure 
Source: compiled by [25] 

This is how a single GRU cell works [25]: 

𝑢𝑡 = σ(𝑊𝑥𝑢𝑥𝑡 + 𝑊ℎ𝑢ℎ𝑡−1 + 𝑏𝑢), 
𝑟𝑡 = σ(𝑊𝑥𝑟𝑥𝑡 + 𝑊ℎ𝑟ℎ𝑡−1 + 𝑏𝑟), 
ℎ𝑡

′ = tanh(𝑊𝑥ℎ′𝑥𝑡 + 𝑊ℎℎ′(𝑟𝑡°ℎ𝑡−1)), 
ℎ𝑡 = (1 − 𝑢𝑡)°ℎ𝑡

′ + 𝑢𝑡°ℎ𝑡−1. 

Here 𝑢𝑡 – update gate; 𝑟𝑡 – reset gate, he is also re-

sponsible for what part of memory needs to be trans-

ferred further from the last step, but he does this even 

before the nonlinear function is applied. Memory cell 

and block output ℎ𝑡 in this case, unlike LSTMs, are 

not separated in any way, and the next output ℎ𝑡 ob-

tained as a combination (set by the gate 𝑢𝑡) previous 

output ℎ𝑡−1 and the current output candidate ℎ′𝑡, 

which, in turn, also depends on ℎ𝑡−1, but through the 

reset gate 𝑟𝑡 (Fig.6). 

4. DEVELOPMENT AND ANALYSIS OF 

NEURAL NETWORK MODELS 

Based on the neural network architectures de-

scribed above, the following neural models have been 

proposed and investigated. The developed models 

were implemented in Python using the Keras and 

Tensorflow deep learning libraries (other libraries 

necessary for processing and visualizing data were 

also used: numpy, matplotlib, pandas and scikit-

learn). Accordingly, the pseudocode of the given 

models is based and close to the Keras/Tensorflow 

notation for better reproducibility. 

Fully connected neural network model: 

Z = Dense(16, activation='relu') (𝑿𝑖) 

Z = Dense(16, activation='relu') (Z) 

Z = Dense(2, activation='softmax') (Z),  

where Dense – fully connected layer notation [25,26]. 

Convolutional 1D CNN model: 

Z = Conv1D(filters=256, kernel_size=4, activa-

tion='relu') (𝑿𝑖)  

Z = MaxPooling1D(2) (Z) 

Z = Conv1D(filters=128, kernel_size=2, activa-

tion='relu') (Z) 

Z = GlobalMaxPooling1D (Z) 

Z = Dense(2, activation='softmax') (Z) 

Recurrent LSTM model: 

Z = LSTM(units=64) (𝑿𝑖) 

Z = LSTM(units=32) (Z) 

Z = LSTM(units=16) (Z) 

Z = Dense(2, activation='softmax') (Z) 

Recurrent GRU model: 

Z = GRU (units=64) (𝑿𝑖) 

Z = GRU (units=32) (Z) 

Z = GRU (units=16) (Z) 

Z = Dense(2, activation='softmax') (Z) 

Computer analysis was carried out on real telem-

etry data of one of the navigation subsystems of the 

small spacecraft. Each vector of the TD matrix 𝑿𝑖 has 

a dimension of 9 and is labelled 0 in the case of a free-

failre state and 1 in the case of failre state of the sub-

system. The total dimension of the 9-dimensional 

time series X is 121,690 vectors, 77881 vectors make 

up the training dataset, 19471 vectors make up the 

validation dataset, 24338 vector make up the test da-

taset. 

For the above group of neural network models, 

training and validation were carried out with the fol-

lowing values of hyperparameters: the “adam” training 

method (as one of the most effective at the moment), 

the loss function “binary_crossentropy”, the number of 

training epochs – 500, mini-batch size – 128. The early 

stopping mechanism [26] was not used and the learn-

ing and validation process took place at all 500 epochs. 

The results of computer experiments including the 

value of accuracy and loss function on the training, val-

idation and training sets, as well as the time for one 

epoch, are shown in  

Table 1. 
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Table 1. Experimental data of non-hybrid neural network models 

NN type Training Validation Testing Time of one 

training & 

validation 

epoch, sec 

Accuracy Loss Accuracy Loss Accuracy Loss 

Fully-connected NN 0.8816 0.2831 0.8810 0.2835 0.8809 0.2851 3 

Convolutional neural 

network 1D CNN  

0.9065 0.2206 0.9037 0.2336 0.8999 0.2654 3 

Recurrent LSTM NN 0. 9617 0. 0912 0. 9487 0. 1408 0.9485 0.1425 31 

Recurrent GRU NN 0.9485  0.1215 0.9358 0.1633 0.9336 0.1723 26 
 

Source: compiled by the author 

As the data in Table 1 show, a fully connected 

model has the least accuracy at the training, validation 

and testing stages, while its training and validation 

time is the smallest. A more accurate model (> 0.9) is 

a 1D CNN model, and the training and validation time 

is equal to the time of the fully connected model. Re-

current models are obviously the leaders in accuracy, 

and the GRU model at the stage of training, validation 

and testing is not much inferior to LSTM. At the same 

time, in terms of training and validation time, the 

GRU model rather outperforms the LSTM. There-

fore, we draw a conclusion about the leadership of the 

LSTM model in terms of accuracy in this series of ex-

periments. If the accuracy of the model is enough to 

have more than 0.9 and the factor of training time and 

model lightness is important, then the 1D CNN con-

volutional model is more attractive. An increase in the 

number of layers and neurons in the layers of models 

did not lead to an increase in the quality of the mod-

els. The opposite effect of reaching a plateau and a 

decrease in accuracy in the learning process was often 

observed. 

The further goal of the research was, on the one 

hand, to increase the accuracy of the model, on the 

other hand, to reduce its training and validation time, 

that is, to obtain a lighter-weight model compared to 

recurrent ones. For this purposes, we consider hybrid 

models consisting the three blocks of layers: convo-

lutional Conv1D, recurrent GRU or LSTM, and as a 

result, as a discriminant classifier, a fully connected 

block: 

Z = Conv1D(filters=512, kernel_size=4, activa-

tion='relu') (𝑿𝑖) 

Z = Conv1D(filters=512, kernel_size=4, activa-

tion='relu') (Z) 

Z = Conv1D(filters=512, kernel_size=4, activa-

tion='relu') (Z) 

Z = Pooling1D(2) (Z) 

Z = Conv1D(filters=256, kernel_size=2, activa-

tion='relu') (Z) 

Z = Conv1D(filters=256, kernel_size=2, activa-

tion='relu') (Z) 

Z = Conv1D(filters=256, kernel_size=2, activa-

tion='relu') (Z) 

Z = RNN(units=64) (Z) 

Z = Dense(2, activation='softmax') (Z) 

Based on this architecture, several neural net-

work models were obtained by using the Average-

Pooling and MaxPooling methods in the aggregation 

layer; in the recurrent layers the cells of the GRU and 

LSTM types were used. The input time series with in-

itial and normalized values in the range from 0 to 1 

was also considered, using the MinMaxScaler func-

tion. The training was also carried out at 500 epochs, 

but the mechanism of early stopping was used in case 

of reaching a plateau of the validation accuracy 

within 10 iterations. Experiments have shown that in 

this case the duration of training and validation was 

no more than 160 epochs. In the recurrent layer, l2 

regularization was used to aliminate overfitting 

[25,26]. 

The results of computer experiments represent-

ing the value of accuracy and loss functions on the 

training, validation and test sets are shown in Table 2. 

Also time of one training and validation epoch is 

given. 

Based on the data in Table 2, in terms of accu-

racy and time of one training and validation epoch, in 

this group of models, the model with AveragePooling 

and GRU cell is leading with a slight advantage. 

The next group of models was built on the basis 

of the architecture of the previous model and the 

method of adding residual connections. Development 

of this method began with appearing the ResNet fam-

ily of networks, developed by Kaiming He and col-

leagues at Microsoft [26, 28] (Fig. 7). 
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Table 2. Experimental data of hybrid sequential models  

NN type Training Validation Testing Time of one train-

ing & validation 

epoch, sec 
Accuracy Loss Accuracy Loss Accuracy Loss 

AveragePooling, GRU 0.9850  0.0333 0.9680 0.1364 0.9661 0.1327 14 

MaxPooling, GRU 0.9810  0.0488 0.9588 0.1557 0.9604 0.1413 14 

AveragePooling, LSTM 0.9816  0.0464 0.9649 0.1195 0.9655 0.1188 17 

MaxPooling, LSTM 0.9808  0.0454 0.9629 0.1255 0.9642 0.1202 17 

AveragePooling, GRU, 

normalized data 

0.9796  0.0452 0.9675 0.1138 0.9659 0.1039 15 

MaxPooling, GRU, nor-

malized data 

0.9789  0.0439 0.9686 0.1077 0.9674 0.1151 15 

AveragePooling, LSTM, 

normalized data 

0.9791  0.0447 0.9662 0.1070 0.9671 0.1022 16 

MaxPooling, LSTM, nor-

malized data 

0.9765  0.0572 0.9640 0.1028 0.9661 0.0942 17 

Source: compiled by the author 

 

Fig.7. Residual connection: reinjection of prior 
information by adding to the feature map of  

later layers  
Source: compiled by [26] 

Also, the number of convolutional layers has 
been increased and the number of filters in them has 
been reduced. 
𝒁1 = Conv1D(filters=64, kernel_size=4, activa-
tion='relu') (𝑿𝑖) 

𝒁1 = Conv1D(filters=64, kernel_size=4, activa-

tion='relu') (𝒁1) * 9 слоев 

𝒁2 = add([𝒁1, 𝑿𝑖]) – residual connection 𝑿𝑖 

𝒁2 = Pooling1D(2)( 𝒁2)  

𝒁3 = Conv1D(filters=64, kernel_size=2, activa-

tion='relu') (𝒁2)  

𝒁3 = Conv1D(filters=64, kernel_size=2, activa-

tion='relu') (𝒁2) * 9 слоев 

𝒁4 = Pooling1D(2)( 𝑿𝑖) 

Output = add([𝒁2, 𝒁3, 𝒁4]) – residual connections 𝒁2 

and  𝒁3 

Output = GRU(units=32) (Output ) 

Output = Dense(32, activation='relu') (Output) 

Output = Dense(2, activation='softmax') (Output) 

The results of computer experiments represent-

ing the value of accuracy and loss function on the 

training, validation and test sets, as well as the time 

of one training and validation epoch, are given in Ta-

ble 3. 

Table 3. Experimental data of hybrid models using residual connections  

NN type Training Validation Testing Time of one train-

ing & validation 

epoch, sec 
Accuracy Loss Accuracy Loss Accuracy Loss 

AveragePooling, GRU 0.9787  0.0844 0.9610 0.1389 0.9584 0.1483 13 

MaxPooling, GRU 0.9816  0.0667 0.9619 0.1331 0.9624 0.1334 12 

AveragePooling, LSTM 0.9791  0.0629 0.9574 0.1360 0.9570 0.1318 13 

MaxPooling, LSTM 0.9784  0.0926 0.9587 0.1451 0.9580 0.1524 13 

AveragePooling, GRU, 

normalized data 

0.9821  0.0625 0.9665 0.1091 0.9690 0.1075 12 

MaxPooling, GRU, 

normalized data 

0.9799  0.0736 0.9646 0.1213 0.9663 0.1154 12 

AveragePooling, LSTM, 

normalized data 

0.9726  0.0970 0.9573 0.1445 0.9581 0.1408 12 

MaxPooling, LSTM, 

normalized data 

0.9630  0.1166 0.9531 0.1428 0.9539 0.1403 12 

Source: compiled by the author 
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According to Table 3, based on the ratio of the 

accuracy value and the loss function, at the training, 

validation and testing stages, as well as the time of 

one training and validation epoch, the leader is a 

model with the parameters: AveragePooling, GRU 

and normalized data. 

Further, the computer analysis results of the ap-

plication of widely known and used neural network 

models AlexNet, LeNet, Inception, Xception, Mo-

bileNet, ResNet, Yolo was carried out for the problem 

under consideration. As a basis, we used the program 

code from the repository of the series of online work-

shops “Machine Learning Tokyo - Democratizing 

Machine Learning” [29], which was modified for the 

task of classifying the TD time series of the analyzed 

SS subsystem. The results of computer experiments, 

representing the value of accuracy and loss function 

on the training, validation and test sets, as well as the 

time of one training and validation epoch, are given 

in Table 4.  

Based on the data in Table 4, we can conclude 

that the best results in terms of classification accuracy 

values and execution time of one training and valida-

tion epoch were shown by a modified deep neural net-

work model of the Inception family, developed by 

Christian Szegedy and colleagues at Google [26, 30]. 

It used the AveragePooling aggregation layer, the 

LSTM recurrent layer, and data normalization. There 

was no significant increase in the values of accuracy 

and decrease in the values of losses at the stages of 

validation and testing for the last group of models. At 

the same time, the time of one epoch of training and 

validation has increased more than 2 times. In addi-

tion, the Inception model 

has become significantly more complicated in com-

parison with the best-developed model from Table 3. 

Therefore, to solve the problem under consideration, 

the use of this group of models, unfortunately not ad-

visable. 

CONCLUSION 

Neural network models based on modern deep 

learning architectures have been developed and in-

vestigated to solve the problem of binary classifica-

tion of telemetry data, which make it possible to de-

termine the normal and abnormal state of functioning 

of the SS navigation subsystem. A computer analysis 

was carried out on the real TD, which made it possible 

to assess the quality of the developed models at the 

stages of training, validation and testing. This analy-

sis showed the advantage of hybrid neural network 

models, which are a sequential connection of three 

blocks of layers: convolutional 1D CNN, recurrent 

GRU and the final fully connected classifier block, 

using the AveragePooling aggregation layer, the 

method of the residual connections and normalizing 

the initial data. A similar model also performed well 

without residual connections and input data normali-

zation. In general, when solving the problem under 

consideration, an accuracy of more than 0.96 at the 

stages of validation and testing was achieved. 

Further research of modern neural network mod-

els for the problem of binary and non-binary classifi-

cation of time series, as well as methods for automat-

ing the search for optimal hyperparameters values of 

models and their architectures, is promising. 

 

Table 4. Experimental data of modified neural network models 

NN type Training Validation Testing Time of one 

training & vali-

dation epoch, 

sec 

Accuracy 

 

Loss Accuracy 

 

Loss Accuracy 

 

Loss 

AlexNet 0.9221 0.1772 0.9215 0.1817 0.9228 0.1782 22 

LeNet 0.8690 0.3011 0.8669 0.3062 0.8695 0.3072 10 

Inception 0.9818 0.0406 0.9694 0.1045 0.9675 0.1154 27 

Xception 0.9226 0.1749 0.9252 0.1748 0.9216 0.1755 96 

MobileNet 0.9650 0.0776 0.9608 0.0949 0.9597 0.0975 35 

ResNet 0.9685 0.0687 0.9656 0.0969 0.9644 0.0924 79 

Yolo 0.9359 0.1665 0.9302 0.1815 0.9322 0.1783 37 

Source: compiled by the author 
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АНОТАЦІЯ 
 

У статті надано розв’язання актуальної задачі інтелектуального аналізу даних телеметричної інформації малих косміч-

них апаратів з метою визначення їх технічних станів. Розроблено нейромережеві моделі на основі сучасних архітектур гли-

бокого навчання для вирішення задачі бінарної класифікації даних телеметричної інформації, що дозволяють визначати шта-

тний та позаштатний стан функціонування малих космічних апаратів або деяких їх підсистем. Для комп'ютерного аналізу 

використовувалися дані функціонування навігаційної підсистеми малих космічних апаратів, часовий ряд розмірністю 

121690×9. Проводився порівняльний аналіз повнозв'язних, одновимірних згорткових та рекурентних (GRU, LSTM) нейрон-

них мереж, нейронних моделей різної глибини, які є послідовними комбінаціями всіх трьох типів шарів, у тому числі з вико-

ристанням технології додавання залишкових зв'язків сімейства ResNet, широко поширених нейромережних моделей AlexNet, 

LeNet , Inception, Xception, MobileNet, ResNet, Yolo, що є модифікованими для класифікації часових рядів. Найкращий ре-

зультат з точки зору точності класифікації на етапах навчання, валідації, тестування, та часу виконання однієї епохи навчання 

та валідації отримали розроблені послідовні нейромережеві моделі з трьох типів шарів: одновимірних згорткових, рекурент-

ного GRU та повнозв’язкового класифікаційного шарів. Вхідні дані було внормовано. Точність класифікації на етапах нав-

чання, валідації та тестування склали відповідно: 0.9821, 0.9665, 0.9690. Час виконання однієї епохи навчання та валідації 

склав дванадцять сек. При цьому найкращий альтернативний результат показала модифікована модель Inception: 0.9818, 

0.9694, 0.9675. Час виконання однієї епохи навчання та валідації для цієї моделі склав двадцять сiм сек. Збільшення точності 

класифікації під час адаптації відомих нейромережевих моделей, які використовуються для аналізу зображень, отримано не 

було, але час навчання та валідації у разі кращої моделі Inception збільшився більш ніж у два рази. Були запропоновані та 

проаналізовані гібридні нейромережеві моделі, у тому числі з використанням методики прокидання залишкових зв'язків сі-

мейства ResNet. Вони показали найбільшу точність та мінімальний час навчання та валідації моделі у вирішенні поставленої 

задачі порівняно з низкою розроблених та широко відомих, застосовуваних глибоких нейромережевих моделей. 

Ключові слова: нейронні мережі; дані телеметрії; аналіз даних; повнозв’язкові мережі/шари; 1D-згорткові ме-

режі/шари; рекурентні мережі/шари 
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