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ABSTRACT

The paper presents solutions to the actual problem of intelligent analysis of telemetry data from small satellites in order to detect
its technical states. Neural network models based on modern deep learning architectures have been developed and investigated to solve
the problem of binary classification of telemetry data. It makes possible to determine the normal and abnormal state of the small
satellites or some of its subsystems. For the computer analysis, the data of the functioning of the small satellites navigation subsystem
were used: a time series with a dimension of 121690 x 9. A comparative analysis was carried out of fully connected, one-dimensional
convolution and recurrent (GRU, LSTM) neural networks. We analyzed hybrid neural network models of various depths, which are
sequential combinations of all three types of layers, including using the technology of adding residual connections of the ResNet family.
Achieved results were compared with results of widespread neural network models AlexNet, LeNet, Inception, Xception, MobileNet,
ResNet, and Yolo, modified for time series classification. The best result, in terms of classification accuracy at the stages of training,
validation and testing, and the execution time of one training and validation epoch, were obtained by the developed hybrid neural
network models of three types of layers: one-dimensional convolution, recurrent GRU and fully connected classification layers, using
the technology of adding residual connections. In this case, the input data were normalized. The obtained classification accuracy at the
training, validation and testing stages was 0.9821, 0.9665, 0.9690, respectively. The execution time of one learning and validation
epoch was twelve seconds. At the same time, the modified Inception model showed the best alternative result in terms of accuracy:
0.9818, 0.9694, 0.9675. The execution time of one training and validation epoch was twenty seven seconds. That is, there was no
increase in the classification accuracy when adapting the well-known neural network models used for image analysis. But the training
and validation time in the case of the best Inception model increased by more than two times. Thus, proposed and analyzed hybrid
neural network model showed the highest accuracy and minimum training and validation time in solving the considered problem
according to compared with a number of developed and widely known and used deep neural network models.
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INTRODUCTION

One of the most important tasks at all stages of
the life cycle of small spacecraft (SS) is the analysis
of their telemetry data (TD) about the functioning of
the SS in terms of determining their technical state to
ensure safe operation and correct control. The rele-
vance is primarily because one of the main reasons
for the loss of SS are failures and incorrect operation
of the SS.

A large amount of information, arriving from SS
and accumulating in specialized databanks, can be ef-

Therefore relevant is the research, development
and application of models that allow you to analyze
this kind of data. It gives the ability to extract useful
information from them and then build classification
and predictive models using them in order to deter-
mine the technical state of the SS for making correct
control and operational decisions in the process of SS
operation.

Methods of machine learning, artificial intelli-
gence and bioinspired models are currently one of the
most promising and widely used approaches in data
analysis of high-tech systems. Vivid and well-known

fectively used to improve the process of determining
the technical state of the small spacecraft and its sub-
systems.

The functioning data of the small spacecraft, in-
cluding telemetric data, are heterogeneous irregular
multidimensional data.
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examples of their application are the developments of
such companies as Facebook, Google, Amazon, Yan-
dex, and research centers of Massachusetts Institute
of Technology, universities of Cambridge, Stanford,
Berkeley, Princeton, Southern California, Montreal,
Moscow Institute of Physics and Technology, Higher
School of Economics, Bauman Moscow State Tech-
nical University.
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Today, to solve the listed tasks, to ensure the re-
quired degree of autonomy, quality and efficiency of
control of such complex objects as small spacecraft,
it is necessary to perform complex automation and in-
tellectualization of the estimation processes and
multi-model analysis of SS telemetric information
data. However, in most cases, in practice, automation
is performed, at best, only partially, and much is done
often manually, based on heuristic rules [1]. At the
same time, in accordance with GOST 1410-002-2010
and the Strategy for digital transformation of the
rocket and space industry until 2025 and the prospect
until 2030 of the state corporation Roscosmos, an im-
portant task is to create a so-called information sys-
tem on the technical state and the reliability of space
complexes (SC) and their constituent products [2, 3].

Thus, the task of intelligent analysis of small
spacecraft telemetry data in order to determine the
technical state of small spacecraft is relevant and in
demand. At the same time, the development and ap-
plication of methods for analyzing TD SS based on
models of artificial intelligence, machine learning and
bioinspired systems allows solving the problem at a
new scientific and engineering theoretical and applied
levels and increasing the efficiency of the control and
operational processes for SS ground control systems.

1. STATEMENT OF THE TD SS BINARY
CLASSIFICATION PROBLEM

The initial telemetry data is a time series, which
can be represented as a matrix X = (x;;), where i-th
row X; is the analyzed vector of telemetry indicators
at the i-¢h moment of time, the j index corresponds to
the j-th indicator of the telemetry at the i-¢& vector
X;.

Definition 1. One-dimensional time series X =
(%1, %5, ..., xp) - an ordered set of real values. The
length of X is equal to the number of real values T.

Definition 2. An M-dimensional time series X =
(X1,X,, ..., Xy) consists of M different one-dimen-
sional time series X; € R”.

Obviously that considering TD time series is M-
dimensional time series X = (X;1,X5, ..., X)), each
element of which X; is a column of the TD matrix X
and at the same time a univariate time series describ-
ing the behavior of the j-th telemetry indicator on an
interval of discrete times [1, T].

For each vector of telemetry indicators at the i-¢h
moment of time X;, a label of the class y; € Y is as-
signed, which characterizes the SS functioning state
analyzed basing on the SS telemetry data or its sub-
systems.

We consider the case of a binary classification,
since the final goal is to determine whether the ana-
lyzed vector X; of the M-dimensional time series X
belongs to the failure-free or failure state. In this case,
the number of classes K = 2 and, therefore, Y€ {0,1},
where 0 denotes a failure-free state and 1 - a failure
state of the SS system under analysis.

Thus, the task is to find out the classification
model of the following mapping:

yv:X-Y. Q)

To encode class labels, we use One Hot encod-
ing. In this case the vector X; of the M-dimensional
time series X is labelled by the vector Y; = (¥;0, Vi1)
of dimension K = 2. The vector ¥; contains only one
value 1, which corresponds to the class label 0: (1,0)
or 1: (0,1) (Fig.1).

0 1
11488 1 ]
11489 1 ]
11490 2 1
11491 e 1
11482 0 1
11493 1 ]
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11495 1 e

Fig.1. Example of One Hot encoding of

class labels
Source: compiled by the author

2. MACHINE LEARNING MODELS IN THE
CLASSIFICATION PROBLEM OF TIME
SERIES

Over the past two decades, time series classifica-
tion has been considered as one of the most difficult
problems in the area of data mining [4, 5]. With the
increasing availability of temporal data [6], hundreds
of algorithms have been proposed since 2015 [7]. In
fact, any classification problem using data that is rec-
orded taking into account some notion of ordering can
be viewed as a time series classification problem [8].
Time series are found in many real applications: data
processing of electronic medical records, recognition
of human activity, classification of acoustic scenes,
cybersecurity, SS functioning states analysis accord-
ing to TD [9, 10], [11, 12], [13, 14].

Recent publications have been focused on the
development of ensemble methods [15, 16], [17, 18].
These approaches use either an ensemble of decision
trees (random forest) or an ensemble of different
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types of discriminant classifiers (support vector ma-
chines (SVMs), k-nearest neighbors (KNN) classifiers
with several distance functions) on one or more fea-
ture spaces. Most of these approaches have a data
transformation step that transforms the original time
series.

This approach stimulated the development of an
ensemble of 35 COTE classifiers (Collective Of
Transformation-based Ensembles) [15], which not
only combines different classifiers for the same trans-
formation, but instead combines different classifiers
for different representations of different time series.
In [19, 20], the advantages of COTE were improved
using a hierarchical voting system, having received
the HIVE-COTE method. HIVE-COTE. HIVE-
COTE is currently considered as the leading time se-
ries classification algorithm among classical machine
learning models when evaluating 85 datasets from the
UCR/UEA archive [7]. To achieve high accuracy,
HIVE-COTE becomes extremely computationally
demanding and impractical for solving real problems
of intelligent analysis of big data [7].

This approach requires the training of thirty-
seven classifiers, as well as cross-validation of each
hyperparameter of these algorithms, which makes it
impossible to train this approach in some situations.
To emphasize this impossibility, note that one of
these thirty-seven classifiers is the Shapelet transfor-
mation [16], the time complexity of which is
0(n?1*), where n is the number of one-dimensional
time series in the dataset, and | — the length of the time
series.

Having analyzed the current state-of-the-art of
classical non deep classifier models, we have estab-
lished the impracticality of advanced approaches in a
number of cases of solving the real big data analysis
problems for classifying the time series. Therefore, let
us focus further on models of deep learning or neural
network models, which have been widely used in re-
cent years to solve various problems of big data min-
ing [21]. This motivated their use for solving the
problems of time series analysis [8, 11], [22].

3. DEEP LEARNING NEURAL NETWORK
MODELS

Artificial neural networks are a convenient and
natural basis for representing information models.

Definition 3. An artificial neural network (neural
network model, ANN) is a system consisting of a set
of elementary processors connected by the type of
nodes of a directed graph, called artificial or formal
neurons, and capable of generating output infor-
mation in response to the input action.

Each neuron is characterized by its current state,
by analogy with the nerve cells in the brain, which
can be excited or inhibited. It has a group of synapses
— unidirectional input connections connected to the
outputs of other neurons, and also has an axon — an
output connection of a given neuron, from which a
signal (excitation or inhibition) enters the synapses of
the following neurons.

An artificial neuron imitates the properties of a
biological neuron. Here, a set of input signals, indi-

cated as X;,i = 1_n , are fed to an artificial neuron.

These input signals, collectively denoted by the vec-
tor X = (xq, x5, ..., x,,), correspond to signals arriv-
ing at the synapses of a biological neuron. Each syn-
apse is characterized by the magnitude of the synaptic
connection or its weight w;. Every input signal is mul-
tiplied by the corresponding weight w;, and supplied
to the adder block. Each weighting factor corresponds
to the “strength” of one biological synaptic connec-
tion and is analogous to the synapse of biological neu-
rons. If the value of the coefficient is negative, then it
is customary to consider the i-th connection as inhib-
itory, if positive — as exciting. The set of weights in
the aggregate are denoted by the vector w. The adder
block corresponds to the body of a biological neuron.
It adds the weighted inputs algebraically, creating the
value S. The resulting value S is fed to the activation
output function a(S) of the neuron, simulating the

process of activation or inhibition of input impulses
or the nonlinear transfer characteristic of a biological
neuron.

Thus, the mathematical model of an artificial
neuron can be represented by the expression

y:a(s):a(iwixi +b), )

where: y is the output signal of the neuron; b — initial
bias of the neuron.

In an enlarged form, ANN performs a functional
mapping between input and output, and can serve as
an information model of the mapping (1). According
to [23, 24], the function determined by the neural net-
work can be arbitrary with easily met requirements
for the structural complexity of the network and the
presence of nonlinearity in the transient (activation)
functions of neurons.

Thus, a neural network model consisting of a set
of interconnected artificial neurons is a bioinspired
model of neural biological systems. At the same time,
modern neural network models have found wide ap-
plication in the theory and practice of data mining and
machine learning, including in classification prob-
lems of time series of various nature [8, 9], [10, 11],
[12, 13], [14], [21, 22].
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In the process of development and analysis, we
shall consider neural network models from simple to
more complex, starting with the basic neural network
models now:

— fully connected neural
(FCNN);

— one-dimensional convolutional neural net-
works/layers (1D CNN);

— recurrent neural networks/layers (RNN) like
Long Short-Term Memory (LSTM) and Gated Recur-
rent Units (GRU), and continuing them with combi-
nations of all basic layers, including, based on the
method of using the residual connections of the fam-
ily ResNet.

A comparative analysis will also be carried out
with the well-known models AlexNet, LeNet, Incep-
tion, Xception, MobileNet, ResNet, Yolo.

Fully connected neural networks/layers can be
considered using the example of the following
2-layer network, which is shown in Fig. 2 and is given
by the formulas:

X = (x4, x5, x3) — input vector of input layer;
definition of hidden layer:
Z' =w'X +b'; A' = a,(Z");
definition of output layer:
Z* = w?Al + b*;
y = A* = a,(2%),
where: W' — weighting coefficient values;
b! — bias values;
a;(Z") — activation functions of layers.

networks/layers

Input
layer
x1
xy Sk
Hidden layer Z*
At =q,(z 1)

Fig.2. An example of a two-layer fully-connected

neural network
Source: compiled by the author

We shall use the following widely used activa-
tion functions in our models [25, 26]:

— function relu — rectified linear unit

relu (z) = max (0,2) ;

— generalization of the logistic function for One
Hot encoding of class labels
e%i

softmax(z;) = ST
j=0

where: z; = W;Y — the value of the i-th component of
the output layer; Y — the output vector of the previous
layer or the input vector in the case of a single-layer
neural network or regression model; W; — vector of
weighting coefficients of connections from vector Y
to output z;.

As the loss function, we shall use the binary
crossentropy function, since we are solving the binary
classification problem [25, 26].

Unlike 2D convolutional neural networks/layers
used in image analysis, we will explore one-dimen-
sional convolutional networks/layers [5, 26]. Similar
to 2D convolutions that extract 2D templates from
image tensors and apply identical transformations to
every such template, one-dimensional convolutions
can be used to extract one-dimensional templates
(subsequences) from time series. This type of one-di-
mensional convolutional layers are capable of recog-
nizing local patterns in a sequence.

Window of
size 5

——

Input

Input
P I features

H,_/‘

+ Time

Extracted
patch

.-

Dot product
+ with weights

Qutput

Output
features

Fig.3. How a 1D convolutional neural

network/layer works
Source: compiled by [26]

In contrast to fully connected networks, the same
convolution (the same filter values w and b) will be
used to find the result for all time stamps t € [1, T].
This is a very powerful property of 1D CNN, which
allows them to study time-invariant filters. When
considering a time series as input to a convolutional
layer, the filter no longer has one dimension (time),
but also has dimensions that are equal to the number
of dimensions in the input time series. Since the same
transformations are applied to each template, one or
another template found at some position in the se-
guence can later be recognized at a different position,
which makes the transformations performed by 1D
CNN networks/layers invariant (in time). For exam-
ple, a 1D CNN network that processes a sequence of
values and uses a convolution window with a size of
5 is able to memorize subsequences of a series of up
to 5 elements and recognize them in any context in
the input sequence of a time series (Fig. 3).
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Instead of manually adjusting the o filter values,
these values should be learned automatically as they
are highly dependent on the target dataset. For exam-
ple, one dataset will have an optimal filter of (1, 2,
2), while another dataset will have an optimal filter of
(2,0,-1). By optimal, we mean a filter, the application
of which will allow the classifier to easily distinguish
between the classes of the data set [5, 26].

The information extracted by the convolution is
fed, as in the case of a fully connected ANN, to the
input of the activation function a(Z). A block of 1D
CNN layers must be followed by a discriminant clas-
sifier, which is usually a block of fully connected lay-
ers. It can be preceded by an aggregation operation
(Pooling), which can also be present as an intermedi-
ate layer between 1D CNN blocks of layers. Pooling
average (AveragePooling) or maximum (MaxPool-
ing) takes an input time series and reduces its length
T by aggregating in a sliding window of the time se-
ries. For example, if the length of the sliding window
is 3, the resulting merged time series will have a
length equal to T/3 (this is true only if the step is equal
to the length of the sliding window). The essence of
aggregation is element-wise multiplication in a slid-
ing window of a subsequence by a mask, calculating
the average or maximum value and replacing the sub-
sequence with it.

A distinctive feature of the neural networks/lay-
ers that we have looked at is the lack of memory. Each
input is processed independently without saving the
state between them in this case. A recurrent neural
network processes a sequence, iterating over its ele-
ments and preserving the state obtained when pro-
cessing previous elements. In fact, RNN is a kind of
neural network with an internal state [25, 26] (Fig. 4).
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Fig.4. General diagram of a recurrent neural net-
work/layer
Source: compiled by [25]
One of the well-known RNN models is the
LSTM RNN (Long Short-Term Memory). The
LSTM cell is shown in Fig. 5 and consists of three

main gate nodes: an input gate, a logic gate, and an
output gate, which form a recurrent cell with a hidden
state.
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Fig.5. LSTM cell structure
Source: compiled by [25]

At the same time, RNN resembles micro-elec-
tronic sequential circuits with memory, decomposed
into its combinational iterative equivalent.

If we denote by x; input vector at time t, h; —
hidden state vector at time t, weight matrices:
in candidate cell state:

W, — from the input vector x;, W — from the hid-
den state vector at the moment of time t-1;

in input gate:

W,; — fromthe input vector x;, Wj,; — from the hidden
state vector at the moment of time t-1;

in forget gate:

W, — from the input vector x;, W,y — from the hid-
den state vector at the moment of time t-1;

in output gate:

W,, — from the input vector x;, W,,, — from the hid-
den state vector at the moment of time t-1,
be;, by bs, b, — vectors of biases in cells
candidate cell state, input gate, forget gate,
output gate accordingly,

we get the following formal definition of how the
LSTM works on the next input x;, having the hidden
state from the previous step h;_, and the actual state
of the cell c;_,, we sequentially calculate [25]:

c{ = tanh(Wyexy + Wiche_q + br)
candidate cell state,

iy = o(Wyixe + Wyihe—q + by)

ft = G(foxt + thht—l + bf)

0r = o(Wyoxt + Wiohe_1 + by)
output gate,

¢t = f°ce-1 + ic°ct

input gate,
forget gate,

cell state,
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h; = o;°tanh(c;) block output.
In work [27] in 2014, a modification of LSTM
recurrent networks — Gated Recurrent Unit (GRU)
was proposed, which reduced the complexity of
LSTM model and training time. In this architecture,
the hidden state h, aligned with memory value c;.
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Fig.6. GRU cell structure
Source: compiled by [25]

This is how a single GRU cell works [25]:
U = o(Wyy Xt + Whyhe—q + by),
e = o(Wyrxe + Wrhe—q + by),
he = tanh(thOft + Whn(1:°he-1)),
he = (1 —ue)°he + uehy—g.
Here u, — update gate; r, — reset gate, he is also re-
sponsible for what part of memory needs to be trans-
ferred further from the last step, but he does this even
before the nonlinear function is applied. Memory cell
and block output h in this case, unlike LSTMs, are
not separated in any way, and the next output h; ob-
tained as a combination (set by the gate u;) previous
output h,_; and the current output candidate h's,
which, in turn, also depends on h;_, but through the
reset gate r; (Fig.6).

4. DEVELOPMENT AND ANALYSIS OF
NEURAL NETWORK MODELS

Based on the neural network architectures de-
scribed above, the following neural models have been
proposed and investigated. The developed models
were implemented in Python using the Keras and
Tensorflow deep learning libraries (other libraries
necessary for processing and visualizing data were
also used: numpy, matplotlib, pandas and scikit-
learn). Accordingly, the pseudocode of the given

models is based and close to the Keras/Tensorflow
notation for better reproducibility.
Fully connected neural network model:

Z = Dense(16, activation="relu’) (X;)

Z = Dense(16, activation="relu’) (2)

Z = Dense(2, activation="softmax") (2),

where Dense — fully connected layer notation [25,26].

Convolutional 1D CNN model:

Z = Convl1D(filters=256, kernel_size=4, activa-
tion="relu’) (X;)

Z = MaxPooling1lD(2) (2)

Z = Convl1D(filters=128, kernel_size=2, activa-
tion="relu") (2)

Z = GlobalMaxPooling1D (Z)

Z = Dense(2, activation="softmax’) (2)

Recurrent LSTM model:

Z = LSTM(units=64) (X;)

Z = LSTM(units=32) (2)

Z = LSTM(units=16) (2)

Z = Dense(2, activation='softmax’) (2)

Recurrent GRU model:

Z = GRU (units=64) (X;)

Z = GRU (units=32) (2)

Z = GRU (units=16) (2)

Z = Dense(2, activation="softmax’) (2)

Computer analysis was carried out on real telem-
etry data of one of the navigation subsystems of the
small spacecraft. Each vector of the TD matrix X; has
adimension of 9 and is labelled O in the case of a free-
failre state and 1 in the case of failre state of the sub-
system. The total dimension of the 9-dimensional
time series X is 121,690 vectors, 77881 vectors make
up the training dataset, 19471 vectors make up the
validation dataset, 24338 vector make up the test da-
taset.

For the above group of neural network models,
training and validation were carried out with the fol-
lowing values of hyperparameters: the “adam” training
method (as one of the most effective at the moment),
the loss function “binary_crossentropy”, the number of
training epochs — 500, mini-batch size — 128. The early
stopping mechanism [26] was not used and the learn-
ing and validation process took place at all 500 epochs.
The results of computer experiments including the
value of accuracy and loss function on the training, val-
idation and training sets, as well as the time for one
epoch, are shown in
Table 1.
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Table 1. Experimental data of non-hybrid neural network models

NN type Training Validation Testing Time of one
Accuracy Loss Accuracy Loss Accuracy | Loss training &

validation
epoch, sec

Fully-connected NN 0.8816 0.2831 0.8810 0.2835 0.8809 0.2851 3

Convolutional neural 0.9065 0.2206 0.9037 0.2336 0.8999 0.2654 3

network 1D CNN

Recurrent LSTM NN 0. 9617 0. 0912 0. 9487 0. 1408 0.9485 0.1425 31

Recurrent GRU NN 0.9485 0.1215 0.9358 0.1633 0.9336 0.1723 26

Source: compiled by the author

As the data in Table 1 show, a fully connected
model has the least accuracy at the training, validation
and testing stages, while its training and validation
time is the smallest. A more accurate model (> 0.9) is
a 1D CNN model, and the training and validation time
is equal to the time of the fully connected model. Re-
current models are obviously the leaders in accuracy,
and the GRU model at the stage of training, validation
and testing is not much inferior to LSTM. At the same
time, in terms of training and validation time, the
GRU model rather outperforms the LSTM. There-
fore, we draw a conclusion about the leadership of the
LSTM model in terms of accuracy in this series of ex-
periments. If the accuracy of the model is enough to
have more than 0.9 and the factor of training time and
model lightness is important, then the 1D CNN con-
volutional model is more attractive. An increase in the
number of layers and neurons in the layers of models
did not lead to an increase in the quality of the mod-
els. The opposite effect of reaching a plateau and a
decrease in accuracy in the learning process was often
observed.

The further goal of the research was, on the one
hand, to increase the accuracy of the model, on the
other hand, to reduce its training and validation time,
that is, to obtain a lighter-weight model compared to
recurrent ones. For this purposes, we consider hybrid
models consisting the three blocks of layers: convo-
lutional Conv1D, recurrent GRU or LSTM, and as a
result, as a discriminant classifier, a fully connected
block:

Z = Conv1D(filters=512, kernel_size=4, activa-
tion="relu’) (X;)

Z = Convl1D(filters=512, kernel_size=4, activa-
tion="relu’) (2)

Z = Convl1D(filters=512, Kkernel_size=4, activa-
tion="relu’) (2)

Z = PoolinglD(2) (2)

Z = Convl1D(filters=256, kernel_size=2, activa-
tion="relu") (2)

Z = Convl1D(filters=256, kernel_size=2, activa-
tion="relu") (2)

Z = Convl1D(filters=256, kernel_size=2, activa-
tion="relu") (2)

Z = RNN(units=64) (Z)

Z = Dense(2, activation="softmax’) (Z)

Based on this architecture, several neural net-
work models were obtained by using the Average-
Pooling and MaxPooling methods in the aggregation
layer; in the recurrent layers the cells of the GRU and
LSTM types were used. The input time series with in-
itial and normalized values in the range from 0 to 1
was also considered, using the MinMaxScaler func-
tion. The training was also carried out at 500 epochs,
but the mechanism of early stopping was used in case
of reaching a plateau of the validation accuracy
within 10 iterations. Experiments have shown that in
this case the duration of training and validation was
no more than 160 epochs. In the recurrent layer, I»
regularization was used to aliminate overfitting
[25,26].

The results of computer experiments represent-
ing the value of accuracy and loss functions on the
training, validation and test sets are shown in Table 2.
Also time of one training and validation epoch is
given.

Based on the data in Table 2, in terms of accu-
racy and time of one training and validation epoch, in
this group of models, the model with AveragePooling
and GRU cell is leading with a slight advantage.

The next group of models was built on the basis
of the architecture of the previous model and the
method of adding residual connections. Development
of this method began with appearing the ResNet fam-
ily of networks, developed by Kaiming He and col-
leagues at Microsoft [26, 28] (Fig. 7).
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Table 2. Experimental data of hybrid sequential models

NN type Training Validation Testing Time of one train-
Accuracy | Loss | Accuracy | Loss | Accuracy | Loss ing & validation
epoch, sec
AveragePooling, GRU 0.9850 | 0.0333 | 0.9680 | 0.1364 | 0.9661 | 0.1327 14
MaxPooling, GRU 0.9810 | 0.0488 | 0.9588 | 0.1557 | 0.9604 | 0.1413 14
AveragePooling, LSTM 0.9816 | 0.0464 | 0.9649 | 0.1195 | 0.9655 | 0.1188 17
MaxPooling, LSTM 0.9808 | 0.0454 | 0.9629 | 0.1255 | 0.9642 | 0.1202 17
AveragePooling, GRU, 0.9796 | 0.0452 | 0.9675 | 0.1138 | 0.9659 | 0.1039 15
normalized data
MaxPooling, GRU, nor- 0.9789 | 0.0439 | 0.9686 | 0.1077 | 0.9674 | 0.1151 15
malized data
AveragePooling, LSTM, 0.9791 | 0.0447 | 0.9662 | 0.1070 | 0.9671 | 0.1022 16
normalized data
MaxPooling, LSTM, nor- 0.9765 | 0.0572 | 0.9640 | 0.1028 | 0.9661 | 0.0942 17
malized data

Source: compiled by the author

Layer

Residual
connection

Layer

Layer

Layer

il

Fig.7. Residual connection: reinjection of prior
information by adding to the feature map of

later layers
Source: compiled by [26]

Also, the number of convolutional layers has
been increased and the number of filters in them has
been reduced.

Z, = ConvlD(filters=64, kernel_size=4, activa-
tion="relu’) (X;)

Z, = ConvlD(filters=64, kernel_size=4, activa-
tion="relu’) (Z,) * 9 cioes

Z, =add([Z,, X;]) — residual connection X;

Z, = PoolinglD(2)( Z,)

Z; = Convl1D(filters=64, kernel_size=2, activa-
tion="relu’) (Z,)

Z; = ConvlD(filters=64, Kkernel_size=2, activa-

tion="relu’) (Z,) * 9 coes

Z, = PoolinglD(2)( X;)

Output = add([Z,, Z5, Z,]) — residual connections Z,

and Z3

Output = GRU(units=32) (Output )

Output = Dense(32, activation="relu’) (Output)

Output = Dense(2, activation="softmax") (Qutput)
The results of computer experiments represent-

ing the value of accuracy and loss function on the

training, validation and test sets, as well as the time

of one training and validation epoch, are given in Ta-

ble 3.

Table 3. Experimental data of hybrid models using residual connections

NN type Training Validation Testing Time of one train-
Accuracy | Loss | Accuracy | Loss | Accuracy | Loss ing & validation
epoch, sec
AveragePooling, GRU 0.9787 0.0844 | 0.9610 0.1389 | 0.9584 | 0.1483 13
MaxPooling, GRU 0.9816 | 0.0667 0.9619 0.1331 | 0.9624 | 0.1334 12
AveragePooling, LSTM 0.9791 0.0629 0.9574 0.1360 0.9570 0.1318 13
MaxPooling, LSTM 0.9784 | 0.0926 0.9587 0.1451 | 0.9580 0.1524 13
AveragePooling, GRU, 0.9821 | 0.0625 0.9665 | 0.1091 | 0.9690 | 0.1075 12
normalized data
MaxPooling, GRU, 0.9799 | 0.0736 0.9646 0.1213 | 0.9663 0.1154 12
normalized data
AveragePooling, LSTM, 0.9726 | 0.0970 0.9573 0.1445 | 0.9581 0.1408 12
normalized data
MaxPooling, LSTM, 0.9630 | 0.1166 0.9531 0.1428 | 0.9539 0.1403 12
normalized data

Source: compiled by the author
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According to Table 3, based on the ratio of the
accuracy value and the loss function, at the training,
validation and testing stages, as well as the time of
one training and validation epoch, the leader is a
model with the parameters: AveragePooling, GRU
and normalized data.

Further, the computer analysis results of the ap-
plication of widely known and used neural network
models AlexNet, LeNet, Inception, Xception, Mo-
bileNet, ResNet, Yolo was carried out for the problem
under consideration. As a basis, we used the program
code from the repository of the series of online work-
shops “Machine Learning Tokyo - Democratizing
Machine Learning” [29], which was modified for the
task of classifying the TD time series of the analyzed
SS subsystem. The results of computer experiments,
representing the value of accuracy and loss function
on the training, validation and test sets, as well as the
time of one training and validation epoch, are given
in Table 4.

Based on the data in Table 4, we can conclude
that the best results in terms of classification accuracy
values and execution time of one training and valida-
tion epoch were shown by a modified deep neural net-
work model of the Inception family, developed by
Christian Szegedy and colleagues at Google [26, 30].
It used the AveragePooling aggregation layer, the
LSTM recurrent layer, and data normalization. There
was no significant increase in the values of accuracy
and decrease in the values of losses at the stages of
validation and testing for the last group of models. At
the same time, the time of one epoch of training and
validation has increased more than 2 times. In addi-
tion, the Inception model

has become significantly more complicated in com-
parison with the best-developed model from Table 3.
Therefore, to solve the problem under consideration,
the use of this group of models, unfortunately not ad-
visable.

CONCLUSION

Neural network models based on modern deep
learning architectures have been developed and in-
vestigated to solve the problem of binary classifica-
tion of telemetry data, which make it possible to de-
termine the normal and abnormal state of functioning
of the SS navigation subsystem. A computer analysis
was carried out on the real TD, which made it possible
to assess the quality of the developed models at the
stages of training, validation and testing. This analy-
sis showed the advantage of hybrid neural network
models, which are a sequential connection of three
blocks of layers: convolutional 1D CNN, recurrent
GRU and the final fully connected classifier block,
using the AveragePooling aggregation layer, the
method of the residual connections and normalizing
the initial data. A similar model also performed well
without residual connections and input data normali-
zation. In general, when solving the problem under
consideration, an accuracy of more than 0.96 at the
stages of validation and testing was achieved.

Further research of modern neural network mod-
els for the problem of binary and non-binary classifi-
cation of time series, as well as methods for automat-
ing the search for optimal hyperparameters values of
models and their architectures, is promising.

Table 4. Experimental data of modified neural network models

NN type Training Validation Testing Time of one
Accuracy Loss Accuracy Loss Accuracy Loss trgl;?i?r? f;;ovcai:,i-
sec
AlexNet 0.9221 0.1772 0.9215 0.1817 0.9228 0.1782 22
LeNet 0.8690 0.3011 0.8669 0.3062 0.8695 0.3072 10
Inception 0.9818 0.0406 0.9694 0.1045 0.9675 0.1154 27
Xception 0.9226 0.1749 0.9252 0.1748 0.9216 0.1755 96
MobileNet 0.9650 0.0776 0.9608 0.0949 0.9597 0.0975 35
ResNet 0.9685 0.0687 0.9656 0.0969 0.9644 0.0924 79
Yolo 0.9359 0.1665 0.9302 0.1815 0.9322 0.1783 37
Source: compiled by the author
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AHOTANIA

V crarTi HamaHO PO3B’sI3aHHS aKTyalbHOI 334l IHTEIEKTYa IbHOTO aHAMi3y JaHUX TeleMeTPUYHOI iHpopMarlii MaTuxX KOCMid-
HUX arapariB 3 METOI0 BH3HAUEHHS IX TEXHIYHUX CTaHiB. Po3pobiieHo HelipoMepekeBi MOeli Ha OCHOBI CyJacHUX apXiTeKTyp TIIH-
OGOKOT0 HaBYaHHS /IS BUPILICHHs 3a1a4i OiHapHOT Knacudikaiil JaHHX TeJIeMeTpUIHOi iHdopMallii, 1110 JO3BOJISIOTH BU3HAYATH IITa-
THHUH Ta MO3AIUTATHUH CTaH (QYHKIIOHYBaHHS MaJMX KOCMIYHHX amapariB abo AesKHX iX migcucreM. st KOMITIOTEpPHOTO aHamizy
BUKOPHUCTOBYBAJIUCA [aHi (DYHKLUIOHYBaHHS HaBiralUiifiHOT MiICHCTEMHM MaluX KOCMIYHUX amapartiB, 4acOBHH DS PO3MIpHICTIO
121690x9. IIpoBoauBCst MOPIBHSUIBHUM aHANI3 TIOBHO3B'I3HHX, OJHOBHMIPHHX 3ropTKkoBuX Ta pekypeHTHHX (GRU, LSTM) Hetipon-
HUX Mepex, HeHpOHHNX MoJieiel pi3HOT MNIHOMHHY, SIKi € MOCIIiTOBHIMH KOMOIHANIsIMK BCIiX TPHOX THIIIB IIApiB, y TOMY YHCII 3 BHKO-
PHUCTaHHAM TEXHOJIOTIi 01aBaHHs 3aJMILIKOBUX 3B's13KiB ciMeiicTBa ResNet, mupoko nomupeHux HeiipoMepesxxaux moneneit AlexNet,
LeNet , Inception, Xception, MobileNet, ResNet, Yolo, mo € MmomudikoBanumu s knacudikamnii yacoBux psiniB. Haiikpamuii pe-
3yJIBTAT 3 TOYKH 30py TOYHOCTI Kinacupikalii Ha eTanax HaBYaHHsI, BaJIiiallii, TECTyBaHHS, Ta YaCy BUKOHAHHS OJIHi€1 eOXH HaBYaHHS
Ta BaNiAaIii oTpEMaIn po3pobiIeHi MOCIIiTOBHI HefipoMepekeBi MOJeNi 3 TPhOX THIIIB MIAPiB: OHOBUMIPHHUX 3TOPTKOBHUX, PEKypEHT-
Horo GRU Ta moBHO3B’s13k0BoOr0 Kiacugikaniiinoro urapis. Bxiaxi gani 6ysi1o BHopMoBaHo. TouHicTh kmacudikarii Ha eTanax HaB-
YaHHs, BaliJamii Ta TeCTyBaHHs ckyianu BimmoigHo: 0.9821, 0.9665, 0.9690. Uac BHKOHAHHS OJHIE] €MOXHW HABYAHHS Ta BaJIimarlii
CKJIaB ABAaHANITH ceK. [Ipw mpoMy HaliKpamuii albTepHaTUBHUI pe3ynbTaT Mokasaiga Momu¢ikoBaHa Mozens Inception: 0.9818,
0.9694, 0.9675. Yac BUKOHAHHSI OJHI€] €IIOXM HABYAHHSI Ta BaigaLil 1T i€l MO CKIaB JBAAIATE CiM ceK. 301IBbIICHHST TOYHOCTI
kiacuikamii mix yac aganramii BigoMux HelipoMepeXeBUX MOJEICH, sIKi BAKOPHCTOBYIOTHCS JUISl aHANIi3y 300pakeHb, OTPIMaHO He
OyIo, ane yac HaBYaHHS Ta Bamifamii y pasi kpamoi mozeni Inception 30impmmBes 011 HOK y Ba pa3u. bynu 3amponoHoBaHi Ta
NIpOaHaIi30BaHi TiOpHIHI HeHpOMepeKeBi MOJIEN, y TOMY YHCIIi 3 BUKOPHCTaHHSAM METOAMKH IPOKHUJAHHS 3aJIMIIKOBHX 3B'SI3KIB Ci-
MmeiictBa ResNet. BoHn nokazany HalOUIbITY TOYHICTh Ta MiHIMAJIBHUH Yac HABYAHHS Ta BaJlifallii MOJEINi y BUPIIICHHI TOCTABICHOT
3a1adi OPIBHSHO 3 HU3KOIO pO3pOOJICHNX Ta NIMPOKO BiJOMHX, 3aCTOCOBYBAHHX INTHOOKUX HEHPOMEpekeBHX MOEICH.

KurouoBi cioBa: HelpoHHI Mepexi; JaHI TeleMeTpii; aHami3 JaHHWX; MOBHO3B A3KOBI Mepexi/mapu; 1D-3ropTkoBi Me-
pexi/mapu; peKypeHTHI Mepexi/mapu
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