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ABSTRACT

The article analyzes and compares the architectures of generative adversarial networks. These networks are based on convolu-
tional neural networks that are widely used for classification problems. Convolutional networks require a lot of training data to
achieve the desired accuracy. Generative adversarial networks are used for the synthesis of biomedical images in this work. Biomedi-
cal images are widely used in medicine, especially in oncology. For diagnosis in oncology biomedical images are divided into three
classes: cytological, histological, and immunohistochemical. Initial samples of biomedical images are very small. Getting training
images is a challenging and expensive process. A cytological training dataset was used for the experiments. The article considers the
most common architectures of generative adversarial networks such as Deep Convolutional GAN (DCGAN), Wasserstein GAN
(WGAN),Wasserstein GAN with gradient penalty (WGAN-GP), Boundary-seeking GAN (BGAN), Boundary equilibrium GAN
(BEGAN). A typical GAN network architecture consists of a generator and discriminator. The generator and discriminator are based
on the CNN network architecture. The algorithm of deep learning for image synthesis with the help of generative adversarial net-
works is analyzed in the work. During the experiments, the following problems were solved. To increase the initial number of train-
ing data to the dataset applied a set of affine transformations: mapping, parallel transfer, shift, scaling, etc. Each of the architectures
was trained for a certain number of iterations. The selected architectures were compared by the training time and image quality based
on FID (Freshet Inception Distance) metric. The experiments were implemented in Python language. Pytorch was used as a machine
learning framework. Based on the used software a prototype software module for the synthesis of cytological images was developed.
Synthesis of cytological images was performed on the basis of DCGAN, WGAN, WGAN-GP, BGAN, BEGAN architectures. Goog-

le's online environment called Collaboratory was used for the experiments using Nvidia Tesla K80 graphics processor.
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INTRODUCTION

Biomedical images are a wide class of images
that are used for diagnosis. Among those images,
there is a subclass of cytological, histological, and
immunohistochemical images which are used for
diagnosis in oncology. Obtaining those images is
time consuming and quantitatively limited. As a
result, modern classifiers, which are based on
convolutional neural networks [1], face the problem
of small datasets. One of the consequences of using
a small dataset of training data is the relatively low
accuracy of classification. That is why the expansion
of datasets artificially for the training of modern
classifiers is the actual task. Nowadays, generative
adversarial networks are popular methods of image
synthesis. Generative Adversarial Networks (GANS)
are the type of neural network used to synthesize
images, video, and audio. This type of network has
appeared very recently. In 2014, researcher lan
Goodfellow demonstrated how new data can be
synthesized using neural networks [2, 3]. For the
first time, these networks were used to synthesize
handwritten numbers (using MNIST dataset) and
human faces (using CIFAR-10 dataset).
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1. LITERATURE ANALYSIS

For now, possibilities of generative adversarial
networks are still studied by many researchers [4].
However, the most common application of GAN is
image synthesis. Most of the research in this area is
aimed at improving the quality of synthesized imag-
es. Researchers create new architects and improve
already known algorithms [5, 6]. Generative adver-
sarial networks have also found their application in
medicine.

Recent studies have shown that artificial neural
networks can achieve better results in segmentation
and classification than humans [7]. However,
modern classifiers require a lot of training data.
Because the process of collecting medical data can
be complicated due to the influence of many factors
(time, price, availability, etc.), GAN-networks are
primarily used to expand training datasets [8, 9]. In
this case, it is also possible to increase the number of
samples in dataset with the help of affine
transformations [10]. But this method is not suitable
if there is a need to generate a large amount of data,
because the images created in this way are not
completely new, but are only distorted versions of
the existing ones.

In [12] researchers use the GAN network to
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synthesize images of cell nuclei and their masks for
further segmentation. They divide training process
into two different stages. In the first step, they train a
generator to synthesize binary masks from a latent
vector. In the second step, they use a conditional
generative adversarial network to synthesize images
based on the generated masks and the latent vector.
In the end, the authors get two generators. One for
mask synthesis, the other for mask-based image
synthesis.

The authors of [13] use the GAN to synthesize
images of affected liver tissues that have a resolution
of 64 by 64 pixels. Experimental results of the
classification showed that the accuracy increased
from 77 % to 85 % when using a training dataset,
which was expanded with synthesized images.

A typical GAN network architecture consists of
two different neural networks that play against each
other. The first network is called a discriminator
(denoted by the letter D). Its task is to verify the
plausibility of images — distinguish real images from
artificially synthesized. Real images are data from
the training samples. The discriminator accepts the
image as the input, and as the output produces the
probability that the image is real. Usually the
discriminator is a simple binary classifier. The
second network is called a generator (denoted by the
letter G). The task of the generative network is to
synthesize new data. The generator picks up a
random vector of a certain dimension from a certain
latent space (usually from a normal distribution) and
tries to convert it into a real image [6, 13].

The basic work principle of any GAN can be
described as follows. The discriminator must
distinguish between real and synthesized data. Based
on a certain loss function the discriminative model
should maximize the probability of real data and
minimize the probability of synthesized. Similarly,
the generator must synthesize images that are as
close as possible to the real ones, so that the
discriminator classifies them as real data. As the
conclusion, the generative model tries to maximize
the probability of the synthesized images.

Training algorithm of any GAN network
performs  parameter  optimization for both
disciminator and generator.

The purpose of the training is to minimize the
next loss function V (G, D), where E is the expected

value.
ming maxpV(G,D) =Ey- Pdata (X) [log D(X)]+
+Ez-p, (z)[l0g(L- DG@))].

In the perfect scenario, the discriminator is trained

until it achieves its optimal value depends on the
concrete generator, the generator is trained after the

discriminator. But in practice the discriminator could
be trained for the specific number of iterations, then
the generator is updated along with the
discriminator. Also, as a good alternative for the
generator the next  equation is  used

maxg log D(G(z)) instead of the
ming log(1-D(G(2))) [6].

The generalized GAN algorithm could be
descibed as follows. In the first step the generator
takes a complete random sample from noise prior
(Gaussian, for example) and tries to generate an
image. This image is passed through the
discriminator which task is to classify if the passed
image is either the real one or generated.

Algorithm.  Minibatch  stochastic  gradient
descent algorithm of GANs. The number of steps to
apply to the discriminator, k, is a hyperparameter

12].

for number of training iterations do
for k steps do
1) Sample minibatch of m noise samples

{z(l),..., z(m)}from noise prior pq(2)

2) Sample minibatch of m samples
{x(l),..., x(m)} from real data distribution
Pgata (X) -

3) Update the disciminator by ascending its
gradient:

: (i) (i)
Vo, i;l[log D(x*)+log(1— D(G(z')))].
end for

1) Sample minibatch of m noise samples
{z(l),..., z(m)} from noise prior pg(z).

2) Update the generator by descending its gra-
dient:

13 (i)
Ve, - 2. [log(1-D(G(z*"))]
i=1
end for

Training of GAN networks is a quite
complicated process because of so-called zero-sum
game. When the discriminator starts better
distinguish generated images from the real ones, the
generator also needs to perform better. It works back
and forth. When the generator is better, the
discriminator must catch up.

Model training consists of two steps: training of
the discriminator and updating parameters of the
generator with concerning the discriminator. On the
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first step of training only disciminator’s parameters
are updated. On the second step discriminator’s
parameters are kept frozen, instead only generator’s
parameters are updated.

Classical GAN networks have their cons. The
first problem is gradient vanishing [14]. Because the
generator is in feedback with the discriminator, it
can only update its parameters through it. The
gradients become so small that they have almost no
effect on the parameters of the generator and the
learning process stops. This problem occurs when
the discriminator error quickly converges to zero.
This also could occur when the discriminator model
is much more powerful than the generator. When
building an architecture, it is important to balance
the complexity of the discriminator and generator
models [14].

2. THE PURPOSE OF THE ARTICLE

The purpose of this paper is to analyze and
compare generative adversarial networks
architectures for biomedical images synthesis
that will help us choose which network
generates the best visual quality images. To
achieve this goal, the following main objectives
of the study were solved:

1) analyzing known architectures of
generative adversarial networks;

2) perfoming experiments on real data
using known architectures;

3) analyzing the results of the experiments.

3. GAN ARCHITECTURES OVERVIEW

All GAN architectures could be divided into 3
main types — fully connected, convolutional, and
conditional GANs. By combining them and using
various optimizations, researchers obtain new

LeakyRelLU
Activation Layer

architectures that outperform each other very well.
For now, there are many different architectures,
using which researchers can achieve very good
results.

DCGAN. Deep Convolutional Generative
Adversarial Network was first used and proposed in
2014 [2]. The authors used convolutional neural
network (CNN) for both generator and
discriminator.

The main advantage of using CNN over fully-
connected architecture is that CNN takes images as
input. Also, the architecture itself is built in a more
optimal way. This approach has significantly
reduced the number of parameters, training time and
increase the accuracy of such networks [1].

Modern GAN architecture may consist of
convolution, pooling and ReLU layers. The most
important part of any neural network is activation
function. The most popular one which is often used
with CNN and GAN network is called ReLU (Recti-
fier Linear Unit). The working principle is very
straight: if the input value is less than 0 it outputs 0,
otherwise the input value becomes new output
f (X) =max(x,0). The generator and discriminator

use different final activation function: tangent and
sigmoid respectively. General example of DCGAN
is shown in Fig. 1.

WGAN and WGAN-GP. A common problem in
the training of GANSs is the so-called mode collapse
[15]. When it happens, the generator begins to
synthesize the same images regardless of the input
data. The WGAN architecture allows to get rid of
this problem partially [16]. An innovation in this
architecture is the application of a new loss function
based on the Wasserstein distance. The advantage of
this architecture is that the discriminator is replaced
by the critic (Fig. 2).

I Convolutional
Layers

-~ Generator Network

Input Noise Reshape
(128} (8x8x2)

Upsample
(8x8x32)

:-m-»[ﬁﬂ -»»: =

Flatten Tanh
(1024) N

Upsample
(8x8x16)

- Discriminator Network

Conv2D
(8x8x64)

. Inpu1 Reshape
{Bx6x2)

Conv2D
(8x8x32)

Flatten  Sigmoid
(1024) m

Conv2D
(8x8x16)

Fig. 1. Simple DCGAN generator and discriminator
Source: https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-
Adversarial_Network_approach_for_the_simulation_of QCD_dijet_events_at_the LHC
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Synthetic data

How much difference is between
generated and real image

Noise source

Fig. 2. WGAN and WGAN-GP structure

Source: compiled by the authors

Thus, it does not try to classify the image as
real or synthesized anymore, but shows a certain
error of how different the synthesized image is from
the real one. The trainig process is about to
minimize this value. But this architecture also has its
drawbacks (quite a long learning time, even for low-
resolution images). Therefore, the authors proposed
a new model WGAN-GP, which is an improved
version of the WGAN and uses gradient penalty as
the method of preventing overfitting [10]. Despite
this advantages, WGAN leads to a slow optimization
process in practice.

BGAN. It is known that for each fixed generator
there is a unique and optimal discriminator [10]. It
follows that the generator is also optimal when the
discriminator outputs the probability of 0.5 for all
examples created from the latent space. However, in
practice, it is almost impossible to get an ideal
discriminator [2]. Therefore, the authors propose to
make changes to the original loss function of the
generator so that the discriminator outputs the
probability of 0.5 for all generated data [18]. This
method significantly improves the stability of
learning. This network is the same as the original
DCGAN (Fig. 3) but with a bit rearranged loss
function.

Synthetic data

Loss function

Discriminator

Noise source

Fig. 3. BGAN structure (same as DCGAN)

Source: compiled by the authors

BEGAN. In this network, the discriminator is an
autoencoder, which encodes the input images into
latent vectors, and then decodes them back into
images. Thus, the discriminator returns a
reconstruction error between the input and the
restored image instead of the probability value [19].
The basic idea is that the same reconstruction error
values for real and generated images ultimately lead
to the same distribution of real and generated data.
As the author says [19] the discriminator of this
architecture is deep convolutional neural network as
autoencoder. The generator uses the same
architecture as the decoder of the disciminator but
with different weights. Basic structure of BEGAN is
shown in Fig. 4.

Synthetic data

Encoder

— Loss function

Discriminator

Noise source

Fig. 4. BEGAN structure

Source: compiled by the authors

BigGAN. This architecture is used in class-
conditional image generation. It was designed to
unite the best approaches from the previous
researches [20]. The BigGAN architecture is focused
on scaling the GAN model to generate better quality
and larger images. This is done by using more model
parameters (more convolutional layers with large
number of hyper-parameters), larger batch size,
architectural changes. As a result, BigGAN is
capable of generating higher-quality and larger
images such as 256 by 256 and 512 by 512. Despite
all of the improvements to the training process
which have focused on some changes to the
objective, the main disadvantage is still the training
time and large computing resources.

StyleGAN. This architecture proposes large
changes to the generator model rather than the
discriminator. Some changes are the following:
mapping network to map points from latent space to
an intermediate latent space, use of the intermediate
latent space to control image style in the generator
[21]. As a result, the model is capable not only of
generating high-quality images (resolution of 1024
pixels) but also offers control over the image style
on the different levels (from the details to more
general features). This model was used for
generating human faces so far.
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Table 1. GAN-architectures characteristics

Resolutio
n

Architecture Charachteristic

DCGAN Low image quality, but | 64
relatively small training
time. No need of large

computing resources.

WGAN Better image quality 64
compared to DCGAN.
Very slow training

process.

WGAN-GP | High image quality, no
mode-collapse because
of gradient penalty.

Very slow training time

(up to several days).

any

BGAN Better training stability | 64
compared to DCGAN,

but low-quality images.

BEGAN Higher image quality
compared to DCGAN

but very slow training.

any

BigGAN High image quality,
several image
resolutions. Slow
training time. Large

computing resources.

128, 256,
512

StyleGAN | Very high image 1024
guality and size. Ability
to control over
generated image style
from details to more
general features. Very
slow training time (up
to several days). Huge
computing resources.

Source: compiled by the authors

4, EXPERIMENTAL RESULTS
4.1. Dataset

For the experiments the training dataset of 64
by 64 pixel cytological images was used [22, 23]. At
the initial stage, the total number of images in the
dataset was 78, which is a rather small value.

The used images are subset of biomedical
images which are the structural and functional
images of human and animal organs and is designed
to diagnose diseases and determine the anatomical
and physiological image of the body [24, 25], [26,
27], [28, 29]. Usually, these images are obtained as a
result of the use of technical means of visualization
in medicine and biology. Among biomedical images,
the following subclasses can be distinguished:
cytological, histological and immunohistochemical
images.

Therefore, the dataset was expanded to 800
images using Python library called Rudi which uses
some of the affine transformations (random flip,
rotation, distortion, skewing, zooming). The library
parameters were set to default [30].

Cytological images are images of cells of the
body, histological — images of tissues, and

immunohistochemical — images of cells and their
reactions to certain markers. Examples of these
images are shown in Fig. 5, Fig. 6 and Fig. 7
respectively.

-
s I
. ¥
" -
d i

Fig. 5. Cytological images

Source: compiled by the autors

m 1.
.

Fig. 6. Histological images
Source: compiled by the autors

Fig. 7. Immunohistochemical images
Source: compiled by the autors

4.2. Comparison of GAN architectures

For the experiments the next architectures were
chosen: DCGAN, WGAN, WGAN-GP, BGAN,
BEGAN. The reason for not including BigGAN and
StyleGAN is that these models require huge
computing resources and more importantly, large
training dataset which we do not have. So the chosen
architectures and the training parameters are given in
Table. 2. The table shows the name of the
architecture, the optimizer used (variation of the
gradient descent method), the number of iterations,
the size of the batch and the training time. The size
of the batch is used in the mini-batch gradient
descent algorithm, and determines the number of
training examples in one batch, which is selected
randomly at each iteration. The network error
calculation is based on that batch. The most popular
optimization  algorithm  today is Adaptive
Momentum Optimization (Adam). Comparison of
synthesized images is shown on the figures below.
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Table 2. Training parameters of GAN architectures

No. Architecture Optimizer | N. of iterations | Batch size 'I_'ralnlng Ave_rage fume
time per iteration
1 DCGAN Adam 15 000 64 41 mins 0,16 sec
2 WGAN RMSProp 15000 32 1 h 52 mins 0,44 sec
3 WGAN-GP Adam 15 000 64 5 h 43 mins 1,37 sec
4 BGAN Adam 15 000 64 3 h 44 mins 0,89 sec
5 BEGAN Adam 15000 64 6 h 25 mins 1,54 sec

Source: compiled by the autors

Fig. 8. DCGAN results after 1000 (a), 7000 (b), and 15000 (c) iterations

Source: compiled by the authors

Fig. 9. WGAN results after 1000 (a), 7000 (b), and 15000 (c) iterations

Source: compiled by the authors

a b c
Fig. 10. WGAN-GP results after 1000 (a), 7000 (b), and 15000 (c) iterations

Source: compiled by the authors
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a

b c

Fig. 11. BGAN results after 1000 (a), 7000 (b), and 15000 (c) iterations

Source: compiled by the authors

Fig. 12. BEGAN results after 1000 (a), 7000 (b), and 15000 (c) iterations

Source: compiled by the authors

Each of the GANs were built on the next
structure. In the discriminator we used input
convolution layer forwarded by LeakyRelLU
activation function, three conv blocks (convolution
layer, batch normalization and LeakyRelLU
activation), and convolution layer as the output. In
the generator we used four transposed convolutional
blocks (transposed convolution layer, batch
normalization and ReLU activation) and transposed
convolution as the output. Kernel size, stride and
padding were set to 4, 2 and 1 respectively in all
convolutional ~ blocks.  Hyperparameters  of
convolution such as input and output features in the
discriminator were doubled in each next block.
Initial value was 64. For the generator initial value
was 1024. This value was reduced by half in each
next block.

Each of the selected networks were trained for
15,000 iterations. Network parameters such as
learning rate, optimizer and batch size (also final
activation function) were set according to the values
given by the authors in the articles. The experiments
were performed using the Nvidia Tesla K80 graphics
processor using Google Colaboratory. The Python

programming language and the PyTorch library
were used to write the code.

To analyze the quality of the synthesized
images, the FID (Frechet Inception Distance) metric
was calculated. It’s given in Table 3. The
comparative chart is shown in Fig. 13.

The FID metric calculates difference between
feature vectors of real and synthesized images. This
metric is based on Google Inception 3 model and is
the improved version of Inception Score (IS) [13].

The metric is calculated on the basis of the

average values of m,m,, feature vectors (obtained

from the penultimate layer of the Inception model)
of real and synthesized images respectively, as well
as their covariance matrices. If compared vectors are
identical FID values is equal to zero. The metric is
described by the next formula:

2
d2(,C), My, Cy) =|m = my [ +
+Tr(C +Cyy - 2(CCy) 2),

where: m — average value; C - covariance; Tr —
trace of the matrix.
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Table 3. Comparison of the FID metrics of the given architectures

Number of trainig iterations in thousands
Architecture | 1 | 2 [ 3 | 4 | 5 [ 10 | 11 | 12 [ 13 | 14 | 15
FID
DCGAN 2458 | 24,16 | 22,33 | 21,12 | 20,66 | 16,34 | 15,97 | 15,56 | 13,47 | 12,86 | 12,67
WGAN 26,89 | 25,95 | 23,14 | 22,36 | 20,18 | 16,02 | 15,11 | 14,33 | 13,01 | 12,96 | 12,72
WGAN-GP | 34,17 | 33,86 | 32,12 | 31,02 | 29,35 | 25,01 | 24,39 | 23,11 | 21,58 | 20,03 | 19,09
BGAN 16,89 | 16,56 | 16,02 | 15,76 | 15,21 | 13,41 | 13,05 | 12,78 | 12,34 | 11,24 | 10,03
BEGAN 2190 | 21,45 | 21,12 | 20,46 | 20,04 | 18,23 | 17,88 | 17,03 | 16,64 | 15,77 | 15,32
Source: compiled by the authors

40

35

30 \\

25 DCGAN

Q \ — WGAN
2 20 R —_— — WGAN-GP
BGAN

15 ——BEGAN

10

D

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Number of iterations (thousands)

Fig. 13. Comparison of the FID metrics during training process
Source: compiled by the authors

CONCLUSIONS

The results of this research are following:

1. The article analyzes and compares on the ba-
sis of the criteria (training time, FID metric) GAN
architecture: DCGAN, WGAN, WGAN-GP, BGAN,
BEGAN.

2. Software prototype of the computer module
in experiments for the synthesis of cytological imag-
es using the analyzed GAN architectures has been
developed.

3. After the first thousand training iterations, it
can be seen that the WGAN-GP architecture has the
greatest error for the FID metric — about 37. This
architecture will not be used in further researches.

4. The architectures DCGAN, WGAN, BEGAN
have insignificant initial spread (about 4). The
interval of error for these architectures remains vir-
tually unchanged over the training time.

5. The BGAN architecture has the best result.
The learning error curve varied smoothly from 17 to
10.

6. For the synthesis of cytological images, it is
advisable to use the architecture DCGAN, WGAN,
BEGAN BGAN and with a smaller number of itera-
tions (about 7000) with training time is approximate-
ly 1.5 hours.

7. Direction for further research - improvement
of GAN architectures;: DCGAN, WGAN, BEGAN
BGAN.
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AHOTAIIA

VY craTTi npoaHani30BaHO Ta 3[iHICHEHO MOPIBHSAHHA apXiTEKTyp T'€HepaTHBHO-3MaraibHuX Mepex. L{i mepexi OyayroTbcs Ha
OCHOBI 3rOPTKOBHX HEHPOHHUX MEPEX, L0 HIMPOKO 3aCTOCOBYIOTHCS IS 3a4au Kiacudikamii. 3ropTKOBI Mepeki BUMAararoTh BeJH-
KOT KIIBKOCTI HaBYAIBHHUX JaHUX, 00 AOCATHYTH NOTPiOHOT TOYHOCTI. Y poOOTi reHepaTHBHO-3MarajibHi MEpexXi BUKOPUCTAHO IS
CHHTE3y OloMeanJHHIX 300paxkeHb. biomennuHi 300pa)keHHs IHPOKO 3aCTOCOBYIOTHCS B MEHIIMHI, 0COONMBO B OHKOJIOTII. [t mmoc-
TAQHOBKH JiarHO3Y B OHKOJIOTii 6i0OMeIMIHI 300pa)keHHS ITOIUISIOTECS Ha TPU KJIACH: IIUTOJIOTIYHI, TICTOJIOTI4HI Ta IMyHOTiCTOXIMIY-
Hi. Havanbsni BuOipku GioMequIHNX 300pakeHb € ayxe MatuMu. OTpUMaHHS HaBYAIBHHUX 300pa)KeHb € CKIaIHUM 1 JOPOTUM IIpO-
necoM. [l eKceprMeHTIB BUKOPHCTaHO HaBUYaJbHY BHOIPKY IUTOJIOTIYHHX 300pakeHb. B crarTi po3risiHyTo HaWOiibmI po3mo-
BCIOJKEHI apXiTeKTypH reHepaTUBHO-3MaraabHuX Mepex, Taki sk DCGAN, WGAN, WGAN-GP, BGAN, BEGAN. Tumnosa apxite-
ktypa GAN Mepexi CKIIaaeTbes i3 FeHepaTopa Ta IUCKpUMiHaTopa. B 0CHOBI reHeparopa Ta JUCKPUMiHATOPA JICKUTH apXiTeKTypa
CNN wmepexi. . Y poOoTi mpoaHaIi30BaHO alNrOPUTM INIUOOKOTO HaBYaHHA IJIS CHHTE3Y 300pa)KeHb 3a JOIOMOTOI0 T€HEPATUBHO-
3MaranbHUX Mepex. [1in yac excreprMeHTIB po3B’s13aHO Taki 3agayi. [l 301IbIIeHHS TOYaTKOBOI KIJIBKOCTI HaBYAJbHUX JAHHUX Y
BHOIpIIi 32CTOCOBAaHO MHOXKHHY a(h)iHHUX IIEPETBOPCHB: BiIOOpayKeHHs, apaleNbHUI IepeHoc, 3CyB, MacmrabyBanHs Tomo. KoxxHa
3 apXiTeKTyp HaByajacs IMPOTATOM BU3HAUYEHOI KiIbKOCTI iTepamii. OOpaHi apXiTekTypn OyiaM HOpIBHSHI 32 YaCOM HaBUaHHS Ta SIKiC-
TI0 300paxkeHb Ha ocHOBi FID (Frechet Inception Distance) merpuku. [Ins eKCIEPUMEHTIB BUKOPHCTAHO MOBY MpOTpaMyBaHHS
Python i ¢peiiMBopk st MammHHOTO HaBUaHHS Pytorch. Ha ocHOBI BHKOpHCTaHUX TEXHOJIOTIH PO3pO0ICHO MPOTOTHIT IPOTPAMHOTO
MOyl JUISL CHHTE3y LUTOJIOTIYHHX 300paskeHb. CHHTE3 LHUTOJOTIYHUX 300paxkeHp HpoBeneHo Ha ocHOBi DCGAN, WGAN,
WGAN-GP, BGAN, BEGAN apxitektyp. s HpoBeneHHs EKCIEepUMEHTIB OyJ0 BHUKOPHCTaHO OHNaiH cepenoBuiuie Google
Colaboratory i3 Bukopuctanasm rpadignoro mpouecopa Nvidia Tesla K80.

KorouoBi ciioBa: rmboke HaBYaHHS; TeHepaTHBHA 3MarajbHa Mepexa; Oi0MeiYHi 300payKeHHsT; CHHTE3 300paKeHb
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