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ABSTRACT

Counteraction to sensitive data leakage in cyber-physical systems is topical task today. Solving of the task is complicated to
widely usage by attackers of novel steganographic methods for sensitive data embedding into innocuous (cover) files, such as digital
images. Feature of these embedding methods is minimization of cover image’s parameters alterations during message hiding. This
negatively affects detection accuracy of formed stego images by state-of-the-art statistical stegdetectors. Therefore, advanced
methods for detection and amplification of cover image’s parameters abnormal changes caused by data embedding are needed. The
novel approach for solving of mentioned task is applying of image pre-processing (calibration) methods. These methods are aimed at
estimation parameters either of cover, or stego images from current analysed image. The majority of known calibration methods are
based on cover image content suppression by utilization of extensive set of high-pass filters. This makes possible close to state-of-
the-art detection accuracy by the cost of time consuming preselection of appropriate filters. Therefore, this approach may be
inappropriate in real cases, when fast re-train stegdetector for revealing of stego images formed by unknown embedding methods is
required. For overcoming this limitation, we proposed to calibrate an image by amplification of alterations caused by message hiding.
This can be realized by data re-embedding into images or their pre-noising. The effectiveness of such approach was proved for wide
range of modern embedding methods in the case of message re-embedding. The paper is aimed at performance analysis of image
calibration by pre-noising, namely by using of non-stationary fraction noise. The performance analysis of proposed solution was
performed for novel HUGO and MG adaptive embedding methods on standard VISION dataset. According to obtained results, we
may conclude that applying of proposed solution allows achieving close to state-of-the-art detection accuracy for HUGO embedding
method and low (less than 10 %) cover image payload. Also, low computation complexity of proposed solution makes it an attractive
alternative to novel cover rich models based stegdetectors. Nevertheless, solution’s performance concedes effectiveness of novel
stegdetectors for medium (less than 20 %) and high (more 25 %) cover image payload for MG embedding method.
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images even under limited prior information about
used embedding method is topical task.
One of promising approaches for solving

INTRODUCTION
Protection of critical information infrastructure

became topical task in last years. Special interest is
taken on improving security of cyber-physical
systems (CPS) involved in processing of sensitive
data [1]. Widespread usage of global communication
systems for data exchanging between CPS creates
new threats for sensitive data protection, such as
unauthorized transmission using covert channels.
Modern methods for covert (steganographic)
communication are aimed at message embedding
into innocuous (cover) files, such as digital images
(DI), by preserving low level of cover’s features
alteration [2, 3]. Detection of formed stego images
requires usage of either statistical models [4], or
convolutional neural networks [5, 6]. Despite high
detection  accuracy, excessive  computation-
complexity makes these approaches inappropriate
for practical usage, especially in case of detection
unknown  embedding  methods.  Therefore,
development of advanced steganalysis methods

mentioned task is DI pre-processing (calibration) for
emphasizing weak alterations caused by message
hiding [7]. This allows increasing stego-to-cover
ratio that improves overall performance of
stegdetectors (SD). Nevertheless, search of effective
methods for DI calibration under condition of
limited a prior knowledge about used embedding
methods remains open problem.

The work is aimed at performance analysis of
special type of DI calibration, based on image pre-
noising with fractional noise for emphasizing weak
alterations of cover images (Cl).

RELATED WORKS

Feature of modern advanced embedding
methods (AEM) is minimal alteration of CI
statistical parameters as well as perceptual quality
during message hiding [2, 3]. This leads to
considerable reducing of Cl features changes that

capable to reliably detection of stego negatively impact on performance of modern SD.
For overcoming this limitation of known SD, it

© Progonov D., 2021 was proposed to include additional pre-processing
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step (calibration) during DI analysis by stegdetector.
The calibration is aimed at increasing stego-to-cover
ratio that can be achieved by estimations parameters
of either cover, or stego images [8].

The first approach is aimed at estimation of Cl
parameters from current (noised) image with usage
of DI statistical models, such as Markov Random
Fields, multiscale models etc. The well-known
example of such approach usage is SRM models [9].
These models are based on CI context suppression
by extensive set of high-pass filters. This allows
drastically improving detection accuracy for wide
range of modern embedding methods, such as
HUGO [10], UNIWARD [11] etc., by the cost of
time-consuming selection of an appropriate filter.

The second approach to DI calibration is based
on measuring the expected level of CI distortions by
message hiding according to known embedding
method. In practice, this approach may be
implemented by message re-embedding into DI or
image pre-noising. The effectiveness of such
approach was shown in the works [12, 13], by usage
of either known embedding methods, or widespread
types of DI noises (thermal and shot noises).

The message re-embedding approach relies on
utilization prior information about embedding
procedure that may be unrealistic cases for real
steganalysis scenarios. The DI pre-noising approach
does not require information about used embedding
method that makes such approach a promising
candidate for increasing performance of modern SD.

Nevertheless, modern methods for DI
calibration via pre-noising include only widespread
thermal and shot noises for modelling possible
image alteration during in-camera processing.
Therefore, device and environment dependent
effects, such as dispersion of noise parameters, are
not included into used model. The paper is aimed at
filling this gap by performance analysis of usage the
fractional noises for pre-processing of stego image
formed according to AEM.

THE SCOPE OF THE RESEARCH

The paper is aimed at performance analysis of
digital image calibration by preliminary noising with
fractional noises for revealing stego images formed
according to AEM.

To achieve this aim it is proposed to solve the
following tasks:

1) to review features of advanced embedding
methods for digital images;

2) to review models of fractional
generation with specified parameters;

3) to analyse detection accuracy of stego image
revealing with usage of proposed pre-noising
approach;

noise

4) to compare performance of proposed method
and state-of-the-art rich models for digital images.

The object of study is methods for detection of
stego images formed according to AEM.

The subject of study is methods for increasing
stego-to-cover ratio to be used in steganalysis of
advanced AEM.

NOTATIONS

The calligraphic font is used for sets and
collections, while vectors or matrices are always in
boldface. During investigation, we supposed that a
stego image Y is created from a grayscale cover
image X with size M-N pixels and k=8 bits color
depth. The stego data is represented as binary
message M with K bits length.

ADAPTIVE EMBEDDING METHODS FOR
DIGITAL IMAGES

The feature of AEM is minimization of total
cost of cover image X distortion during message M
hiding [14]:

D(X,Y)=Y", A, (X, Y) = min. 1)

where p(-) — cost function of cover image pixel
parameters distortions by embedding of a single bit.

Ideally, function p(-) in (1) can estimate both CI
alteration caused by single bit embedding, and non-
linear interaction between these changes [14]. The
former one can be performed with usage of
widespread statistical models of CI [2]. The latter
one requires time-consuming analysis of pixels
changes combinations that becomes intractable even
for short messages M (about 100 bits) [14].
Therefore, the simplified function p(-) that estimates
only CI distortions caused by a single bit hiding is
used in most real cases.

Frequently, the selection of pixels to be used
during message embedding (1) is performed by
heuristic rules that assess noise level in a local
neighborhood of (i,j)" pixel [14]. This allows
achieving state-of-the-art empirical security of
formed stego images while preserving low
computational complexity of cost p(-) estimation.

The paper is aimed at analysis of state-of-the-
art HUGO [10] and MG [15] embedding methods.

The HUGO method is based on minimization of
Cl distortion under constrain of message length [10]:

min€, (0)=X,.,7(Y)-D(XY), @

Wl’t.||\/| | = _ZYeY ”(Y) -log (ﬂ-(Y))

where: Y — a stego image sampled from the set of all
stego images Y';
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7 — probability distribution of selection of some
stego image from the set Y';

E.(D) — averaging operator for function D(:)
over distribution 7;

H(m) — entropy function over distribution .

Filler et al. [10] proposed to numerical solving
of eq. (2) by using adjacency matrix C,, (X) for
estimation of CI distortions during message hiding:

D (X’ Y) = ZCEC Z(k,l)eﬁ a)k’l Hz:k'l) (Y),

where: 3:{0,1,...,2k —1} — Dbrightness range of

cover and stego image with k-bits color depth;
c:{_>,<_,T,J,} — set of scanning directions

during co-occurrence matrix Cy, estimation;

k>0 — weights.

For instance, matrix H in the case of row-wise
image processing and left-to-right pixels scanning
can be calculated as [10]:

i
ulnon)Mm=kn] - ©
[(07:05.)%)= ()] |
(D7D )(X) = (k1) <
& (D7 (X)=k) A (D7 (X) =1).

(XY)=(N-(M~2))"

Matrix H for other types of cliques C can be
calculated in a way similar to eq. (3) [10].

In contrast to HUGO method, the MG
embedding methods is aimed at minimization both
Cl distortion and statistical detectability of formed
stego image [15]. It is achieved by usage of locally-
estimated multivariate Gaussian model of CI noises.
The model allows deriving the closed-form
expression of SD performance as well as capturing
the non-stationary character of natural images [15].

The stego image creation pipeline for MG
methods consists of several steps [15].

Firstly, image context is suppressed using

denoising filter F,, :
r=X-F,(X).

Secondly, the variance o/* of obtained residuals
r is measured with linear model:

r,=Ga +§le[LM-N].

For MG method the simplified estimation of
variance o/”is used [15]:

o :Hr, —G(c'6)" G,

‘/(pz—q),qu-

where r — residuals evaluated within p-p block
surrounding the I"" pixel of CI.

Thirdly, embedding changes i, le[1; M-N] that
minimizes deflection coefficient (?, is estimated:

CZ(B.)=2“2B|20|4
H,(z)=-2zlog(z)-(1-2z)log(1-22).

The deflection coefficient (* (4) is used as a
measure of divergence between cover and stego
images distributions [15].

The optimization problem (4) can be solved
using Lagrange multiplier method [15]. Then,
change rate By and Lagrange multiplier A_ can be
determined by numerical solving of next equations

2y Halbleonst i (4)

[15]:
20 By
Then, estimated i is converted to

corresponding cost p; of stego bit hiding in 1™ pixel
of CI:

Py :_In(BI _2)- (5)

Finally, a message M is embedded into CI
using syndrome-trellis codes with pixel costs
determined according to eqg. (5).

The locally-estimated multivariate Gaussian
model allows accurately measuring local distortions
of CI caused by message hiding [15]. This makes
possible achieving state-of-the-art empirical security
of formed stego images without taking compute-
intensive statistical models.

MODERN METHODS OF DIGITAL IMAGES
STEGANALYSIS

Modern paradigm in digital image steganalysis
is usage of image pre-processing with extensive set
of high-pass filters and further statistical parameters
extraction from obtained residuals [9]. This
approach shown outstanding result for detection of
stego images formed according to both widespread
and advanced EM. On the other hand, necessity of
time-consuming pre-selection of appropriate high-
pass filters limits fast adaptation of already trained
SD to revealing of unknown embedding methods.
Also, such pre-selection requires a priori information
about features of EM that may by unavailable in real
situations. Therefore, the topical task is development
of advanced calibration techniques that is able to
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preserve high detection accuracy even under limited
a priori information about embedding process.

For solving mentioned task, it is proposed to
increase stego-to-cover ratio by amplification of
negligible changes of CI. In most cases, these
changes are noise-like that allows using pre-noising
methods for image calibration. In the work [13], the
effectiveness of such approach was shown by usage
of Gaussian and Poisson noises that models thermal
and shot noises of natural images.

Further feature extraction from pre-processed
images may be performed using well-known SPAM
model [16]. The model allows estimating correlation
features of calibrated DI without any additional
processing. Let us describe this model in details.

The calculation of SPAM-features starts by
computation the difference array D by processing an
image in row-wise and column-wise orders. For
example, the array D for the case of row-wise
processing and left-to-right pixels scanning of
grayscale image U with size M-N pixels can be
calculated as [16]:

DI_’J =U;;-U
UGSM'N,ie[ZL'M],je[l;N—l].

i,j+1?

The first-order SPAM features F, are used for
modeling array D with first-order Markov process
[16]. For the considered example, it leads to:

M., =Pr(Dp,, =u|D;} =V), 6)

i,j+1
uvel-T;T]|TeN.
I probability Pr(D;} =v) is equal to zero, then

M., =0 as well.

The second-order SPAM features F, are taken
for modeling difference array D with second-order
Markov process [17]. Similarly to eg. (6), we obtain:

My, =Pr(Dy,, =u| Dy, =v,D7 =w), ()
uv,wel-T;T]T eN.
Similarly to F. features, M., is equal to

zero if Pr(D?

i =V, D :W):O-

Both features F: and F: for other scanning
directions, namely ce{<,1,—,]}, can be estimated
in the same way to eq. (6)-(7).

For decreasing dimensionality of SPAM-
features, the assumption that statistics in natural
images are symmetric with respect to mirroring and
flipping [16] is used. Thus, we can separately
averaging matrices for horizontal, vertical and
diagonal directions to form the final features:

R =(M>+M“+M"+M") /4,
Fiy.z =(M*+M°+M°+M°) /4.

(k+1)...2

Number of parameters for the first-order SPAM
model is kspam=(2T+1)?2, while for the second-order
one — kspAM=(2T+1)3.

IMAGE CALIBRATION VIA PRE-NOISING

The wide range of modern image denoising
approaches utilizes the standard assumption about
influence of thermal and shot noises during in-
camera image processing [17]. They correspond to
stationary stochastic processes that can be accurately
modeling using well-known Gaussian and Poisson
distributions. This allows using methods from
statistical analysis, namely Wiener filters, for
effectively suppression such kind of noises.

On the other hand, mentioned assumption does
not cover cases of influence the non-white
(Gaussian) noises during in-camera processing. Such
noises may rise due to fluctuating occupancies of
traps in semiconductors, namely pixels cells [18].
This leads to appearance of “colored” or fractional
noises which power spectrum concentrates over
specific frequency range:

S(U)xcd/ 77,

where: U — inputted grayscale image;
P €(0;2) — frequency scaler.

The case of p=0 corresponds to white
Gaussian noise, while g =2 relates to Brownian
noise. In most cases fr =1 is used that corresponds to
pink noise.

Practically, mentioned fractional noise may be
modelled using Perlin method [19], namely pre-
generated white Gaussian noise and further applying
of 1/f* filter to its Fourier spectrum. This allows fast
generation of multidimensional fractional noise with
predefined scaler parameter .

Message hiding to cover image leads to
introducing of non-stationary noises. These noises
may be approximated by well-known Gaussian or
Poisson distribution [13]. Nevertheless, it is
represent the interest to apply the fractional noises
for improving accuracy of cover alterations caused
by message hiding.

EXPERIMENTS

Performance analysis of statistical SD by
image noising was performed on VISION dataset
[20]. The sub-set of 10,000 grayscale images with
size 512:512 pixels was pseudo randomly chosen
from the dataset. The case of message embedding
into CI with HUGO and MG methods was

264

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)



Applied Aspects of Information Technology

2021; Vol.4 No.3: 261-270

considered. The CI payload Ap was changed in range
—3%, 5%, 10 %, 20 %, 30 %, 40 %, 50 %.

The SD includes Random Forest classifier [21]
trained with second-order SPAM model [16].

Practical application of SPAM-features requires
theirs pre-processing before using in a classifier.

The modern methods of feature pre-processing
for DI steganalysis can be divided into next groups
[8, 12]:

1. Non-calibrated features — corresponds to the
case of feature extraction from unprocessed image:

F.=F.(U). 8

2. Features of calibrated image — corresponds to
features obtained after image noising:

Fae = (C(V)). 9)

3. Linearly transformed features of calibrated
image — correspond to the difference between
features of calibrated and unprocessed images:

I:DF = I:noise - I:nc' (10)

4. Cartesian calibrated features — corresponds to
the case of merging features of unprocessed and
calibrated images:

FCC = [Fnc; F

noise ] '

(11)

Today, non-calibrated features (8) are rarely
used due to theirs negligible differences for cover
and stego images [2]. On the other hand, Cartesian
calibrated features (11) are widely used for SD
performance improving since they preserve features
for both initial and calibrated DI [9]. The calibrated
(9) and linearly transformed (10) features do not get
much attention today [12]. Therefore, performance
analysis of stegdetector by usage of these features
takes special interest.

Along with type of features used for SD
training, stegdetectors performance significantly
depends on fraction F, of pairs of cover-stego
images features utilized by training stage [22]:

=[x ) i S}
3 :

-100%,

train |

where: Siain — Set of digital images used during
training of stegdetector;
Yi — stego images formed from cover Xi.

The F, parameter varies from 0% (absent of
cover-stego images pairs in training set) to 100 %
(training set consists only from cover-stego images
pairs). The former case corresponds to the real
situation when steganalytics do not have access to
stego encoder and may use only captured stego

images. The latter one relates to the situation when
steganalytics have access to stego encoder and they
can generate a stego image for any CI.

The fractional noise was generated using
known Perlin method [19]. The scaler parameter S
was varied from 0.25 to 1.00 with step 0.25. The
amplitude A, of generated fractional noise was
rescaled to one (A,=1) or two (A,=2) brightness level
that corresponds to distortions caused by message
embedding.

The SD was tested according to cross-
validation procedure by minimization of detection
error P [21]. The dataset was divided 10 times into
training (50 %) and testing (50 %) sub-sets during
cross-validation.

Performance analysis of proposed stego image
calibration methods was done in several stages. At
the first stage, it was compared detection accuracy of
stego images by using of considered SPAM as well
as state-of-the-art maxSRMd2 statistical models.
The dependency of detection error P. on cover
image payload by stego images generation according
to HUGO and MG embedding methods and
variation of F, are presented at Fig. 1.

It should be noted considerable decreasing of
error P, by usage of nodel maxSRMd2 model
(Fig. 1) — the improving of detection accuracy varies
from 15 % for F,=100 % to 7 % for F,=0 %. The
most influence of this decreasing has only single
EDGE filter of maxSRMd2 model, while other
filters have negligible influence on achieved
detection accuracy.

As it was mentioned, the case of F,=100%
corresponds to the situation when steganalytic has
full access to stego encoder. This case is quite
unrealistic in real situations, especially when
attackers apply (previously) unknown embedding
methods. Therefore, we paid special attention to the
case of F, = 0 %, when steganalytic was able to
include stego images generated for unknown CI.

On the second stage, we considered
performance of SD by pre-noising with fractional
noise a stego image generated by HUGO embedding
method. The relative detection accuracy indicator P,
was used for estimating difference of P. error for
initial (processing of non-calibrated images) and
considered cases:

PA — FLSPAM _ acallb.

Positive values of the P, index correspond to
the case, when applying of proposed approach
(image pre-noising) allows improving detection
accuracy. The negative ones relates to the case of
decreasing SD performance in comparison with
initial (non-calibrated) case.
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Source: compiled by the author

The dependency of detection error P on cover
image payload by stego images generation according
to HUGO embedding methods and image pre-
noising with fractional noise with amplitude A,=1
are presented at Fig. 2.

It should be noted that images pre-noising
allows reduce detection error up to 4 % for the most
difficult case — the low cover image payload (less
than 10 %, Fig. 2). This makes proposed approach
comparable with effectiveness of more computation-
intensive sub-model of maxSRMd2 model (Fig.1b).
Further increasing of cover image payload leads to
considerable decreasing of detection accuracy (up to
8 %, Fig 2) that negatively impact on effectiveness
of proposed approach.
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Fig. 2. The dependency of detection error P. on
cover image payload by pre-noising (A,=1) of
stego images generated by HUGO method and

usage of Fnoise (2), For (b) and Fcc (c) features
Source: compiled by the author

The biggest “gain” of detection accuracy is
achieved by usage of Fnoise (Up t0 4 %) and Fpe (up
to 1.5 %) features, while Cartesian calibrated
features Fcc do not allow considerably improving
detection accuracy. Also, increasing of fractional
noise scaler f: leads to decreasing of efficiency of
proposed approach — this can be explained that
added distortion is transformed from Gaussian noise
to pink noise which energy is more localized in
frequency subband.

For comparison, it was considered the case of
increasing amplitude of adding noise from A,=1 or
An=2. The dependency of detection error P. on cover
image payload by stego images generation according
to HUGO embedding methods and image pre-
noising with fractional noise with amplitude A,=2
are presented at Fig. 3.

Increasing of added noise’s amplitude Aj
allows additionally improving detection accuracy up
to 1 % for Fnoise features (Fig. 3a) and 0.5 % for Fcc
features (Fig. 3c) in the case of low cover image
payload (less than 10 %). On the other hand,
increasing of noise’s amplitude leads to
corresponding increasing of detection error for the
middle (less than 20 %) and high (more 25 %) cover
image payload for all considered types of features

(Fig. 3).
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usage of Fnoise (2), For (b) and Fcc (c) features
Source: compiled by the author

On the third stage, we considered performance
of SD by pre-noising with fractional noise a stego
image generated by advanced MG embedding
method. The dependency of detection error P. on
cover image payload by stego images generation
according to MG embedding methods and image
pre-noising with fractional noise with amplitude
An=1 are presented at Fig. 4.

Applying of fractional noise for calibration of
stego images formed according to MG method
(Fig. 4) leads to similar results obtained for HUGO
method (Fig. 2) — increasing of detection accuracy
for low cover image payload range. Nevertheless,
obtained “gain” of detection accuracy for MG
method is smaller than for HUGO one — up to 3 %
for Fnoise features and about 0.5% for Fpr features.
Usage of Cartesian calibrated features Fcc does not
allow considerably improving detection accuracy
(Fig. 4c).

As it was for HUGO method (Fig. 2),
increasing of frequency scaler f: leads to decreasing
of efficiency of proposed approach for MG method
(Fig. 4) that may be explained by moving to
“bandpass” pink noise instead of “widepass”
Gaussian one.
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Fig. 4. The dependency of detection error P. on
cover image payload by pre-noising (A,=1) of
stego images generated by MG method and usage
of Froise (2), For (b) and Fcc (c) features

Source: compiled by the author

For comparison, the case of usage the noise’s
amplitude A,=2 was considered for MG embedding
method. The dependency of detection error P. on
cover image payload by stego images generation
according to MG embedding methods and image
pre-noising with fractional noise with amplitude
An=2 are presented at Fig. 5.

Usage of amplified fractional noise (Fig. 5)
allows negligibly improving detection accuracy in
comparison  with  previous case (Fig. 4).
Nevertheless, obtained “gain” does not exceed 1 %
that considerably less than results obtained for sub-
model of modern maxSRMd2 model (Fig. 1).

DISCUSSIONS

Obtained results of detection accuracy for stego
images formed according to state-of-the-art adaptive
embedding methods proved effectiveness of image
pre-noising with fractional, Gaussian and Poisson
noises digital image calibration [13]. The Gaussian
and Poisson noises were generated according to
recommendation of work [13], e.g. by estimations of
theirs parameters with sliding windows of size 3-3
pixels.

The comparison of detection accuracy changes
by usage of considered models and embedding
methods are given in Table.
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Fig. 5. The dependency of detection error P on
cover image payload by pre-noising (A,=2) of
stego images generated by MG method and usage
of Froise (2), For (b) and Fcc (c) features

Source: compiled by the author

Detection accuracy improvement for HUGO
embedding method by image pre-noising is less than
by usage of image pre-filtering by EDGE filters of
maxSRMd2 model (Table). Among considered types
of noises, the biggest improvement is achieved by
usage of Gaussian noise for low cover image
payload (up to 5 %), while for middle and high
payload fractional noise allows obtaining less values
of detection error.

For MG embedding methods, we obtained the
similar results — usage of image pre-filtering allows
considerably improve detection accuracy in
comparison with pre-noising case (Table). The
Poisson noise allows achieving smaller detection
error levels for low cover image payload, while for
middle and high payload better results are obtained
for fractional noise.

It should be noted that applying of Fnoise
features allows considerably improve detection
accuracy in all considered cases for image pre-
noising in comparison with Fpr and Fcc features
(Table). This can be explained by increasing cross-
distance between SPAM features of cover and stego
images after pre-noising, despite absolute values of
such difference is small.

Table. The P, values for stegdetector by
cover and stego images pre-noised with fractional
(£=0.25), Gaussian and Poisson noises by F,=0 %

Stego images Cover image payload
detection Ap=5 % Ap=20 % Ap=50 %
method mean | std | mean | std | mean | std
HUGO embedding method
SPAM model 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
maxSRMd2
model, EDGE | 12.22 | 1.63 | 29.81 | 0.28 | 23.83 | 0.21
sub-model
Fract. | Fnoise | 4.14 | 0.43 | -6.04 | 0.38 | -8.54 | 0.37
noise For | 1.40 | 0.37 | -458 | 0.45 | -3.92 | 0.45
(An=1) | Fcc | 0.81 | 0.71 | 0.04 | 0.43 | -0.22 | 0.49
Fract. | Fnoise | 4.66 | 0.37 | -7.67 | 0.33 | -12.0 | 0.35
noise For | 1.98 | 0.63 | -2.72 | 0.33 | -2.68 | 0.43
(An=2) | Fcc | 1.20 | 053 | 0.25 | 0.50 | 0.03 | 0.40
G Froise | 499 | 0.58 | -8.86 | 0.51 | -22.2 | 0.37
ey | For | 118 [ 0.78 | 0.36 | 039 | 016 | 0.60
Fcc | 1.70 | 099 | 041 | 048 | 0.13 | 0.50
Poisson Froise | 4.35 | 0.36 | -10.8 | 0.35 | -21.6 | 0.47
noise For | 048 | 042 | -2.08 | 0.43 | 0.19 | 0.42
Fcc | 067 | 097 | -197 | 058 | 0.59 | 0.34
MG embedding method
SPAM model 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
maxSRMd2
model, EDGE | 15.65 | 1.14 | 28.23 | 0.46 | 24.28 | 0.15
sub-model
Fract. | Fnoise | 2.98 | 0.39 | -8.19 | 0.61 | -8.19 | 0.50
noise For | 058 | 050 | -7.21 | 0.76 | -5.25 | 0.75
(An=1) | Fcc | -0.09 | 059 | -0.79 | 0.52 | -0.23 | 0.66
Fract. | Fnoise | 3.80 | 0.40 | -10.4 | 0.42 | -12.0 | 0.59
noise For | 1.14 | 053 | -450 | 0.40 | -2.58 | 0.32
(An=2) | Fcc | 0.69 | 0.47 | -0.19 | 041 | 0.12 | 0.54
Gauss. Froise | 449 | 044 | -11.8 | 0.55 | -22.0 | 0.54
"oise For | 052 | 048 | 0.31 | 051 | 043 | 0.31
Fcc | 085 | 0.71 | -0.33 | 0.52 | 0.65 | 0.42
Poisson Fnoise 4.90 0.52 -11.1 0.52 -21.5 0.39
noise For | 0.62 | 0.50 | -0.06 | 0.42 | 0.06 | 0.60
Fcc | 091 | 0.37 | 0.07 | 0.30 | 0.56 | 0.50
Source: compiled by the author
CONCLUSION

The paper is devoted to performance analysis of
image calibration method based on pre-noising with
fractional noise. The case of pre-processing stego
images obtained for novel HUGO and MG adaptive
embedding method is considered.

According to obtained results, we may conclude
that image pre-noising with fractional noise allows
achieving detection accuracy that is comparable with
maxSRMd2 model results in the case of low (less
than 10 %) cover image payload for HUGO
embedding method. Proposed approach for middle
(less than 20 %) and high (more 25 %) cover image
payload is much less effective in comparison with
considered state-of-the-art statistical model.

On the other hand, applying of proposed
approach for MG embedding methods does not
allow improving detection accuracy in comparison
with state-of-the-art methods.
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EdexTuBHiCTH MONEPEAHBOT0 3aIyMJIEHHSI CTETAHOTPAM 3 BUKOPHUCTAHHAM
(ppakTaabHUX HIYMiB B 3a]a4aX CTEeroaHalizy
uu¢poBux 300pakeHb
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AHOTANIA

IIpotunii BuTOKy KOH}IACHUIHHUX DaHUX Yy KiOep(i3HUHHX CHCTEMax ChOTOIHI MPUAUIIETHCS OocoOnuBa yBara (haxiBLiB B
ramy3i iHopmamiiiHOi Ta KibepOesmeku. BupimeHHs gaHoi 3amadi YCKIAIHIOETHCA ITUPOKHM BHKOPUCTAHHSM 3JI0BMHACHHKAMHU
HOBITHIX CTeraHorpaiyHuX MeToHiB BOYIOBYBaHHS KOH(DIZCHUIHHMX JaHHX MO0 (aiimiB-KOHTEHHEepiB, 30KpeMa LU(PPOBUX
300paxkeHb. OcCOONUMBICTIO JAaHMX METOXNIB € MiHIMi3alis 3MiH TapaMeTpiB 300pakeHHSI-KOHTEHHepy Wi Yac HPUXOBaHHSI
crerofanux. Lle cyTTeBo 3HMKYE epeKTHBHICT BUSBICHHS COOPMOBAHHUX CTETAHOTPaM IPH BUKOPHUCTAHHI CyJaCHUX CTaTHCTHYHHUX
cTerozieTekTopiB. ToMy po3poOKa HOBHX METOJIB BHSIBJICHHS CTETaHOTpaM, 3[aTHHUX JIOKAJi3yBaTH Ta ITJCHIIIOBATH CIA0OKi 3MiHU
napaMeTpiB 300pakeHb-KOHTEHepiB 0OyMOBJIEHHX NMPUXOBAaHHAM ITOBIJOMJICHb, € aKTyalbHOIO Ta BXIIMBOIO 3anadeto. OqHuUM 3
HOBITHIX HiJIXOJIB 0 BUPIIICHHS JaHOI 3a[a4i € 3aCTOCYBaHHS METOIIB MoIepeaHsoi 00poOku 300pakeHHs (kanmiOpyBanHs). aHi
METOAU CIPSIMOBaHI HAa BU3HAYCHHS NapaMeTpiB 300paKeHHSA-KOHTEHHepy, abo K CTeraHorpamy 3a HasBHUM (IOCIHIIKyBaHHM)
IUPpOBUM 300paKeHHSAM. BUTBIIICTh BiTOMHUX METOAIB KajmiOpyBaHHS 3aCHOBaHI Ha 3MEHIIEHHI BIUIMBY 300paKCHHSI-KOHTEHHEPY
(KOHTEKCTY) HUISIXOM 3aCTOCYBAaHHS aHCAMOJII0 BUCOKOYACTOTHUX (ibTpiB. Lle 103BOIIsSE CYTTEBO MiIBUIIUTH TOYHICTH BHUSBICHHS
CTETaHOTPaM, MPOTE MOTPeOyE BHKOPUCTAHHS OOYHMCITIOBAIBHO CKIAMHHUX METOMIB MiI00pY BHCOKOYACTOTHUX (INBTPIB I
MIPUYIICHHST KOHTEKCTY. BHacmifok mboro maHWi minxix Moxke OyTH Hee()eKTHBHHMM y pealbHHX BHIIAJKaX, KOJIW HEeoOXiaHa
[IBHJIKA aJIaMTallisl CTErOICTEKTOPIB Ui BUSABJICHHS CTeraHorpam, c()OpMOBaHUX 3TiJIHO paHillle HEBiTOMUX METOIIB BOYIOBYBaHHS
crerofanux. Jist moonaHHs AaHUX 0OMeXeHb OYIJM 3alpOIOHOBAHI METOM KaliOpyBaHHs 300pa)keHb, CIIPSIMOBaHI Ha ITiICHICHHS
CIIOTBOPEHB, BHKJIMKAHUX MPUXOBAHHAM IOBiNOMIIEHB. [laHi METOIM 3acCHOBaHI Ha MOBTOPHOMY BOYIOBYBaHHI IOBIIOMJICHB /IO
JIOCTI/DKYBAaHOTO 300pakeHHA, ab0 K JONATKOBOTO 3allyMJICHHS 300pakeHb. E(EeKTHBHICTH MiAXOQy Ha OCHOBI HOBTOPHOTO
BOYZOBYBaHHsS TIOBiIOMJIeHb Oyna TOKa3zaHa MIg IOUPOKOTO CHEKTPY CydacHHX creraHorpadiuyamx wmeroniB. Jlana poGora
MIPUCBSYEHA JOCITIIKEHHIO €()EeKTHBHOCTI METOJIB KamiOpyBaHHS Ha OCHOBI IONEPEIHBOTO 3allyMJICHHS 300pakeHb, 30KpeMa 3
BUKOPUCTAHHSIM HECTAl[iOHapHOTO ()pakTajJbHOTrO HIyMy. AHaii3 e(peKTHBHOCTI DaHOTO Mixxony OyB NMpoBEIESHHH Uil CydacHHX
amantuBHUX creraHorpadiuynnx meronie HUGO ta MG Ha cranmaptHoMy naketi 300paxeHsp VISION. 3a pesynpraTamu aHamizy
OTPUMAaHHX [JaHWX, BUSBJIEHO, LIO JOJATKOBE 3alIyMJICHHS 300paK€Hb JI03BOJSIE CYTTEBO MIIBHIIMTH TOYHICTh BHSBICHHS
creranorpam st Merony HUGO y Bumaaky cinabkoro 3amoBHEHHsS 300pakeHHsS-KOHTelHepy creroganumu (MmeHme 10 %).
Baromoro mepeBaroro 3alporoHOBAHOTO METOJY y TOpPIBHSHHI 3 Cy4aCHHMH CTaTHCTHYHHMHM CTETOJIETEKTOpaMH € HOro HH3bKa
00UHCITIOBANIbHA CKIIAJIHICTh. THM HE MEHIIe, 3alpPOIIOBaHUI METO/ CYTTEBO MOCTYMAETHCS CYYaCHUM CTETOACTEKTOPAMH Y BUIAIKY
cepenaboro (merme 20 %) ta cunpHOTO (Oinbie 25 %) 3amoBHEHHS 300paKEeHHA-KOHTEHHEPY CTETOJAHNMH, 30KpEMa y BHUIIAAKY
BUKOPHUCTAHHSA cTeraHorpagiunoro merony MG.

Kurouogi ciioBa: nndposi 300pakeHHs; CTeroaHali3; CTATUCTHYHI CTEr0JJeTEKTOPH; (paKTAIBHUIL IIyM
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