Applied Aspects of Information Technology 2021; Vol. 4 No. 3; 271-281

DOI: https://doi.org/10.15276/aait.03.2021.6
UDC 004.75

Smart contract sharding with proof of execution

Igor E. Mazurok?
ORCID: https://orcid.org/0000-0002-6658-5262; igor@mazurok.com. Scopus ID: 57192064365

Yevhen Y. Leonchyk?
ORCID: https://orcid.org/0000-0003-1494-0741; leonchik@ukr.net. Scopus ID: 57192064365

Oleksandr S. AntonenkoV
ORCID: https://orcid.org/0000-0001-9680-3446; asantonenko@gmail.com. Scopus ID: 17433258300

Kyrylo S. Volkov?
ORCID: https://orcid.org/0000-0002-7705-8994; cyrillicw@gmail.com
D Odessa I. 1. Mechnikov National University. 2, Dvoryanskaya Str. Odessa, 65082, Ukraine

ABSTRACT

Nowadays, Decentralized Networks based on Blockchain technology are actively researched. A special place in these
researches is occupied by Smart Contracts that are widely used in many areas, such as Decentralized Finance (DeFi), real estate,
gambling, electoral process, etc. Nevertheless, the possibility of their widespread adoption is still not a solved problem. This is
caused by the fact of their limited flexibility and scalability. In other words, Smart Contracts cannot process a large number of
contract calls per second, lack of direct Internet access, inability to operate with a large amount of data, etc. This article is devoted to
the development of the Sharding Concept for Decentralized Applications (DApps) that are expressed in form of Smart Contracts
written in WebAssembly. The aim of the research is to offer a new Concept of Smart Contract that will increase the scaling due to
applying the idea of Sharding that allows avoiding doing the same work by all nodes on the Network and flexibility due to the
possibility of interaction with the Internet without special Oracles. During the research, decentralized Oata storages with the
possibility of collective decision-making were developed. The scheme of forming Drives that assumes that each Contract is executed
by a set of randomly selected nodes that allows avoiding cahoots and prevents Sybil Attack is offered. Such an approach allowed
using Drives as a base layer for Smart Contracts. Moreover, Drives can be used as a standalone solution for decentralized data storing.
The features of coordination of results of Contracts execution that greatly expands the possibilities of the Contracts compared to
Ethereum Smart Contracts, and, in particular, allow the Contracts to interact with the Internet are described. The Rewards Concept
that incentivizes all nodes that honestly execute the Contracts, unlike other systems where only the block producer is rewarded, is
developed. It is based on the specially developed Proof of Execution — a special algorithm that allows detecting all the nodes that
honestly execute the Contracts. In order to make the Proof of Execution more compact, an extension for the existing discrete
logarithm zero-knowledge proofs that makes it possible to consistently prove knowledge of dynamically expanding set of values with
minimal computational and memory complexity so-called Cumulative Discrete Logarithm Zero-Knowledge Proof is developed. Thus,
in this article, the new concept of Smart Contracts Sharding empowered by economic leverages is researched. The main advantages
of the proposed approach are the possibility of interaction with the Internet and big data processing. Moreover, the mechanism of
incentivizing nodes to honestly execute the Smart Contracts is developed. In addition, the Cumulative Proof that is necessary for the
cryptographic strength of the specified mechanism is offered and its correctness is proven. The obtained results can be used to
implement Smart Contracts in decentralized systems, in particular, working on the basis of Blockchain technology, especially in the
case of demanding high bandwidth and performance.

Keywords: Proof of execution; cumulative proof; sharding; smart contracts; zero-knowledge proof

For citation: Mazurok I. E., Leonchyk Y. Y., Antonenko O. S., Volkov K. S. Smart contract sharding with proof of execution. Applied Aspects
of Information Technology. 2021; Vol. 4 No. 3: 271-281. DOI: https://doi.org/10.15276/aait.03.2021.6

1. INTRODUCTION, FORMULATION
OF THE PROBLEM

The recent vyears the decentralized and
distributed networks are actively studied and
problems that arise in such networks are researched
[1, 2], [3]. Special attention is paid to Smart
Contracts on the base of blockchain.

For the first time the idea of Smart Contracts
was offered by Nick Szabo in 1994 [4]. They
became widespread after the emergence of the
Ethereum blockchain network that, in fact, provides
an environment and infrastructure for execution

© Mazurok I., Leonchyk Y., Antonenko O.,
Volkov K. 2021

Smart Contracts written in Solidity. Since then,
contracts have been widely used in many areas:
finance (lending [5], exchanges [6]), guaranteeing
property rights [7], etc.

Despite its innovation and flexibility, Ethereum
Smart Contracts have a number of disadvantages,
including those related to the network architecture.
Among the main disadvantages can be noted low
bandwidth — the Ethereum is not able to process a
large number of contract calls per second, lack of
direct Internet access, inability to operate with a
large amount of
data, etc. They are, in particular, called by the fact
that the Smart Contracts are executed by the all
blockchain nodes.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

DOI: https://doi.org/10.15276/aait.03.2021.6 271

https://doi.org/
mailto:leonchik@ukr.net
https://doi.org/

Applied Aspects of Information Technology

2021; Vol. 4 No. 3: 271-281

The Ethereum and similar systems offer the
algorithm of encouragement of Smart Contract
Execution that is developed at the Blockchain
Consensus Level based on Proof of Work and
assumes that only the producer of the block is
rewarded. Such an approach does not incentivize the
nodes of the Network to validate correctness of the
execution.

Thus, the following problem arises: to develop
an environment for Smart Contracts Execution that:

— supports Sharding — dividing the Work among
the nodes of the Network that assumes that each
Contract is executed by a large enough set of nodes,
whose size is significantly less than the whole
number of nodes in the Network

— allows the Contracts to interact with Internet
and other Contracts

— incentivizes the nodes to honestly execute the
Contracts

The last point assumes that the nodes must be
rewarded for their work. Therefore it is necessary to
have the possibility to determine the nodes that have
indeed executed the contract. Since the results of the
execution must be public, then it is impossible to
perform such determination via checking possession
the results of the execution. That’s why the
algorithm that allows determining such nodes must
be developed.

2. LITERATURE OVERVIEW

All the mentioned problems significantly
decrease the possibility of using the existing solution
in wider spectrum of cases. That’s why they are
actively researched.

In particular, Ethereum is actively working on
Ethereum v2.0 [8] that aims to introduce Sharding
that will allow to significantly increase the number
of contract calls executed per second and the main
idea of which is dividing the network into subnets
called shards and parallelization of work among
them.

In [9] the overview of Ethereum Layer 2
Scaling: Plasma, ZK-Rollups and Optimistic Rollups
— is given. The main idea of the solutions is to take
the most operations off-chain, in particular, via
building child chains and registration of some events
in the parent chain. Nevertheless all of the proposed
ideas require either centralization, or significant
decrease in functionality, for example, the
possibility of using Contracts only for tokens
transfers.

Hyperledger offers its solution for Private
Networks called ChainCode [10]. In this solution
similar ideas can be traced: only some nodes of the

Network execute the code. Moreover, nodes are not
the Harvesters — the nodes that produce the blocks.

Zero-Knowledge Proofs [11, 12] is a method
used in cryptography for proving possession secret
information to a Verifier without providing it any
additional information about the secret except for the
fact that the Prover knows it.

The Zero-Knowledge Proofs are actively used
and researched in blockchain area. A special
attention is paid to non-interactive protocols — those
ones that do not suggest sequential messaging
between the Prover and the Verifier but assume that
the Verifier is able to check possession of the secret
information after receiving a single message from
the Prover.

The Proofs have become especially popular due
to the development of blockchain technologies.

The most wide used algorithms are zk-SNARK
[13]. This is a class of Zero-Knowledge Proofs that
possesses a number of additional properties
including succinct proof property that requires the
proof size to be a constant value.

Most often these algorithms are used to prove
the validity of token transfer transactions. In
particular, such a technology is used by ZCash [14].

3. THE AIM AND OBJECTIVES OF THE
RESEARCH

The aim of the research is to develop a new
architecture of smart contracts that will make
execution more flexible, scalable and increase
incentives for nodes to work honestly.

Research objectives:

1. Offer a new concept of Smart Contracts
Sharding with the possibility of interaction with the
Internet.

2. Develop the mechanism of incentivizing
nodes to honestly execute the Smart Contracts

3. Offer a new cryptographic protocol that
allows proving the possession of expanding
sequence of discrete logarithms. The protocol should
allow proving without knowledge which part of the
sequence has already been proved by the moment of
new proof generation.

4. DRIVE

In order to introduce the offered concept of
Smart Contracts we should preliminary introduce
Drives. We use Drive concept to store both Smart
Contract Code and Smart Contract Data. Each Drive
has its Owner — user of Smart Contact System,
which should upload Smart Contract Code and
initial data for Smart Contract on stage of
Deployment of Smart Contact.

272

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2021; Vol. 4 No. 3: 271-281

The Drive is a decentralized storage served by a
set of Network nodes called Executors. The simplest
idea is to store all Drives information on the same
set of Executors. But then we will not obtain
sharding concept and we obtain system which is in
many ways similar to Etherium 1.0 system. So we
offer to store a Drive on a proper subset of all
Executors. Only this subset Executors will run Smart
Contract located on this Drive. Since Drive is not
stored by all Network participants, its size can be
quite large. This allows storing arbitrary information
and process large files including databases.

All Executors of some Drive store the same
information about Drive content which is negotiated
and approved on the blockchain using the
Multisignature mechanism. The essence of this
approach is that changing the contents of the Drive
is made via releasing the transaction that is signed
with the supermajority of the Executors. This allows
to work in standard assumptions for Byzantine Fault
Tolerance [15] system that assume that there is less
than one third of fault Replicators on the Drive.

The possibility of collective decision-making
via Multisignature mechanism favorably
distinguishes our solution from other decentralized
storages [16, 17] which either does not provide the
possibility of collective decision-making at all, or
they are carried out in a centralized way.

Since the total size of information on Drive can
be pretty large, it is logical to store in blockchain
transactions not all the content of Drive, but some
aggregate information of it, for example, hash of all
Drive content.

In fact such Drives are analogs of Shards in
other Networks but with the clarification that each
Executor can be a member of several Drives.

The common problem for Sharding systems is
the procedure of assigning nodes to Shards: if each
node can select the wished Shard by itself, then the
performing of Sybil Attack becomes much easier: it
is sufficient to seize a single Shard in order to put
under threat the functionality of the entire Network.

In order to prevent the possibility of the attack
and avoid cahoots, Executors on the Drives are
assigned randomly.

To summarize our thoughts, the Drives can be
used on one’s own, like decentralized analogue of
cloud storage service, like Google Drive or
Dropbox. But using them as a base layer for Smart
Contracts is the most interesting.

5. SMART CONTRACTS

In this section we introduce the concept of Smart
Contracts — the more advanced analogous of
Ethereum Smart Contracts.

product. The Contract code is stored on a separate
Drive and is public that means that everybody is able
to download the code and make sure there are no
vulnerabilities. The code is immutable that
guarantees that all the terms of an electronic contract
will not be changed over the time.

The Smart Contracts are written in
WebAssembly [18] and executed by Executors.

Usage of WebAssembly allows:

— avoiding development of own programming
language and virtual machine like it is made in
Ethereum

— lowering the entry threshold for developers

5.1. Contract deployment

At first, the creator of a Contract need to upload
source code of the Contract and all the data needed
by the Contract to some drive. We call this process
Contract deployment. On this stage Contract creator
can modify the source code and the data on Drive as
he wants, but after finishing of deployment process,
he loses direct control on both source code and data,
since all data on Contract Drive can be modified
only through Contract code execution. This is used
to protect users of Contract against abuse by the
creator of the Contract (for example, in case of
online auction, the initiator of the auction cannot
cancel it after start, or change the auction conditions
or terms).

The results of successful or unsuccessful
deployment of the Contract, as well as initial state of
the Drive after deployment are fixed by a
corresponding transaction in the blockchain.

Thus, the Contracts code is immutable after
finish of deployment process, so the developers must
carefully analyze it before uploading, in particular,
using the method proposed in [19].

5.2. Contract runs

The Contract run is initiated via posting a
corresponding transaction into the blockchain. We
will call a concrete request of the Contract run as a
Call.

The Call starts to be executed as soon as the
block with the corresponding transaction is finalized.
It allows guaranteeing that all the Executors run the
Call in the same order.

The transaction contains all necessary
information for the Call Execution including the
arbitrary parameters. It allows locking tokens on
behalf of the Contract.

5.3. Interaction with data
The Smart Contracts can interact with all the

Smart Contract is a special kind of files on their Drives. The interaction includes
Decentralized Application in a form of software reading, modifying, and removing any files.
ISSN 2617-4316 (Print) 273

ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2021; Vol. 4 No. 3: 271-281

Interaction with the blockchain is limited. The
limitation is caused by the fact that Contracts are
executed in parallel to the blockchain so different
Executors may have different states of the
blockchain by the moment of execution. The similar
problem is considered by Hyperldger [10].

They offer introducing two sets:

— Read Set - a list of unique blockchain keys
and their committed version numbers that are read
during the execution.

— Write Set - a list of unique blockchain keys
modified during the execution.

The execution is then considered as a successful
one if the values mentioned in the Read Set have not
been modified during the execution.

Nevertheless, we refuse such an approach and
prefer limiting the information accessible during the
execution because of the following disadvantages of
Read Set:

— modification of some information in the
blockchain that was used during the execution does
not always mean incorrect contract execution: for
example, if the balance of an account has increased,
then it should not be a block for transferring money
from the account initiated with the contract;

— a malefactor can maliciously modify some
values in order to fail the execution.

The limitation consists in the fact that the
Contract can interact only with immutable part of
the blockchain: blocks and transactions and not the
state.

Due to the approach of approving the Execution
Results the Contracts are able to interact with the
Internet. Despite reading from Internet and Writing
to Internet are almost indistinguishable from the
network point of view, it should be noted that since
the Contract is executed by a couple of Executors,
writing to the Internet can have unexpected
consequences so in fact the interaction with the
Internet is limited with the possibility of
downloading data.

5.4. Interaction of several Contracts

Typical Ethereum Smart Contract calls other
Smart Contracts during its execution. That’s why it
is necessary to provide Contracts with the similar
possibility of interacting with each other. The
difficulty of the problem is explained by the fact that
Contracts are run in parallel independently of each
other so different Executors of both Contracts may
receive different results.

We offer the next solution of the problem:

— Running of a Smart Contract by another
Smart Contract can be performed only via posting
the corresponding transaction to the blockchain

— Obtaining information from a Contract can
be performed only as downloading a file with known
hash.

Such an approach allows guaranteeing that all
the Executors always execute the same actions and
receive the same information.

5.5. Approving the Execution Results

After the Call is executed, the Executors have to
agree on the results of its execution and approve
them in the blockchain via posting a special
transaction.

Since during its work, the Contract can modify
data stored on its Drive and issue transaction to the
blockchain, then the process of agreement on the
execution results comes down to the process of
agreement on the final contents stored on the Drive
and the contents of the issued transaction. In order to
decrease network load a typical solution is
agreement on hashes of the corresponding values.

Since the Contracts have access to the Internet,
the situation when different executors receive
different results can arise. Despite the fact that it
obviously indicates that the contract does not work
properly, such a situation must be processed in
normal mode.

Thus, the procedure of agreement should
support the next scenarios:

— The supermajority of Executors agrees on
the same results of Contract execution.

— There does not exist a supermajority of
Executors that agrees on the same results of Contract
execution.

In the first case the Contract is executed
successfully and the results on which an agreement
has been reached can be considered the results of the
Contract execution. Such a task can be solved by
any Byzantine Fault Tolerance consensus or via
Multisignature mechanism.

The second case is more difficult since it is not
possible to find out whether the desired
supermajority exists until all the Executors express
their opinion. The consensuses that are able to solve
such problem usually use the concept of time [20]. It
allows avoiding endless waiting for the responses
from all the nodes, considering that the nodes that
have not sent a response in the allotted time will
never send it.

A feature of the problem being solved is that the
Executors that the process of agreement is not
regular like accepting blocks in the blockchain but
takes place only when the Executors complete their
work. Due to different computing power of
Executors, network lags, etc. the moments when the
executions are finished can differ a lot.

274

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2021; Vol. 4 No. 3: 271-281

Taking into all the above we offer the next
solution of the problem based on the Multisignature
mechanism:

1. As soon as the Executor completes the
execution, it sends signed opinion about the results
of the execution to all other Executors at time T

2. If at some moment of time the Executor
collects necessary number of signatures for the same
execution results, it means that the agreement is
reached and all the corresponding signatures are sent
to the blockchain.

3. If by time T + t, where t is the maximum
waiting time the results of the execution are not
approved in the blockchain, the Executor sends
signed opinion about the unsuccessful execution to
all other Executors.

4. As soon as the Executor collects necessary
number of signatures for unsuccessful execution,
they are sent to the blockchain.

Since we assume that the supermajority of
Executors is honest, in the worst case they all sooner
or later will agree on the unsuccessful results of the
execution. Since each Executor uses its local time,
there is no need to synchronize time among the
Executors and the algorithm works properly even if
Executors complete execution with a very large time
difference.

That’s why we offer using a so-called two-
phasic approving:

1. Executors try to approve the successful
results of the execution using Multisignature
mechanism described above.

2. If the results are not approved after
expiration of a time limit, the Executors try to
approve the unsuccessful results of the execution

In the worst case, when the Executors receive
different results of the Execution, they are always
able to cope with the situation and continue working
in a regular mode.

The approach described above allows solving
problem of interacting with the Internet: the
information downloaded from the internet will be
applied only if the Executors will be able to agree on
the final results of the execution. At the same time,
problems with interaction on the one Drive do not
influence other Drives and Smart Contracts.

5.6. Rewarding the Executors

The Executors perform their work in order to
receive rewards. The amount of the reward is
proportional to the amount of work executed. As is
other systems, this amount is measured as the
number of opcodes executed by the WebAssembly
Virtual Machine.

The algorithm of rewards accrual should satisfy
the two given properties:

— |If the Executor has honestly executed the
Smart Contract, it must receive the reward.

— If the Executor has not executed the
Contract, it must not receive the reward.

Malicious Executors may try to lie whether they
have executed the contract in order to receive
improper gain.

6. PROOF OF EXECUTION

The main idea of Proof of Execution is that
those Executors who honestly execute the Contract
Calls possess some information that is not available
for other Executors. This allows them to prove the
fact they have executed the Contract via proving the
knowledge of this information. Such proof must be
made in a Zero-knowledge proof manner in order to
prevent disclosure of secret information.

6.1. Secret Information Generation

In this section we consider the ways of secret
information generation. Since possession of the
information proves the execution of the Contract
Call, this information should be a digest of execution
log. Thus, the process of the information generation
can be divided into two parts — Execution Log
Generation and Execution Log Information.

6.1.1. Execution Log Generation

The purpose of Execution Log Generation is to
create such an array that reflects the process of the
Call Execution. We offer two ways of the array
creation: Standard and Custom. They are not
mutually exclusive and can be used together.

Since Smart Contracts are executed in a Virtual
Machine, the Contract Call is in fact an ordered list
of opcodes, each of which has its own id and
parameters o;. This allows us to introduce the next
representation of the array a = oy, ...,0,. We call
this approach a Standard one. The Standard
Generation can be enabled or disabled at any
moment.

The main drawback of the Standard approach is
that it requires that all the Executors execute exactly
the same list of opcodes. It does not suit very well
for the Contracts that work with the Internet. That’s
why we offer an additional way for the formation of
the array.

The Contract Creator can foresee calls of a
special function that forcibly adds to the array the
specified value. It allows the Creator to require
checking the correctness of some critical values. We
call the approach the custom one. The values are
stored in the same array with the Standard

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

275

Applied Aspects of Information Technology

2021; Vol. 4 No. 3: 271-281

Generation so these two approaches can be used
together.

6.1.2. Execution Log Aggregation

The purpose of the aggregation is to create a short
digest of the Execution Log the possession of which
more convenient to prove. We offer using hashing
for these purposes. It allows reacting on small
changes in the input array and produces a non-
trivial-predictable random variable. At the same
time, it doesnt matter that the algorithm is
cryptographically strong: hash speed is much more
important. In our experiments we use xxHash [21]
that satisfies all mentioned requirements.

6.2. Providing Proofs

When the Executors approve the result of
execution, they additionally approve the public
information, necessary to verify the possession of
secret information.

The verification is made by the blockchain
nodes. Since information in the blockchain is public,
proof of the Secret Information possession should be
made in a Zero-Knowledge manner. In such cases a
standard tool is proving knowledge of the discrete
logarithm of a group element. Usually, such a group
is either group of elliptic curve points [22] or
multiplicative group of integers modulo n.

In order to prove the possession of the Secret
information, the Executor should post a special
transaction with the proof. In order to decrease the
number of transactions, the Executor should have
the possibility to provide proofs for several
executions at once. Moreover, in order to be able to
execute the next Calls before the transaction with
Proof of Execution for the previous one is posted in
the blockchain, the proof generated by the Executor
should allow to verify that he has honestly executed
all the Contract Calls starting with arbitrary Call in
the past.

This is the reason for introduction Cumulative
Discrete Logarithm Zero Knowledge Proof.

6.3. Proof of Execution Properties

The purpose of the Proof of Execution is to
determine those nodes who honestly execute Smart
Contract in order to reward them. More formally the
algorithm should satisfy the following conditions:

— The Executors that honestly execute the
Contract are able to generate correct Proof of
Execution.

— The Executors that do not execute the
Contract are not able to generate correct Proof of
Execution except for negligible probability.

Both of these conditions are satisfied due to

using Cumulative Zero-Knowledge Proof that
satisfies Completeness, Soundness and Zero-
Knowledge properties:

7. CUMULATIVE DISCRETE LOGARITHM
ZERO-KNOWLEDGE PROOF

Let G to be a cyclic group with generator g such
that the finding the discrete logarithm in this group
is computationally difficult.

The standard problem of discrete logarithm
zero-knowledge proof is formulated as following for
given value y € G prove knowledge of such value x
that y = g*.

In the [23] the following non-interactive proof
is proposed:

1. Peggy generates
computes t = g".

2. Peggy computes ¢ = hash(g,y,t), i = 1,n.

3. Peggy computes r = v — cx.

4. The proof is the pair(t, r).

The primitive algorithm for proving knowledge
of several values x, ..., x, such that g* =vy;, i =
1,n is generating n independent single proofs for
each value y;. But such an approach is not efficient
from the memory point of view: it would be more
convenient if the proof’s size was constant
regardless of value of n.

The approach described in [24] allows us to
extend the standard algorithm of discrete logarithm
knowledge proof for proving knowledge of several
logarithms with a constant proof size:

Peggy wants to prove Victor that she knows
values x4, ..., x, such that g*i = y;, i = 1,n.

1. Peggy generates random value v and
computes t = gV.

2. Peggy computes c; = hash(gy; t,P), i =
1,n

3. Peggy computesr = v — ¢yXq — *** — CpXp

4. The proof is the pair (t, r).

5. In order to verify the proof Victor computes
values c; and verifies the equality t =g’ - g€ - .-
g,

Nevertheless, such an approach requires that
both, the Prover and the Verifier agree on the last
proved value. As it is shown above, sometimes it is
not possible to guarantee. Therefore, it is necessary
to develop a mechanism that will not rely on the last
proved value. A straightforward solution is each
time generate a proof for all the values y;, ... y,. But
despite the proof’s size is still constant, it is very
non-efficient from the computational efficiency
point of view: in order to generate and verify each
proof it is necessary to process all preceding
sequence values that makes the computational
difficult of verifying n proofs 0(n?).

random value v and

276

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2021; Vol. 4 No. 3: 271-281

Thus, an efficient algorithm must satisfy the
next condition:

— Each single Proof allows to verify
knowledge of all the sequence values from the
beginning to some element y,,.

— Each Proof generation and verification is
performed in time linear to the number of values for
which the proof has not yet been generated and
verified.

— The size of the Proof does not depend on the
number of elements in the sequence.

We offer the Cumulative Discrete Logarithm
Zero Knowledge Proof as the solution that satisfies
all the conditions.

The main idea behind the Cumulative Zero
Knowledge Proof is borrowed from prefix sums.
Prefix sum py, ..., p, Of the array aq, ..., a, being the
sum of the first i elements of the array allows finding
the sum of any subarray a,;, 44, ..., a, in @ constant
time via finding the difference p,, — p.

In the same way Cumulative Zero Knowledge
Proof allows verification of the knowledge of new
values of a sequence via finding the “difference” of
Proofs.

The Cumulative Proof consists of two parts:
Main Proof and Safety Proof. Below we describe
the algorithm of the proof generation and
verification.

7.1. Cumulative Proof Generation

Main Proof

Let Peggy has already generated the Proof for
values x4, ..., X, and now she would like to prove
Victor that she possesses values x4, ...,X,, n>m
that are discrete logarithms of values y;, ...y, base g.
In order to generate the Main Proof Peggy

1) computes ¢; = hash(g,y;,P), i=m+ 1,n
where P is Peggy’s public key

2) randomly picks v € Z;, where 1 is the size of

the group G.
3) computes t,, = g".
4) computes r, = v —cyX; — - — CpXy modl
The tuple b = (t,, ry) is called Main Proof.
Safety Proof
Unlike the original scheme for proving

knowledge of a single discrete logarithm, the values
of ¢; in Main Proof do not depend on value t,,. This
makes it very vulnerable. Safety Proof is an auxiliary
part of Cumulative Proof and servers for The Safety
Proof serves for the avoidance of fraudulent
generation of the Main Proof. It allows proving that
Peggy truly knows the value of the discrete
logarithm of t, using standard Fiat—Shamir
heuristic.

In order to generate Safety Proof Peggy:
1) randomly picks w € Z;;
2) computes f = g%;
3) computes d = hash(f, t,, P);
4)computes k = w — dv mod .
The tuple g = (f k) is called Safety Proof.

7.2. Cumulative Proof Verification

We assume that Victor has already verified the
Cumulative Proof for values xq, ..., x,, with Main
Proof (t,,, 73,). If m = 0 we assume that r;,, = 0 and
t,, is equal to the neutral element of the group G.

The Verification of the Cumulative Proof for
values x4, ... x,, consists of two parts:

Safety Proof Verification and Main Proof
Verification.

Safety Proof Verification

In order to verify whether the Safety Proof is
valid, Victor:
1) computes d = hash(f, t,,, P);
2) verifies the equality: f = g*td.

If the equality is true, then Victor goes to Main
Proof Verification else the entire Proof is invalid.

Main Proof Verification

In order to verify whether the Main Proof is
valid, Victor:
1) computes ¢; = hash(g,y;,P),i=m+ 1,n;
2) verifies the equality t,tp! = gm Tmym+t. ...
Vo'

If the equality is true then the entire Cumulative
Proof is considered as a valid one.

7.3. Cumulative Proof Correctness

In this section we attempt to prove three
properties of the proposed Cumulative Zero-
Knowledge Proof: completeness, soundness and
zero-knowledge [12].

Completeness

Completeness property provides that any honest
Prover that is that one who possesses all values
X1, .-, Xn Will pass the verification.

The completeness of the proposed Cumulative
Proof follows from the next equality:
tatm =gmg™'m
— grn+c1X1+---+cnxng—(rm+(:1x1+~~-+cmxm)

— grn—rmgcm+1xm+1+~~~+cnxn

— oI'n—Tmy,Cm+1 Cn
— g n my « ese s yn

m+1
Soundness
The Soundness means that the Prover that does

not really know values xi,..,x, can pass the
verification with negligible probability.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

277

Applied Aspects of Information Technology

2021; Vol. 4 No. 3: 271-281

The original scheme requires computing the
value ¢ based on the value of T . It allows
guaranteeing that the Prover who does not know the
Secret Information has to solve a difficult Problem of
Discrete Logarithm Computing. Nevertheless such
an approach does not suit our algorithm because
otherwise, there will be no mutual annihilation of the
corresponding terms during verification and
completeness property will not be satisfied.

Now we will prove that the introduction of
Safety Proof in addition to Main Proof provides the
same protection as in standard Fiat-Shamir Heuristic.

Suppose that the Prover has already successfully
passed Verification for values x4, ..., X, with Main
Proof (t,,,) hense he has proved that he knows all
of them. Now he attempts to prove knowledge of
X1, .., Xp, N > m without possession the knowledge
about at least one of these values.

The Prover should find such pair (t,,r,) that
totp = g mytm+l. ...y Then for such a
Prover, there are two action strategies.

First Strategy. The Prover does not fix the value
of v at the corresponding algorithm step. This allows
him to select the value r;, in an arbitrary way that

uniquely identifies the value of t,=
grTTmt, y ALy But now to pass Safety

Proof the Prover should find the value of the discrete
logarithm of T that is computationally difficult.

Second Strategy. The Prover fixes the value of v
at the corresponding algorithm step that uniquely
identifies the value of t, = gV (thus, the Prover
generates correct Safety Proof according to the
algorithm) and now the Prover should find the value
of 7, such that g™ = t,tytgmmy, M-y,
that again makes him solve the discrete logarithm
problem (the Prover cannot use the formular, = v —
C1Xq — =+ — Ccpxy, modl since he does not know at
least one of x;).

Zero-Knowledge

Single Proof does not disclose more information
than the original scheme so the Zero Knowledge of
the single Proof follows from Zero Knowledge of the
scheme.

Two given proofs for values xq, ..., X, and for
X4, ., Xm, M < n do not provide the Verifier with
any additional information since in the difference
In—Im = (Vp — Vi) + Cmg1Xmer + o+ CpXy the
value of v, — v,,, is unknown for the Verifier.

7.4. Cumulative Proof Properties

One of the important properties of the
Cumulative Proof is that it allows proving
knowledge of the sequence elements not from the
very beginning but starting from the arbitrary

element. It allows the Executors to start Smart
Contract execution at any moment without the need
of executing Calls that were initiated long time ago
in order to be able to generate a valid Proof of
Execution.

8. COMPARISION WITH THE EXISTING
SOLUTIONS

The existing schemes of increasing scalability
of Smart Contracts propose Sharding blockchain
nodes [8] or executing Smart Contracts offchain [9,
10]. The Concept proposed in the article in fact
merges these ideas in such a way that Contracts are
executed off chain but with formation of concrete
Shards.

Such scheme has a row of advantages
comparing to the existing solutions:

— The possibility of allocating an arbitrary
amount of information for the Contract work. The
property is achieved due to allocating the data on the
Drives that allow information overwriting and are
stored only on a subset of Network nodes.

— The possibility of interaction with the
Internet. The property is achieved due to a specially
developed algorithm of agreement on the Smart
Contract Execution result.

— Incentivization of all nodes to honestly
execute the Smart Contract. The property is achieved
due to first proposed algorithm of Proof of Execution.

9. CONCLUSIONS

The work is devoted to the development of
Sharding Concept for Decentralized Applications
(DApps) that are expressed in form of Smart
Contracts.

The concept assumes that Smart Contract data is
stored on specially designed decentralized file
storages called Drive. The Drives unlike other
solutions, such as [15, 16] allow decentralized
collective-decision making. It allows considering
them as separate Shards.

The special algorithm of agreement on the
results of Smart Contract execution is designed. Due
to its ability to determine impossibility to find
consensus on successful Contract Execution the
interaction with internet becomes possible that
favorably distinguishes the proposed system from the
existing ones, in which obtaining information from
the Internet requires special oracles.

The main advantages of the proposed scheme
comparing to the existing ones are lack of any
centralization, the possibility of storing arbitrary
large amount of information and interaction with the
Internet.

278

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2021; Vol. 4 No. 3: 271-281

One of the key features of the proposed system is
the rewards distribution scheme. Unlike other
systems it assumes all nodes who honestly execute
the Smart Contract remuneration.

In order to make it possible a special scheme
called Proof of Execution is developed. It allows
determining which nodes honestly receive their
rewards based on the assumption that such nodes
possess some information that is unavailable to the
malicious nodes. The way of constructing the
information as execution fingerprint is offered.

A special cryptographic protocol necessary for
making computational and memory complexity of
Proof of Execution called

Cumulative Zero-Knowledge Proof is developed.
It allows proving the possession of expanding set of
discrete logarithms without knowledge which part of

the sequence has already been proved by the moment
of new proof generation. This algorithm is
superstructure over existing discrete logarithm ZK
proof and so is applicable to any group in which the
discrete logarithm is computationally difficult. The
correctness of the protocol that consists of
Completeness, Soundness and Zero-Knowledge is
proven.

Thus, the new concept of Smart Contracts
Sharding with the possibility of interaction with the
Internet is offered, the mechanism of incentivizing
nodes to honestly execute the Smart Contracts is
developed, the Cumulative Proof that is necessary
for cryptographic strength of the specified
mechanism is offered and its correctness is proven.
The goals set in the article have been achieved.

REFERENCES

1. Mazurok, I. E., Leonchyk, Y. Y. & Kornylova, T. Y. “Proof-of-Greed Approach in the NXT
Consensus”. Applied Aspects of Information Technology. Publ. Science i Technical. Odessa: Ukraine. 2019;
Vol.2 No.2: 153-160. DOI: https://doi.org/10.15276/aait.02.2019.6.

2. Kovalev, I. S., Drozd, O. V., Rucinski, A., Drozd, M. O., Antoniuk, V. V. & Sulima, Yu.Yu.
“Development of Computer System Components in Critical Applications: Problems, their Origins and
Solutions”. Herald of Advanced Information Technology. Publ. Nauka i Tekhnica. 2020; Vol.3 No.4: 252—
262. Odessa. Ukraine. DOI: https://doi.org/10.15276/hait.04.2020.4.

3. Kalnauz, D. V. & Speranskiy, V. A. “Productivity Estimation of Serverless Computing”. Applied
Aspects of Information Technology. Publ. Nauka i Tekhnica. Odessa: Ukraine. 2019; Vol. 2 No.1l: 20-28.

DOI: https://doi.org/10.15276/aait.01.2019.2.

4. Szabo, N. “Smart Contracts”. — Available from: https://www.fon.hum.
uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/sma

rt.contracts.html. — [Accessed 15 Feb 2020].

5. Hugo Hoffmann, C. “Blockchain Use Cases Revisited: Micro-Lending Solutions for Retail Banking
and Financial Inclusion”. Journal of Systems Science and Information, 2021; Vol. 9 No. 1. 1-15.

DOI: https://doi.org/10.21078/JSSI-2021-001-15.

6. Malamud, Semyon & Marzena Rostek. “Decentralized Exchange”. American Economic Review,
2017; 107 (11): 3320-3362. DOI: https://doi.org/10.1257/aer.20140759.

7. Ante, L. “The Non-Fungible Token (NFT) Market and its Relationship with Bitcoin and Ethereum”.
BRL Working Paper Series. 2021; Vol. 21: 1-15. DOI: https://dx.doi.org/10.2139/ssrn.3861106.

8. CRYPTO.COM. “Ethereum 2.0.

An

Introduction”. — Available from:

https://assets.ctfassets.net/hfgyigd2jimx/7j3AVp5aCnx2Ct2P6T6kY/e8991d5da1972d5d760233868f237609/
Crypto.com_Macro_Report_- Ethereum_2.0.pdf. — [Accessed 15 Feb 2020].

9. Marukhnenko, O. & Khalimov, G. “The Overview of Decentralized Systems Scaling Methods”.
Fifth International Scientific and Technical Conference “Computer and Information Systems and
Technology ”. 2021: 37-38. DOI: https://doi.org/10.30837/csitic52021232174.

10. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C et al. “Hyperledger fabric: a distributed
operating system for permissioned blockchains”. In Proceedings of the Thirteenth EuroSys Conference
(EuroSys '18). Association for Computing Machinery, New York: NY, USA. 2018; Article 30, 1-15. DOI:

https://doi.org/10.1145/3190508.3190538.

11. Feige, U., Fiat, A. & Shamir, A. “Zero-Knowledge Proofs of Identity”. J. Cryptology 1. 1988.

p. 77-94. DOI: https://doi.org/10.1007/BF02351717.

12. Goldreich, O. & Oren, Y. “Definitions and Properties of Zero-Knowledge Proof Systems”. Journal
of Cryptology ”. 1994; Vol. 7 No. 1: 1-32. DOI: https://doi.org/10.1007/BF00195207.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

279

https://doi.org/10.15276/aait.01.2019.2
https://doi.org/10.1257/aer.20140759
https://dx.doi.org/10.2139/ssrn.3861106
https://assets.ctfassets.net/hfgyig42jimx/7j3AVp5aCnx2Ct2P6T6kY/e8991d5da1972d5d760233868f237609/Crypto.com_Macro_Report_-_Ethereum_2.0.pdf
https://assets.ctfassets.net/hfgyig42jimx/7j3AVp5aCnx2Ct2P6T6kY/e8991d5da1972d5d760233868f237609/Crypto.com_Macro_Report_-_Ethereum_2.0.pdf
https://doi.org/10.30837/csitic52021232174
https://doi.org/10.1007/BF02351717
https://doi.org/10.1108/02632770210435206
https://doi.org/10.1108/02632770210435206

Applied Aspects of Information Technology 2021; Vol. 4 No. 3: 271-281

13. Ben-Sasson, E., Chiesa, A., Tromer, E. & Virza, M. “Succinct Non-Interactive Zero Knowledge for
a von Neumann Architecture”. SEC'14: Proceedings of the 23rd USENIX Conference on Security
Symposium. 2014. p. 781-796.

14. Ben Sasson, E. et al. “Zerocash: Decentralized Anonymous Payments from Bitcoin”. |EEE
Symposium on Security and Privacy. 2014. p. 459-474. DOI: https://doi.org /10.1109/SP.2014.36.

15. Castro, M. & Barbara, L. “Practical Byzantine Fault Tolerance”. In Proceedings of the third
symposium on Operating systems design and implementation (OSDI '99). USENIX Association. USA. 1999.
p. 173-186.

16. Y. Psaras and D. Dias, "The InterPlanetary File System and the Filecoin Network," 2020 50th
Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume
(DSN-S). 2020. p. 80-80. DOI: 10.1109/DSN-S50200.2020.00043.

17. Figueiredo, S., Madhusudan, A., Reniers, V., Nikova, S. & Preneel, B. “Exploring the Story
Network: a Security Analysis”. In Proceedings of the 36th Annual ACM Symposium on Applied Computing
(SAC '21). Association for Computing Machinery. New York: NY, USA. 2021. p. 257-264.
DOI: https://doi.org/10.1145/3412841.3441908.

18. Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M., Gohman, D., Wagner, L., Zakai,
A. & Bastien, J. F. “Bringing the Web up to Speed with WebAssembly”. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). Association for
Computing Machinery. New York: NY, USA. 2017. p. 185-200. DOI: https://doi.org/10.1145/
3062341.3062363.

19. Paulin, O. N., Komleva, N. O., Marulin, S. U. & Nikolenko, A. A. “Method for Constructing the
Model of Computing Process Based on Petri Net”. Applied Aspects of Information Technology. Publ.
Science i Technical. Odessa: Ukraine. 2019; Vol. 2 No. 4: 260-270. DOI: https://doi.org/10.15276/
aait.04.2019.1.

20. Gilad, Y., Hemo, R., Micali, S., Vlachos, G. & Zeldovich, N. “Algorand: Scaling Byzantine
Agreements for Cryptocurrencies”. SOSP '17: Proceedings of the 26th Symposium on Operating Systems
Principles. 2017. p. 51-68. DOI: https://doi.org/10.1145/3132747.3132757.

21. GITHUB. “xxHash — Extremely fast hash algorithm”. — Available from:
https://github.com/Cyan4973/xxHash. — [Accessed 15 Feb 2020].

22. Washington, L.C. Elliptic Curves: Number Theory and Cryptography, Second Edition (2nd ed.).
Chapman and Hall/CRC. 2008. DOI: https://doi.org/10.1201/9781420071474

23. Bernhard, D., Pereira, O. & Warinschi, B. “How Not to Prove Yourself: Pitfalls of the Fiat-Shamir
Heuristic and Applications to Helios”. Advances in Cryptology — ASIACRYPT. 2012. p. 626-643.
DOI: https://doi.org/10.1007/978-3-642-34961-4_38.

24. J. Camenisch and M. Stadler, “Proof systems for general statements
about discrete logarithms,” ETH Zurich, Technical Report No. 260. Tech.
Rep. 1997. DOI: https://doi.org/10.3929/ETHZ-A-006651937.

Conflicts of Interest: the authors declare no conflict of interest

Received 15.12.2020
Received after revision 25.02.2021
Accepted 16.03.2021

DOI: https://doi.org/10.15276/aait.03.2021.6

VJK 004.75
I_Hap)IyBaHHﬂ cMapT KOHTpaKTiB 3 JOKAa30M BUKOHaAHHSHA

Irop €preniiiopua Masypok?

ORCID: https://orcid.org/0000-0002-6658-5262; igor@mazurok.com. Scopus ID: 57192064365
€eren IOpiiiosny Jleonuux?

ORCID: https://orcid.org/0000-0003-1494-0741; leonchik@ukr.net. Scopus ID: 57192064365

Ouaexcannp CepriiioBud AHTOHeHKOY

ORCID: https://orcid.org/0000-0001-9680-3446; asantonenko@gmail.com. Scopus ID: 17433258300
Kupnio Cepriiioua Bosxos?
ORCID: https://orcid.org/0000-0002-7705-8994; cyrillicw@gmail.com
D Onechkuit HanionanbHuit yHiBepcutet iMeni 1. 1. Meunukosa, By. J{opsiHceka, 2. Oneca, 65082, Ykpaina
280 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

https://doi.org/10.1145/3412841.3441908
https://doi.org/10.1145/3132747.3132757
https://github.com/Cyan4973/xxHash
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.3929/ETHZ-A-006651937
https://doi.org/
mailto:asantonenko@gmail.com
mailto:cyrillicw@gmail.com

Applied Aspects of Information Technology 2021; Vol. 4 No. 3: 271-281

AHOTANIA

OcTaHHIM 9acOM aKTHBHO JOCIIJKYIOThCS ACLEHTPATi30BaHI Mepexki Ha OCHOBI TexHouorii Giiokdeitn. OcobmBe MicIe B IIHX
JOCTIDKEHHAX 3aiiMaroTh CmapT KoHTpakTH, IO IMIMPOKO BHKOPHCTOBYIOTHCS B 0araThbOX raimyssiX, TaKHX SK JCHEHTpali3oBaHi
¢inancu (DeFi), HepyxomicTs, a3apTHi irpu, BUOOpYl Hpouecu Tomo. TuM He MEHIIe, MOMJIMBICTD iX IIMPOKOTO 3aCTOCYBAHHS €
Joci He BUpiIeHOK mpoOiemoro. lle BUKIMKAaHO THM, L0 BOHH MarOTh OOMEXEHY THYYKIiCTh Ta MacIITaOOBaHIiCTh. [HIIMMu
cnoBamu, Cmapt KoHTpakTu He MOXYTh OOpOOJIATH BEIMKY KiNBKICTh BHUKIHKIB y CEKYHAY, BIACYTHICTh NPSIMOTO IOCTYIY A0
Mepexi [HTepHeT, HeMOXIJIMBICTH POOOTH 3 BENMKOIO KiJIBKICTIO JaHMX Tomlo. JlaHa poGoTa HmpHCBSYeHa PO3POOIi KOHIETIil
mapAayBaHHA Ui JeneHTpamizoBanux mnporpam (DApps) y ¢opmi koHTpakTiB, HammcaHunx Ha WebAssembly. ITpomonyerses
KOHIIETIIiA, sIKa mependadae, mo KoxeH KOHTpakT BHKOHYeThCS HAOOPOM BHITQAKOBO OOpaHHMX BY3NB, IO JIO3BOJSIE YHHKHYTH
3MoBH Ta 3amobirtu arami CuBumm. Ilig wac mocmimkeHHs Oynu po3poOieHi meneHTpamizoBaHi CXOBHINA TaHUX 3 MOMKIIHBICTIO
KOJICKTHBHOTO MPUHHATTS pilleHb. 3amporoHoBaHa cxema ¢(opmyBaHHa CxoBHI, ska mependadae, mo KoxeH KoHTpakT
BUKOHY€ETHCSI HAOOPOM BHUIIAJIKOBO BUOPAHUX BY3JiB, IO IO3BOJIIE YHUKHYTH 3MOBH Ta 3amoOirtu ataui Cusimmu. Takuil mimxin
JI03BOJIMB BUKOpUCTOBYBaTH CxoBHIIa K 6a30Buil piBeHs M1 Cmapt KontpaktiB. Kpim Toro, CxoBuina Mo>kHa BUKOPHCTOBYBATH
SIK aBTOHOMHE DILICHHS IJIS ACLEHTPaIi30BaHOro 30epiraHHsa gaHuX. OMHCaHO OCOOJIMBOCTI Y3TOJKECHHS PE3yNbTaTiB BUKOHAHHSA
KonTpakriB, mo 3HayHO po3mupioe MoxinBocTi KontpaxtiB mopiBHsHO 3 Ethereum Smart Contracts i, 30kpema, I03BOJISIE
B3aeMoiati Kontpakram 3 InTepHeroM. Po3po0ieHO KOHIENIiI0 BHHArOPOJH, SKa CTUMYIIOE BCI BY3IIH, SIKi Y€CHO BHKOHYIOTH
KoHTpakTn, Ha BigMiHy Bif IHIINX CHCTEM, Ji¢ BHHAropoxy OTpPHMYye Jmmie OJok mpoptocep. Bona 6asyeTbcst Ha croeriajgbHO
po3podienomy Jlokasi Bukonanns (Proof of Execution) — crienialbHOMy alrOpHUTMi, KU JO3BOJISIE BUSBISITH BC1 BY3JIH, SKi YECHO
BUKOHYIOTh KoHTpaktu. [y Toro, mob 3podutu loka3 BuxoHaHHS OiIbII KOMIAKTHUM, PO3POOJICHO KYMYJIATUBHE PO3LIMPEHHS
ICHYIOUOTO aIrOPUTMY JOBEICHHS 3HAHHS JAUCKPETHOTO JIOrapudMy 3 HyJIbOBHM PO3TOJIOIIEHHSM, IO AA€ MOXKJIUBICTh IIOCIHIOBHO
JIOBOJUTH 3HAHHS TUHAMIYHO PO3LIMPIOBAHOTO HAOOpY 3HAYEHb 3 MiHIMAJbHOI OOYHCIIOBAJBHOIO Ta MaM SITHOK CKIAIHICTIO.
TakuM 9WHOM, y Wil CTaTTi JOCHMKYEThCS HOBa KOHIeEMIis mapayBanHs CmapT KoHTpakTiB, 1m0 HagileHa €KOHOMiIYHHMH
BaxessiMU. OCHOBHUMM TIepeBaraMy 3alpolIOHOBAHOTO MiXOIY € MOXKIMBICTh B3a€MOJIIT 3 Mepexero [HTepHeT Ta 06poOKa BETMKHX
06’emiB mannx. KpiM Toro, po3po0ieHO MeXaHi3M CTHMYNIOBaHHS BY3JiB J0 4ecHOro BukoHaHHS Cmapt KoHTpakTiB. A Takox
nporonyetses Jlokas BukoHaHHS, M0 HeoOXigHO A KpunTorpadidHol MIIHOCTI 3a3HAYCHOTO MEXaHi3My, Ta JOBeaeHa HOoro
KOppeKTHiCTh. OTpUMaHi pe3yIbTaTH MOXKYTh OyTH BUKOpHCTaHi Ayt peaizanii Cmapt KoHTpakTiB y eneHTpani3oBaHuX CHCTEMax,
30KpeMa, [0 NpalorTh Ha ocHOBI TexHojorii Blockchain, ocobmuBo y Bumamky BEMOT 0 BHCOKOI HPOITyCKHOI 3IaTHOCTI Ta
MIPOTYKTUBHOCTI.

Kuio4oBi ciioBa: TOBEJCHHS BUKOHAHHS, KyMYJIITHBHE JOBEACHHS, IIApyBaHH:; CMapT KOHTPAKTH; AOBEICHHS 3 HYJILOBUM
PO3TOJIOLICHHIM

ABOUT THE AUTHORS

Igor E. Mazurok, PhD in Computer Science, Associate Prof. of the Department of Optimal Control and Economic Cybernetics.
Odessa I. 1. Mechnikov National University. 2, Dvoryanskaya Str. Odessa, 65082, Ukraine

ORCID: https://orcid.org/0000-0002-6658-5262; igor@mazurok.com; Scopus ID: 57192064365

Research field: Distributed computing; decentralized system design and modeling; artificial intelligence

Irop €preniiioBny Ma3ypok, KaHAUIAT TEXHIYHHX HAyK, NOLEHT Kadeapn ONTUMAIBHOTO KEpyBaHHS Ta E€KOHOMIYHOI
kibepueTnku. OnecbKuii HanioHaNpHU# yHiBepeuTeT iM. 1. . Meunukosa, Byn. J{BopsiHchKa, 2. Oneca, 65082, Vkpaina

Yevhen Y. Leonchyk, Ph.D. in Physics and Mathematics, Associate Prof. of the Department of Mathematical Analysis. Odessa
1. I. Mechnikov National University. 2, Dvoryanskaya Str. Odessa, 65082, Ukraine

ORCID: https://orcid.org/0000-0003-1494-0741; leonchik@ukr.net; Scopus ID: 57192064365

Research field: Mathematical modelling of computer; environmental and economic complex systems; blockchain technology

€pren IOpiiioBnu Jleonunk, xananmar ¢isuko-MaTeMaTHYHUX HayK, JOIEHT kKadenpn MaremaridHoro anaimisy. Onechknuid
HanioHabHMI yHiBepcuTeT iM. I. I. MeunukoBa, Byi. /[BopsHCEKa, 2. Oneca, 65082, Vkpaina

Oleksandr S. Antonenko, PhD, Associate Prof. of the Department of Mathematical Support of Computer Systems. Odessa I. 1.
Mechnikov National University. 2, Dvoryanskaya Str. Odessa, 65082, Ukraine

ORCID: https://orcid.org/0000-0001-9680-3446; asantonenko@gmail.com; antonenko@onu.edu.ua; Scopus ID: 17433258300
Research field: Automata theory; automata groups and semigroups; computability theory; algorithmic information theory;
blockchain

Onexcanap CepriiioBnd AHTOHeHKo, KaHIuaaT (i3nKO-MaTeMaTHYHMX HayK, JONEHT Kadeapm MaremaTnaHOoro
3a0e3MneueHHs] KOMIT'I0TepHUX cucteM. Onecbkuil HamioHanbHUEM yHiBepcuteT imeHi I. 1. MeuHukoBa, Byn. /IBopsiHCBKa, 2.
Opeca, 65082, Ykpaina

Kyrylo S. Volkov, Bachelor of Applied Mathematics, Master Student. Odessa I. I. Mechnikov National University, 2,
Dvoryanskaya Str. Odessa, 65082, Ukraine

ORCID: https://orcid.org/0000-0002-7705-8994; cyrillicw@gmail.com

Research field: Blockchain; DeFi; machine learning

Kupuio CepriiioBny BosakoB, marictpant. Onecbkuii HanioHanbHuUE yHiBepcuteT imeHi 1. I. MeunukoBa, Byin. JIBopsiHCBKa,
2. Oneca, 65082, YkpaiHa

ISSN 2617-4316 (Print) 281
ISSN 2663-7723 (Online)

https://orcid.org/0000-0002-6658-5262
mailto:igor@mazurok.com
https://orcid.org/0000-0003-1494-0741
mailto:leonchik@ukr.net
https://orcid.org/0000-0001-9680-3446
https://orcid.org/0000-0002-7705-8994
mailto:cyrillicw@gmail.com

