
Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

186 DOI:https://doi.org/10.15276/aait.03.2019.2 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

DOI: https://doi.org/10.15276/aait.03.2019.2

UDC 004.4'2

ANALYSIS AND SYNTHESIS OF THE RESULTS OF COMPLEX EXPERIMENTAL RESEARCH

ON REENGINEERING OF OPEN CAD SYSTEMS

 Stanislav S. Velykodniy
 ORCID ID: https://orcid.org/0000-0001-8590-7610, velykodniy@gmail.com

 Odessa State Environmental University, 15, Lvivska Str. Odesa, 65016, Ukraine

ABSTRACT

The article presents the final results of scientific research on the development of models and methods of reengineering, as well

as technologies of multilingual recoding of open systems of automated design. The common feature of all software systems lies in

the fact that there is an evolutionary aging of the types of support under the influence of time and other integral factors of

information, namely, updating: operating systems, programming languages, principles of the operation of distributed data processing

systems, etc. Such a tendency leads to deterioration of speed, information and communication, graphic, time and other

characteristics, up to a complete system failure. Reengineering is a process that allows creating quickly and easily new, improved

software systems, using the experience of previous software products. The purpose of the article is to systematize the results of the

integration of reusable component, which have been accumulated by developers over a certain period of development of sectoral

computer-aided design systems in updating the software structures of ready-made resources. Based on the obtained scientific and

practical results, the analysis of the developed models and methods of reengineering of types of support for open computer-aided

design systems is performed. In general, reengineering includes the processes of reorganization and restructuring of a software

system, conversion of individual system components into another, more modern programming language, as well as the modification

or modernization processes of the structure and data system. The study involved the following methods: assembly, specifying,

synthesizing and compositional programming, methods of generative and recognizing grammars. At present time, the process of a

new software products design is not very effective without the use of the UML methodology, but when it is applied, the speed of

development increases by times. UML as a language for a graphical description for object modeling, in addition to simple design,

supports also the function of generating and reengineering code based on model data, as discussed in the article. The distinctive

feature of this research is the ability to support the work of more than ten most popular programming languages. In applying these

technologies, it is possible to automate the process of software components recoding and, therefore, to free the working time of

programmers from routine reprogramming and reduce the probability of occurrence of structural errors inherited from the previous

system. The use of the obtained results will improve significantly the efficiency of the application of automated design systems in

such fields of their use as: mechanic engineering, telecommunications, production and transport management, education, etc. The

developed models and methods will be useful to system architects and program engineers involved in redesigning software already

being in their multi-year operation.

Keywords: CAD Systems Reengineering; UML Methodology; Multilingual Transcending; Linguistic Structures; Generative

Grammar

For citation: Stanislav S. Velykodniy. Analysis and Synthesis of the Results of Complex Experimental Research on Reengineering of Open

Cad Systems. Applied Aspects of Information Technology. 2019; Vol.2 No.3: 186–205. DOI: https://doi.org/10.15276/aait.03.2019.2

INTRODUCTION

The main goal set before the computer-aided

design (CAD) for any purpose is to reduce the

design time of the object and reduce the personnel

required for this design, and as a consequence, the

cost of the finished design object.

The common feature of all CADs is that under

the influence of time and other inevitable factors of

informatization (upgrades: operating systems,

programming languages, principles of the operation

of distributed data processing systems, etc.) there is

an evolutionary aging of the types of CAD

maintenance. This tendency leads to a deterioration

of speed, information and communication, graphic,

time and other characteristics, up to the complete

system failure.

Hence, it follows that the CAD should be one

that develops. According to the world tendencies of

development, CAD relies on a life cycle of 3-4

© Velykodniy, S., 2019

years. Of course, when updating the design

object – CAD is also updated. At this stage, the

question arises: what to do when the system is

tightly tied to the design object? There is one answer

to this question: it is necessary to apply

reengineering on the CAD.

CAD reengineering is the evolution of the

system through radical change in order to increase

the usability, maintenance or change of its functions.

It includes processes for the reorganization and

restructuring of the CAD, a transfer of individual

components of the system to another, more modern

programming language (PL), as well as processes

for updating or modernizing the structure and data

system. In this case, architecture the system may

remain unchanged.

CAD reengineering is a target for obtaining a

new component by executing a sequence of

operations for making changes, upgrades or

modifications [1], as well as reprogramming

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/deed.uk

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 187

individual components of the CAD. It is

implemented by a set of models, methods and

processes that change the structure and capabilities

of components in order to obtain a module with

updated capabilities. New components are identified

by the names that are used when creating component

configurations and frameworks of CAD [2].

From the technical point of view, reengineering

is a solution to the problem of CAD evolution by

modifying its components and adapting the

architecture to a new environment [3], in which

components are placed according to the

configuration of the operating system. The reason

for the evolution may be the change of the PL of

CAD (for example, outdated: Fortran, Сobol or even

C, etc.) with the transition into modern object-

oriented languages (Java, C #, Python, etc.).

The goal of the article is to systematize the

results of the integration of reusable component

(RUC), accumulated by developers at a specified

time of the industry CAD development, into new

program structures of finished resources.

GOAL SETTING

One of the main tasks of modern programming

is the creation of theoretical and applied foundations

for construction of complex programs with simpler

program elements that are written in modern PLs. In

fact, solution of this problem is accomplished by

collection, combination or integration of

heterogeneous software resources and RUCs,

including modules and programs for the

implementation of a particular domain.

Linguistics, which studies language laws,

models and rules, is a scientific basis of any

language (including the programming language).

Generative linguistics, which was founded by

Avram Noam Chomsky (in the Soviet times,

sometimes was interpreted as “A. N. Khomsky”),

who created the revolution in language studies, is a

special branch of linguistics that should be used in

the structure of programming languages.

By way of the task of correct chains, formal

grammars are divided into generative and

recognizing. The generative grammars include those

ones by which it is possible to construct any correct

chain with an indication of its structure and it is

impossible to construct any wrong chains. For the

first time, the notion of generative grammar was

proposed by A. N. Chomsky. Recognizing grammar

is a grammar that allows to establish the correctness

of an arbitrary chain and, if it is correct, to find out

its structure. Formal languages include, in particular,

artificial languages for communication between the

operator and the computer (programming

languages).

The lingware of CAD considers the

construction of a software system with one or more

(mutually agreed) PLs, each of which is based on the

rules of a particular grammar and is considered by

the author of the presented article in [4] and [5].

The problem of CAD reengineering of various

industrial purposes has been discussed in detail in

[6]. The methodological principles for the CAD

reengineering have been laid down in [7]. Problems

of methods formation for conversion of software for

various software systems, for example, SCADA-

systems, was considered in [8].

Generalization of the stages of reengineering of

complex information systems and technologies is

given in [9]. Formation of the method for calculating

the indicators of project evaluation in the

implementation of reengineering software systems is

presented in [10]. Models and restrictions on the use

of reengineering on software systems are identified

in [11]. The method of presentation of an estimation

of reengineering of software systems using project

factors is formed in [12].

ANALYSIS OF RECENT RESEARCH

AND PUBLICATIONS

At present, there is a large number of software

that performs a large number of specialized tasks.

Some of them are tied to only one branch of

industry, while others are used in large numbers, but

the trend goes through the specialization of software

products in general [13].

Corporations that develop CAD, design a lot of

specialized software products, for example –

AutoDesk. They have a complete set of programs for

work with engineering structure (Inventor),

architecture (ArchiCad), design (3dMAx) and design

in a broad sense (AutoCad) [14].

Thanks to powerful computational tools in the

CAD using integrated modules containing banks and

databases (DB) of ready-made design solutions, it is

possible to quickly make adjustments to the necessary

parameters of products (sizes, form, order of

processing, etc.), which are manufactured; as well as

to the sequence of technological operations, that is to

reorient the whole production process [15], [16].

Such a reorientation (in the broadest sense) of a

CAD from a database can be defined as

reengineering of information provision [17].

Reengineering includes processes of

reorganization and restructuring of the software

system [18], the conversion of individual system

components into another, more modern

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

188 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

programming language, as well as processes for

updating or modernizing the structure and data

system [19].

The methodology outlined in [20] is useful as a

basic trajectory of research. Principles [21] and

studies in [22] have suggested practical aspects of

reengineering models [23].

One of the important components of the CAD is

the computer graphics, which is a collection of tools

and techniques through which input, transformation

and output of graphic information from specialized

environments are carried out [24].

Computer graphics is an actual branch of design

and application of computing systems that are

intensively developing in recent times [25]. The term

“computer graphics” means computational processing

of information, as well as the output of results in the

form of various graphic images. The data necessary

for results displaying in a graphic format is created

based on graphical information [26].

Particular interest in computer graphics has

become apparent in connection with the intensive

development and introduction of currently free and

open CADs not only in engineering, instrumentation,

radio electronics, interior design, but also in other

areas of production and training [27].

One of such CADs is BRL-CAD, a specialized

cross-platform open source system. It represents a

powerful 3D CAD for solid modeling using CSG

methods. This CAD includes an interactive

geometric editor, parallel beam tracing, rendering,

and geometric analysis [28].

BRL-CAD was developed for about 40 years

and has been used by the US armed forces. The

entire BRL project works from the source code, thus

it can be used on any platform: GNU/Linux,

MacOS, Solaris, and Windows.

Here are some definitions of open source

software and their design technologies.

Source code (usually just “crumbled”, also

“sources”, “program code”, “text of the program”) –

any set of instructions or announcements written in

the programming language and in a human-readable

[29]. The source code allows the programmer to

communicate with the computer with the help of a

limited set of instructions [30].

Program source code is a set of files that are

required to convert from a human-readable form to

some types of computer executable code [31]. There

are two possible ways to execute a source code:

compiling into a computer code using a compiler

(designed for specific computer architecture) or

executing directly from the text with the help of an

interpreter [32].

One of the first CADs, capable of developing in

both these areas, appeared because in 1979 the US

Army Ballistic Research Laboratory (BRL), now the

United States Army Research Laboratory, expressed

a strong need for instruments and tools that could

help in computer simulation and engineering

analysis of weapons systems (tanks, rockets,

airplanes, etc.) and their working conditions [33].

When none of the CADs existing at that time

appeared to be ready for this purpose, BRL

developers began to collect a set of utilities capable

of interactively viewing and editing geometric

models trees. Programmers began to develop their

own suite of applications that were designed to

display, edit and combine geometric models. In this

way, the BRL-CAD, the application package for

Constructive Solid Geometry (CSG), was created.

The first public release was made in 1984. In

December 2004, BRL-CAD became an open source

project. It is very important that BRL-CAD is

licensed under the terms of BSD and GNU GPL.

From now on, this CAD has been constantly

evolving, and new opportunities have emerged, but

now the very linguistic provision of the database

submission (C language) in the BRL-CAD

environment requires the transfer (reengineering) to

high-level languages (C or C#).

Today, thanks to about a million lines of C

code, BRL-CAD has become the most powerful

graphical modeling package that has been used by

more than 2,000 organizations around the world.

METHODS OF RESEARCH

The following methods have been used during

the research:

 method of assembly programming, which

explores the program elements, which are completed

with modules, objects, components, services, etc.;

 method of concretizing programming, used

in the presence of some universal software;

 method of synthesizing programming, which

is used from setting of problem, which is formed as

a model of calculation and specification of the

program for solving the set problem;

 method of composite programming, used in

the organization of functions and data in software

systems;

 method of assembly programming, used in

the presence of a bank of modules and components

of reuse;

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 189

 method of Chomsky’s generative and

recognizing grammars that are used in the

construction of linguistic chains for formal

programming languages.

MAIN MATERIAL OF THE ARTICLE

The most important action for skeletal structure

and reengineering is the creation of two diagrams

[34]: class diagrams and component diagrams. It is

from them that the code of the future software

product [35] is generated. All other diagrams have

an auxiliary (relief) role [36] and should be used at

someone’s own discretion.

The implementation of this phase depends on a

technical specification and modern market

requirements, built in the so-called top-list of the

most popular programming languages, which

include: Java; C#; C++; PHP; Python [37] and more.

The choice of a CASE-tool depends on the

user's preferences. According to the author’s opinion

[38], the most optimal CASE-tool that supports the

import and generation of code written in the

languages mentioned above is Enterprise Architect

(EA). It is EA (version 14.0) to be considered by us

as an effective transcoding tool.

Proceeding from the problem, in the selected

simulation environment, there should be a lot of

possibilities in addition to the standard set of

diagrams (15 pcs.), it is necessary to carry out

efficiency analysis, which is business diagrams,

synchronization diagrams, etc.

In one of the most well-known environments,

Rational Rose, business diagrams and all subsequent

metrics are not implemented effectively [39]. At the

moment, there are few CASE-tools that support the

correct code generation in many languages,

especially if you do not count on the language itself,

and a software product that is developing in this

direction and has the best prospects for learning. The

convenience of work and the simplicity of the

interface were equally important. Of course, in terms

of interface simplicity, EA fails to keep pace with its

counterparts, but it is completely overlapped by its

efficiency [40].

PROCESS OF CODE GENERATION

UML, as a language for the graphical

description for object modeling [41], supports, in

addition to simple design, generation and

reengineering of code based on model data. As noted

earlier, code generation occurs from two diagrams –

class and components.

The component diagram serves as a convenient

link for us to connect classes and entire packages

that consist of similar modules. In the EA CASE-

tool, the component diagram does not have a direct

effect on code reproduction from the model, it only

performs auxiliary functions. Very revealing is the

fact, that when creating a complex software product,

it is not very convenient to reproduce a separate

class diagram, so further binding to the component

diagram consists precisely from the transfer of the

“Class” type modules to this diagram.

Therefore, in the EA software product, there is

such a convenient type of component, called

“Packaging Component” – this component has a

wide internal structure in the form of another

diagram. This internal diagram was created precisely

for the convenience of working with modules of the

“Class” type, but the possibilities of EA allow us to

create diagrams of any type there (if to investigate

the methodology in detail, it is quite convenient

because, for example, you can show the structure or

methodology of business diagrams) When you

create this component, a new component diagram

automatically appears inside it, which is very

convenient to load class modules. All modules that

will be created or moved to this diagram are

automatically tied to the component in which they

are located.

To generate a code, we will open a physical

location of modules of the “Class” type on the

screen, and then select all the necessary modules that

we want to play. Next, we indicate the location for

each element being created, and step by step we will

complete the generation (Fig. 1).

In essence, this process of code generation is

complete. However, how the skeleton structure of

our software product is related, it depends on what

types of communication and which variables,

operations, and attributes are specified in the class

diagram. It should not be forgotten that this is only a

general basis (template) for the code, all the main

code and processes must still be written by

programmers (Fig. 2).

The convenience of such a generation consist in

a general form structuring, the assistance in the

distribution of template tasks between programmers,

and almost complete exclusion of the problem of the

incompatibility of modules, because the entire

structure is already connected initially.

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

190 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Fig. 1. Process of code generation
Source: compiled by the author

Fig. 2. Generation result
Source: compiled by the author

DECOMPOSITION BRL-CAD SOFTWARE

INTO COMPONENTS

 Class Diagram

In order to create new software based on the old

one, you need to analyze the structure of the primary

software product. The structure of BRL-CAD is

presented as program code in C language and is

divided into a large number of modules, each of

which contains one or more classes interrelated or

related to other modules. In addition to each module

understanding, the individual task is to understand

the relationship between classes and make a

coherent presentation. Since this is a direct work

with the code, we will represent the structure on

diagrams created especially for this: the diagrams of

classes and components.

The very general class diagram for the primary

software product is to be compiled first, so that it is

rather difficult to compose the immediately

connected diagram of the classes and components in

terms of the complexity of the work, while, as

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 191

experience has shown, the effectiveness of such

action does not exceed the time costs for work with

individual diagrams. That is, when decomposing any

product, the best decision will be decomposing into

components, while, when generating a new product,

it is better to create an exact and complex

interrelation.

To begin with, we need to find a “generalizing”

module (if, of course, it is present). Module, in

which all the main working submodules are

represented, is called generalizing. This kind of

representation is almost always used in the work of

open source software products for more

understandable and rapid parsing and further

modification of the code. It was decided to adhere to

this rule, and since it is precisely the same as

building an open source code, then you need to

structure the code as best as possible, that is to make

it “clean”.

In BRL-CAD, the entire C programming

language is located in the “incude” folder. Open the

file “brlcad.h”, which is our “generalizing” module

and see what kind of connection it has:

/* system headers presumed to be available
/* basic utilities */
/* vector mathematics */
/* non-manifold geometry */
/* basic numerics */
/* database format storage types */
/* raytrace interface constructs */
/* trimmed nurb routines */
/* the write-only database library
interface */
/* in-memory representations of the
database geometry objects. these
 * are subject to change and should not be
relied upon.
/* database object functions.

There is a connection of submodules

responsible for certain operations here. Moreover, as

we have already mentioned above, even explanatory

comments are provided for improving the

convenience of working with the code.

Consequently, it is from here that the generation of a

new structure will begin. Each submodule represents

a whole set of files with related classes associated

with them, so all of these files will be presented as

“Interacting Packets” in the easiest way on the

diagram.

When creating the first package, which is called

“include” (in the name of the folder where the entire

executable code is located), it is proposed to select

the type to be used in the subsequent, internal,

diagram (Fig. 3).

Fig. 3. Selection of the diagram type inside the

package
Source: compiled by the author

Since all subsequent modules will be separate

(interacting only at the data package transmission

levels) classes of relationships, it is more likely to

create them in the form of the same packages. When

creating these packages, you must again select the

type of diagram that will be used internally. Next,

choose a class diagram, so the interaction inside

these modules already takes the form of classes with

their operations and attributes. After adding all the

major packages, the project browser looks like it is

shown in Fig. 4.

Fig. 4. Project browser after adding packages
Source: compiled by the author

Now when the main structure is complete,

proceed in particular to each package, with its

breakdown by classes and interconnections.

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

192 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Relations between packages will be considered after

their internal structure is determined.

Let's start with the packages. The first package

is called “bn.h” and on the hard disk it is represented

by a single file with the same name. The first thing

to do is to restore its structure using the command

“Import C File” from the “Source Code

Engineering” graph.

In the end, we get the result, from which it is

evident that just one class has recovered, which is

strange. The file we tried to recover was not fully

read, as evidenced by the error graph. The report

window was also opened (Fig. 5).

Fig. 5. Reverse engineering report
Source: compiled by the author

In it, we see that besides reproduction of this

class, all the possible types of connections are

reproduced in the same way and all types of

relations are restored. However, this is not enough,

so when we open the window of the physical file of

the code location, we see that there are many more

classes there. The very first difference that arrests

attention is that the class played on the screen is the

only one that defines some variables, while all the

following use the #define command, which serves to

declare any constant. This constant can be taken

from other modules.

The file that we are interested in consists

mainly of constructs such as:

a) Struct bn_tol – class declaration;

b) BN_EXPORT BU_EXTERN (void

anim_tran, (mat_t m)) – process declaration;

c) #Define bn_cx_add (ap, bp) {(ap) -> re + =

(bp) -> re; (ap) -> im + = (bp) -> im;} – declared

constants.

Since we are not satisfied with the results of the

reverse engineering, we have to complete the

analysis on the diagrams manually. To do this, we

need to understand what exactly to look for in the

files. First of all, of course, the declared classes and

their variables are of interest, the general structure

and the shape of the diagram depend on it. After the

classes and variables are recreated, it is necessary to

take on the processes that the given classes will take.

The process of reproduction of a full-fledged
structure up to each variable is not necessary, in the

reengineering it is important to understand the
process of software modules work and to make the

most understandable scheme, which will be

convenient to work not only on someone’s own, but
also to explain the principles to the programmers

who will reproduce the new modules. Therefore, we
will not specify many small classes and processes or

we will combine them into larger diagram processes.
The example of a schematic association of

processes.
The program code contains many small

processes with explanations such as:

BN_EXPORT BU_EXTERN(void anim_dy_p_r2mat,
 (mat_t m,
 double y,
 double p,
 double r));

/**
 * @brief Make a view rotation matrix,
given desired yaw, pitch and
 * roll. (Note that the matrix is a
permutation of the object rotation
 * matrix).
 */
BN_EXPORT BU_EXTERN(void anim_dy_p_r2vmat,
 (mat_t m,
 double yaw,
 double pch,
 double rll));

/**
 * @brief Make a rotation matrix
corresponding to a rotation of "x"
 * radians about the x-axis, "y" radians
about the y-axis, and then
 * "z" radians about the z-axis.
 */

The comments clearly indicate: what each

process replies for (once again remember that this is
one of the conveniences of working with open

source software, although this convenience has a

number of shortcomings). In our example, these
processes are responsible for rotation of the selected

object in the given coordinate system: X, Y, Z, under
which it is monitored, any deviation.

In the diagram, we generally call this a Rotation
process and will not go into details, because at least

later, when working with programmers we will have
to develop a new model, taking into account the

specificity of the programming language. By doing
this, we will facilitate and reduce the process of

developing the diagrams, because there are more
than thirty such processes in one such “bn.h” file.

We begin to construct the diagram, taking into
account combination of non-essential classes. Let's

show the stages in detail on one of the classes
(Fig. 6; Fig. 7):

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 193

struct bn_unif {
 unsigned long magic;
 long msr_seed;
 int msr_double_ptr;

 double *msr_doubles;
 int msr_long_ptr;
 long *msr_longs;};

#define BN_CK_UNIF(_p) BU_CKMAG(_p,
BN_UNIF_MAGIC, “bn_unif”)
#define BN_CK_GAUSS(_p) BU_CKMAG(_p,
BN_GAUSS_MAGIC, “bn_gauss”)

The final representation of the class diagram for

the file “bn.h” is shown in Fig. 8.

Fig. 6. Filling in the attributes of bn_unif class
Source: compiled by the author

Fig. 7. Final representation of bn_unif class
Source: compiled by the author

 class bn.h

bn_unif

+ magic: unsigned long

+ *msr_doubles: double

+ *msr_longs: long

+ msr_double_ptr: int

+ msr_long_ptr: int

+ msr_seed: long

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

194 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Fig. 8. Class diagram for “bn.h”
Source: compiled by the author

It should be taken into account that this diagram

is not a complete reflection of the entire file,

therefore less significant classes take a lot of space,

but they are not essential in the reflection. The same

applies to processes – there are more than two

hundred of them, while they only announce or

structure the data, so they are schematically

displayed, but due to the fact that each class is

inclined to influence any processes, it is necessary to

show it on the diagram (Fig. 9).

“Association” is chosen as communication,

because this communication carries information

about the relation between objects within the

software. Associations can be specified and display

which class is it and how it is related to others.

Fig. 9. Diagram in the form of a browser
Source: compiled by the author

 class bn.h

«struct»

bn_tol

+ dist: double

+ dist_sq: double

+ magic: unsigned long

+ para: double

+ perp: double

bn_complex

+ im: double

+ re: double

bn_unif

+ magic: unsigned long

+ *msr_doubles: double

+ *msr_longs: long

+ msr_double_ptr: int

+ msr_long_ptr: int

+ msr_seed: long

bn_gauss

+ *msr_gauss_doubles: double

+ *msr_gausses: double

+ magic: unsigned long

+ msr_gauss_dbl_ptr: int

+ msr_gauss_ptr: int

+ msr_gauss_seed: long

bn_poly

- bn_multipoly : int

+ cf[BN_MAX_POLY_DEGREE+1]: double

+ dgr: int

+ magic: unsigned long

bn_multipoly

+ **cf: double

+ dgrs: int

+ dgrt: int

+ magic: unsigned long

bn_table

+ magic: unsigned long

+ nx: int

bn_tabdata

+ magic: unsigned long

+ ny: int

Processes

+ assignments() : void

+ renaming variables() : void

+ structuring variables() : void

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 195

After completing the analysis of the first file

called “bn.h”, the last step in working with it is to

show the connection of this “package” with others.

At the beginning of the file, there are the following

lines:

/* interface headers */
#include “bu.h” /* required for
BU_EXTERN, BU_CKMAG */
#include “vmath.h” /* required for mat_t,
vect_t */

This entry indicates that we have a relation with

other packages included in this diagram, so this link

should also be displayed. It is necessary to use the

type of connection “dependency”, so the execution

of mathematical and other functions in the file

depends on these two connected components. As a

result, in the package diagram, this will look the

same as in Fig. 10.

Fig. 10. Relationship of “dependence” between

packages
Source: compiled by the author

In some cases, the relationship between classes

can be neglected because the work with them is at

the presentation level of the files (packages), which

means that access to the class from the “bmath.h”

file will not occur from the inside, but from the

outside, for example from the “bn.h” file. Similarly,

in some cases, the links will be displayed in the title,

for example, the relationship between super- and

child classes (Fig. 11).

That is, the “rt_revolve_internal” class is the

descendant of the “rtgeom” class.

At this stage of the study, the “bu.h” and

“vmath.h” packages are not yet filled with classes

and functions, so their reflection, so far, is purely

schematic.

Thus, it was investigated how to restore files

from C language manually. All files in this software

project were considered similarly to display the

complete diagram (Fig. 12).

Fig. 11. Descendant class
Source: compiled by the author

Component diagram

Component diagram is the second diagram that

participates in generating the code of the future

software product and for this purpose it should be

associated with the first diagram – a class diagram.

We will analyze a component diagram for the

primary software product according to the classical

canons [42], with a breakdown into 3 parts:

a) deployments that ensure the direct execution

of the system's functions – such components may be

shared libraries with the “*.dll” extension;

b) work products are usually files with source

code programs, for example, with the extension

“*.h” for the C language;

c) executive, representing modules with the

extension “*.eхe”.

In the first step, not so much the program code

is necessary as the physical location and the overall

software architecture (Fig. 13).

There are 4 folders in this structure in addition

to executable files (“archer” and “brlcad”). The

“bin” folder contains the main and auxiliary “exe”-

files that run separate modules (the specifics of a

software product: each module does not integrate

into the interface but connects to a separate

window).

The folder “include” contains a work product -

files with texts in “C” programming language. The

folder “lib” contains the library files, and the folder

“share” contains text documents with descriptions,

license agreements, pages on the Internet, generally

auxiliary files.

Having considered this structure, you can

already build a “skeleton” of the diagram and it will

look like on Fig. 14.

 class rtgeom.h

«struct»

rtgeom::

rt_rev olv e_internal

+ ang: fastf_t

+ axis2d: vect2d_t

+ axis3d: vect_t

+ magic: unsigned long

+ r: vect_t

+ v2d: point2d_t

+ v3d: point_t

«struct»

+ sk: rt_sketch_internal*

+ sketch_name: bu_vls

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

196 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Fig. 12. Full diagram of project packages
Source: compiled by the author

Fig. 13. Physical location of the application
Source: compiled by the author

Fig. 14. Primary structure

Source: compiled by the author

The next step in working on this diagram is to

fill the packets with data. Let's start with the most

important package – “include”, which contains

executable files.

Let’s rebuild the structure inside the folder and

bind the entire class diagram to it. Since all

executable files are written in C language, that is, in

one format, then we will not create a large number

of components – we limit ourselves to one. We will

name it the general name “Source code” and indicate

in the specification that it is the language “C” and

then we bind the class diagram, which contains the

entire code of the component.

The overall sequence is:

a) in the project manager, choose a diagram

containing the required classes;

b) find the component to which the diagram

will be attached;

c) transfer the diagram to the batch component.

At the moment of the transfer, the following

process takes place: the diagram itself goes into the

component hierarchy, and all classes remain in the

old place, in their subdivision of the diagrams

(Fig. 15).

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 197

The convenience of such a structure is that the
diagrams have been connected, that is, the transition
to a class diagram can be done only through a
dedicated component, but the classes themselves
have not moved, which has greatly facilitated
readability, and in the future, a change in the
structure.

All major modules have been upgraded and
only some of the details have to be completed, so the
folder besides the code contains another folder with
configuration files that directly affect the code.
Therefore, we will create a folder called “config”,
fill it with the components of the corresponding file
and continue to divide the links in the data packet
(Fig. 16).

In the “config” folder, the files do not interact
with each other, so internal connections are not
required, but in general, each of these files interacts
with the component “Source code”, which means
their connection. It remains only to determine the
type of connection.

In any of the files in the “config” folder there is
a set of numbers to which executable files are
referred, that is, when changing the number, the
code itself changes. For this kind of interaction,
there is a special type of connection, called
“dependency”. Therefore, we will place it on the
diagram, indicating that the “Source code” batch
component depends on the “config” folder (Fig. 17).

In the same way, we implement other 3 folders
on the diagram – “lib”, “bin” and “share”. However,
there are some differences. In the “lib” folder, there
is a huge amount of libraries, each of which can be

represented as an independent component, but it can
be done only manually and it takes a lot of time, so
let's go by the path of least resistance – transferring
all the libraries to the diagram as “artifacts”.

Artifact is any artificially created element in the
system. Artifacts can be any type of file, even
elementary pads, quite apart from code files and
libraries. In this case, it would be entirely justified to
apply structuring exactly in this way, but even
though such a move makes it easier to work, you
need to specify a type, or as it is called in UML, a
stereotype of the file (Fig. 18). Reproducing each
artifact, we set its specification.

After playing the modules in the diagram, we
set up the links between them. As it was seen from
Fig. 13, the folder contains the “Uninstall.exe” file.
If it is activated, then the uninstallation of the CAD
occurs, that is, this file affects every other physical
(and not only) location of the software system.

As a result, all other folders and files are
associated with this component as a “dependency”
connection. All we have to do is to link our main
packages. Therefore, the “bin” package is a folder
with the main and auxiliary “exe” files, and two
other packages – “lib” and “include” (libraries and
executable files with code) “realize” the “bin”
package. For this, there is a special type of
connection with the similar name “realize”.

Now the packages are recreated, the links are
also binded to the class diagram executed. The result
of the work in general is shown in Fig. 19.

Fig. 15. Changes in project manager
Source: compiled by the author

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

198 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Fig. 16. Presentation model of the “config” folder
Source: compiled by the author

Fig. 17. Interaction within the “include” folder
Source: compiled by the author

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 199

Fig. 18. Stereotype and program profile selection
Source: compiled by the author

DISCUSSION

The present article summarizes the process of

reverse engineering on the example of the open

BRL-CAD. The study has been carried out using the

UML methodology using Enterprise Architect

CASE-tool. The UML methodology is quite

voluminous and the project has considered several

diagrams that are used to design a new product.

The main focus was on the class and

component diagrams. This is due to the fact that the

code generation and subsequent work of

programmers will occur directly from these

diagrams, while other auxiliary diagrams serve only

to explain complex project specifications, which,

however, does not deemphasize their significance in

the project.

In the most progressive countries of the world,

new products have not been developed “from

scratch” for a long time, for them systems that help

to create any necessary structure much more quickly

and efficiently are used. The UML methodology and

related software products serve to improve the

design and structuring of data. This methodology

has been actively used since recently, but very

quickly integrated into the overall design structure.

The convenience of the reengineering methodology

is that it is not tied to any of the development

methods and is very flexible in use.

The development of the UML methodology for

reverse engineering is typical for the West and parts

of Europe. At the beginning of the research (that is,

in 2010), specialists from our country have just

begun to work on the active exploitation of this

methodology in the form in which it is presented

now.

The open and free BRL-CAD has served as an

excellent prototype for work. The advantage of such

systems is that they are distributed under a free

license and there are no legal issues with copying,

modification or other actions related to the software

code. Similarly, it should be noted that because the

code was made open, the developers tried to make it

also understandable. This is due to the large number

of comments in the program code.

One of the major disadvantages of BRL-CAD is

the lack of a clear graphical product interface,

corrected and improved in the prospects for software

product reengineering. However, developers and

designers usually develop the interface from the

middle of the project, or even closer to the end,

when the full full functionality and working

principles are already known.

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

200 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Fig. 19. Complete diagram of BRL-CAD components
Source: compiled by the author

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 201

CONCLUSIONS

The article analyzes and summarizes the results

of complex experimental research of new methods

of multi-linguistic transcoding of open source

software. The distinctive feature of the studies under

review is the ability to support the work of more

than ten most popular programming languages.

When applying these technologies, it is possible to

automate the process of recoding software

components and, therefore, to free programmers

from routine reprogramming and reduce the

probability of occurrence of structural errors

inherited from the previous system.

In the article, the technology of multi-linguistic

transcoding has not been only given, but also

analyzed. The problem of this field for our country

is the lack of any educational materials; although

this situation allows to use software products and

build or restore code, but it hides some interesting

and useful features from users. Therefore, the task

was to consider and systematize the process and the

logic of reverse engineering and to form the basis of

a scientific paradigm, which allows the system

architect to understand the principles of this

reengineering.

Reengineering is a process that allows to create

new, improved software systems quickly and easily,

using the experience of previous software products.

With the introduction of this methodology, we can

conclude that the efficiency and speed of work has

grown considerably also because of the fact that

UML is a convenient language that coordinates the

actions of all employees and helps to distribute tasks

between performers.

From an economic point of view, reengineering

is generally advantageous – it is a significant time

and effort savings for programmers, it helps in

project coordination, and optimizes the number of

employees, although there are some situations where

software reengineering is not the best solution. In

any case, before performing the evolutionary

improvement, it is necessary to evaluate the

feasibility of a software project reengineering - this

is also a series of publications by the author of this

article.

At this time, the process of designing new

software products is not very effective without the

use of the UML methodology, but with its use – the

speed of development increases at times.

Summing up the results, we can state that in the

article:

1) Generalization of the results of experimental

studies at the level of presentation of classes and

components presented using a unified modeling

language – UML, with processing and interpretation

of results at CASE-tools level has been performed;

2) The results of source code conversions have

been analyzed and summarized, the main of which is

the reduction of labor productivity of the CAD

creation;

3) The generation of new linguistic structures

has been improved, based on reconstructed unified

diagram models, which allows to preserve the

properties of relations between classes and between

components.

4) Methods of importing encapsulated

components of the CAD that allows re-encoding the

components regardless of the programming language

have been developed further.

Using the results will significantly improve the

efficiency of the CAD use in such fields of their use

as: mechanic engineering, telecommunications,

production and transport management, education,

etc.

The developed models and methods will be

useful to system architects and program engineers

involved in redesigning software already being in

their multi-year operation.

Properly executed reengineering is

characterized by the achievement of practical

results:

a) Reducing the risk of errors in the future

update of the CAD;

b) Reduction of the product cost due to the

repeated use of software components in the

development of a new CAD;

c) Reduction of the labor productivity of the

creation of the CAD due to the almost complete

elimination of routine reprogramming operations of

many already identified components.

Thus, the main problem of the study was the

systematization of methods of reengineering

software components into new software structures,

systems and ready-made information resources

accumulated by humanity at a specified time. This

new direction does not yet have standard solutions to

the problem of the gradual transformation of the

multi-linguistic description, the implementation of

generation, debugging, and integration for the final

software system.

Therefore, the possible directions of the

research continuation and the prospects for the

development of the following studies on the

following topics are:

1) Industrial testing for fault tolerance and

practical testing of implementation of software

systems multi-linguistic transcoding that will allow

them to be improved on an industrial basis;

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

202 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

2) Creation of reengineering models for each

other types of CAD provisioning that will be

redesigned.

Complete reengineering of the CAD will

overcome the contradiction between the pace of

science and technology and design processes

development, improve the efficiency of technical

support of software systems, and reduce operating

costs.

REFERENCES

1. Link, D., Behnam, P., Moazeni, R. & Boehm, B. “The Value of Software Architecture Recovery for

Maintenance” (Submitted on 23 Jan 2019 in Cornell University). – Available from:

https://arxiv.org/abs/1901.07700. – Active link – 27.06.2019.

2. Lavrishcheva, E. M., & Grishchenko, V. N. “Sborochnoe programmirovanie. Osnovy industrii

programmnyh produktov”. [Assembly programming. Fundamentals of the software industry] (in Russian).

Naukova dumka. Kiev: Ukraine. 2009. 372 p.

3. Subriadi, A. P., Muqtadiroh, F. A. & Dewi, R. S. “A model of owner estimate cost for software

development project in Indonesia”. – Available from: https://onlinelibrary.wiley.com/

doi/abs/10.1002/smr.2175. – Active link – 27.06.2019.

4. Velykodniy, S. & Tymofieieva, O. “The paradigm of linguistic supply submission by generative

grammar assistance”. American Scientific Journal. 2017; No.17: 4–7.

5. Velykodniy, S. & Tymofieieva, O. “Reengineering Models of Linguistic Providing Software

Systems”. Advances in Quantum Systems in Chemistry, Physics and Mathematics, Ser.: Progress in Applied

Mathematics and Quantum Optics, Eds. A. Glushkov, O. Khetselius, V. Buyadzhi. FOP Panov. Kharkiv:

Ukraune. 2017. p. 385–388.

6. Velykodniy, S. S. “Problema reinzhiniringa vidov obespecheniya sistem avtomatizirovannogo

proektirovaniya”. [The reengineering problem of ensures types CAD/CAM/CAE-systems] (in Russian).

Control Systems and Computers. 2014; No.1: 57–61. 76.

7. Velykodniy, S. S. “Metodo-logicheskie osnovy reinzhiniringa sistem avtoma-tizirovannogo

proektirovaniya. [The method-logical bases of reengineering CAD/CAM/CAE-systems] (in Russian).

Control Systems and Computers. 2014; No.2: 39–43.

8. Velykodniy, S. & Tymofieieva, O. “Multilingual recording method designed for SCADA-system’s

software upgrade”. Automation of technological and business-processes. 2017; Vol.9, Iss.1: 17–22.

9. Velykodniy, S. & Tymofieieva, O. “Sposib multylinhvistychnoho perekoduvannia prohramnoho

zabezpechennia skladnykh informatsiinykh system ta tekhnolohii”. [The way of multilingual software

transcoding for complex information systems and technologies] (in Ukrainian). O. S. Popov’s ONAT

Scientific Works. 2017; No.2: 153–159.

10. Velykodniy, S., Tymofieieva, O. & Zaitseva-Velykodna, S “Metod rozrakhunku pokaznykiv otsinky

proektu pry vykonanni reinzhynirynhu prohramnykh system”. [The calculation method for indicators project

estimation in the implementation of software systems reengineering] (in Ukrainian). Radio electronics,

computer science, control. 2018; No.4: 135–142. (Web of Science). DOI: https://doi.org/10.15588/1607-

3274-2018-4-13.

11. Velykodniy, S. “Idealizovani modeli reinzhynirynhu prohramnykh system”. [The idealized models of

software systems reengineering] (in Ukrainian). Radio electronics, computer science, control. 2019; No.1:

150–156. (Web of Science). DOI: https://doi.org/10.15588/1607-3274-2019-1-14.

12. Velykodniy, S. “Method of presenting the assessment for reengineering of software systems with the

project coefficients help”. Innovative technologies and scientific solutions for industries. 2019; No.1(7): 34–

42. DOI: https://doi.org/10.30837/2522-9818.2019.7.034.

13. Afshari, A. R., Brtka, V. & Ćoćkalo-Hronjec, M. “Project risk management in Iranian software

projects”. Journal of Engineering Management and Competitiveness (JEMC). 2018; Vol.8 No.2: 81–88.

14. Blum, B. “Software engineering: a holistic view”. – Available from:

https://dl.acm.org/citation.cfm?id=SERIES9569.128915. – Active link – 24.06.2019.

15. Klein, M. “Reengineering metho-dologies and tools. A Prescription for Enhancing Success”.

[Electronic resource]. – Access mode: https://www.tandfonline.com/doi/abs/ 10.1080/10580539408964633.

– Active link – 23.06.2019. DOI: https://doi.org/10.1080/10580539408964633.

16. Boehm, B. “Software Risk Management”. – Available from:

https://link.springer.com/chapter/10.1007%2F3-540-51635-2_29. – Active link – 24.06.2019, DOI:

https://doi.org/10.1007/3-540-51635-2_29.

https://arxiv.org/abs/1901.07700
https://www.tandfonline.com/author/Klein%2C+Mark+M
http://dx.doi.org/10.1080/10580539408964633

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 203

17. Grover, V. & Malhotra, M. “Business process reengineering: A tutorial on the concept, evolution,

method, technology and application”. – Available from:

https://www.sciencedirect.com/science/article/abs/pii/S0272696396001040. – Active link – 23.06.2019.

DOI: https://doi.org/10.1016/S0272-6963 (96)00104-0.

18. Manganelli, R. & Klein, M. “The Reengineering Handbook: A Step-by-Step Guide to Business

Transformation”. [Electronic resource]. – Access mode: https://www.sciencedirect.com/

science/article/pii/S00https://journals.lww.com/jhqonline/Citation/1995/03000/The_Reengineering_Handboo

k__A_Step_by_Step_Guide.11.aspx. – Active link – 26.06.2019. DOI: https://doi.org/10.1097/01445442-

199503000-00011.

19. Jacobson, I., Ericsson, M. & Jacobson, A. “The Object Advantage: Business Process Reengineering

with Object Technology”. ACM Press. – Available from: http://eaststemcell.com/files/

storage.cloud.php?id=MDIwMTQyMjg5MQ==. – Active link – 20.06.2019.

20. Boehm, B. “Spiral Development: Experience, Principles and Refinements”. Special Report: CMU /

SEI-2000-SR-008. 2000. 37 p.

21. Hammer, M. & Champy, J. “Reengineering the corporation: A manifesto for business revolution”.

[Electronic resource]. – Access mode: https://www.sciencedirect.com/science/

article/pii/S0007681305800643?via%3Dihub. – Active link – 21.06.2019. DOI: https://doi.org/

10.1016/S0007-6813(05)80064-3.

22. Selby, R. W. “Software Engineering: Barry W. Boehm's Lifetime Contributions to Software

Development, Management and Research”. Publ. John Wiley & Sons. New Jersey. 2017. 818 p.

23. Boehm, B. “A Spiral Model of Software Development and Enhancement”. ACM SIGSOFT

Software Engineering Notes. 1986; Vol.11 Iss.4:14–24. DOI: https://doi.org/ 10.1145/12944.12948.

24. Nevlyudov, I. Sh., Velykodniy, S. S. & Omarov, M. A. “Ispol'zovanie CAD/CAM/CAE/CAPP pri

formirovanii upravlyay-ushchikh programm dlya stankov s ChPU”. [Using CAD / CAM / CAE / CAPP

when forming control programs for CNC machines] (in Russian). Eastern-European Journal of Enterprise

Technologies. 2010; Vol.2 Issue 2(44): 37–44.

25. “Unigraphics Direct Interface: Reference Manual”. Southampton: ICEM Ltd. 2014. 392 р.

26. Werner, J. “The Case for Verifying and Optimizing Tool Paths”. Irvine: CGTech. 2003. 5 р.

27. Velykodniy, S. S., Tymofieieva, O. S., Zaitseva-Velykodna, S. S., & Niamtsu, K. Ie. Porivnyalniy

analiz vlastivostey vidkritogo, vilnogo ta komertsiynogo programnogo zabezpechennya. [A comparative

analysis of the properties of open, free and commercial software] (in Ukrainian). Information Technology

and Computer Engineering 2018; No.1(41): 21–27.

28. Velykodniy, S. S., Burlachenko, Zh. V. & Zaitseva-Velykodna, S. S. “Reinzhyniryng grafichnyh

baz danyh u seredovyshhi vidkrytoi' systemy avtomatyzovanogo proektuvannja BRL-CAD. Modeljuvannja

povedinkovoi' chastyny”. [Graphic data-bases reengineering in BRL-CAD open source computer-aided

design environment. Modeling of the behavior part] (in Ukrainian). Transactions of Kremenchuk Mykhailo

Ostrohradskyi National University 2019; No.2(115): 117–126. DOI: https://doi.org/10.30929/1995-

0519.2019.2.117-126.

29. Miles, R. & Hamilton, K. “Learning UML 2.0”. O'Reilly Media. 2006. 288 p.

30. Hay, D. C. “UML and Data Mode-ling: A Reconciliation Technics Publications”. 2011.242 p.

31. Haigh, T. “How Data Got its Base: Information Storage Software in the 1950s and 1960s”. IEEE

Annals of the History of Computing. 2010; Vol.31 Iss. 4: 6–25. DOI: https://doi.org/

10.1109/MAHC.2009.123.

32. Date, C. J. “Date on Database: Writings 2000 – 2006”. Apress. New York City: 2006. 566 p.

33. Velykodniy, S. S., Burlachenko, Zh. V. & Zaitseva-Velykodna, S. S. “Reinzhyniryng grafichnyh

baz danyh u seredovyshhi vidkrytoi' systemy avtomatyzovanogo proektuvannja BRL-CAD. Modeljuvannja

strukturnoi chastyny”. [Graphic data-bases reengineering in BRL-CAD open source computer-aided design

environment. Modeling of the structural part] (in Ukrainian). Transactions of Kremenchuk Mykhailo

Ostrohradskyi National University. 2019; No. 3(116): 130–139. DOI: https://doi.org/10.30929/1995-

0519.2019.3.130-139.

34. Carroll, E. R. “Estimating Software Based on Use Case Point”. OOPSLA '05: Companion to the

20th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and

applications, San Diego: CA. 2005. p. 257–265. DOI: https://doi.org/10.1145/1094855.1094960.

35. Cohn, M. “Agile Estimating and Planning”, Publ. Prentice Hall. NY. 2005. 368 p.

36. Clemmons, R. “Project Estimation with Use Case Points”. Cross Talk. 2016; Vol.2 Iss.: 18–22.

https://mgfp23dpa03.storage.googleapis.com/MDIwMTQyMjg5MQ==03.pdf
https://mgfp23dpa03.storage.googleapis.com/MDIwMTQyMjg5MQ==03.pdf
https://www.sciencedirect.com/science/article/pii/S0007681305800643?via%3Dihub#%21
https://doi.org/10.1016/S0007-6813%2805%2980064-3

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

204 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

37. Kalnauz, D., & Speranskiy, V. “Productivity estimation of serverless computing”. Applied Aspects

of Information Technology. 2019; Vol.2 No.1: 20–28. DOI: https://doi.org/10.15276/aait.02.2019.2.

38. Velykodniy, S. S., Burlachenko, Zh. V. & Zaitseva-Velykodna, S. S. “Software for automated

design of network graphics of software systems reengineering”. Herald of Advanced Information

Technology. 2019; Vol.2 No.2: 95–107. DOI: https://doi.org/10.15276/hait.02.2019.2.

39. Boggs, W. & Boggs, M. “UML & Rational Rose”. Lori. SPb.: Russian Federation. 2008. 600 p.

40. Fauler, M. “UML. Osnovy. Kratkoe rukovodstvo po standartnomu yazyku ob’ektnogo

modelirovaniya” [UML. Basics. A quick guide to the standard object modeling language]. Simvol-Plyus.

Moscow: Russian Federation. 2011. 192 p.

41. Robinson, S. Kornz, O. & Glinn, J. “C# dlya professionalov”. [C# for professionals]. Lori. Moscow:

Russian Federation. 2005. 1000 p.

42. “Object Management Group. OMG Unified Modeling Language (OMG UML). Version 2.5”.

Object Management Group. 2013. 831 p.

Conflicts of Interest: the authors declare no conflict of interest

Received 26.04.2019

Received after revision 03.06.2019

Accepted 18.06.2019

DOI: https://doi.org/10.15276/aait.03.2019.2

УДК 004.4'2

АНАЛІЗ ТА УЗАГАЛЬНЕННЯ РЕЗУЛЬТАТІВ КОМПЛЕКСНИХ ЕКСПЕРИМЕНТАЛЬНИХ

ДОСЛІДЖЕНЬ З РЕІНЖИНІРИНГУ ВІДКРИТИХ СИСТЕМ АВТОМАТИЗОВАНОГО

ПРОЕКТУВАННЯ

 Станіслав Сергійович Великодний
 ORCID ID: https://orcid.org/0000-0001-8590-7610, velykodniy@gmail.com

 Одеський державний екологічний університет, вул. Львівська, 15. Одеса, 65016, Україна

АНОТАЦІЯ

У статті подаються заключні результати наукового дослідження з розроблення моделей та методів реінжинірингу, а

також технологій мультилінгвістичного перекодування відкритих систем автоматизованого проектування. Спільної рисою

для усіх програмних систем є те, що під впливом часу та інших невід’ємних факторів інформатизації, а саме оновлення:

операційних систем, мов програмування, принципів дії розподілених систем обробки даних тощо, відбувається еволюційне

старіння видів забезпечення. Така тенденція призводе до погіршення швидкісних, інформаційно-комунікаційних, графічних,

часових та інших характеристик, аж до повної відмови системи. Реінжиніринг – це процес, який дозволяє зручно й швидко

створювати нові, удосконалені програмні системи, використовуючи досвід попередніх програмних продуктів. Мета статті –

систематизувати результати інтеграції компонентів повторного використання, що накопичено розробниками за визначений

час розвитку галузевих систем автоматизованого проектування у оновлені програмні структури готових ресурсів. За

отриманими науковими та практичними результатами виконується аналіз розроблених моделей та методів реінжинірингу

видів забезпечення відкритих систем автоматизованого проектування. Загалом, реінжиніринг містить у собі процеси

реорганізації та реструктуризації програмної системи, переведення окремих компонентів системи в іншу, сучаснішу мову

програмування, а також процеси модифікації або модернізації структури і системи даних. В досліджені задіяні наступні

методи: складального, конкретизуючого, синтезуючого та композиційного програмування, методи породжувальних й

розпізнавальних граматик. На цей час, процес проектування нових програмних продуктів є не надто ефективним без

використання UML-методології, але при її застосуванні швидкість розробки підвищується у рази. UML, як мова графічного

опису для об'єктного моделювання, окрім простого проектування, підтримує ще й функцію генерації та реінжинірингу коду

на основі даних моделей, саме які розглянуто у поданій статті. Відмінною особливістю наведених досліджень є можливість

підтримки роботи більше десяти найпопулярніших мов програмування. При застосуванні наведених технологій вдається

автоматизувати процес перекодування компонентів програмного забезпечення та, за рахунок цього, вивільнити робочий час

програмістів від рутинного перепрограмування і зменшити вірогідність виникнення структурних помилок, що

успадковуються від попередньої системи. Використання отриманих результатів надасть значне підвищення ефективності

застосування систем автоматизованого проектування у таких галузях їх використання як: машинобудування, сфера

телекомунікацій, управління виробництвом та транспортом, освіта тощо. Розроблені моделі та методи стануть у нагоді

системним архітекторам та інженерам-програмістам, які задіяні у перепроектуванні програмного забезпечення, що вже

знаходяться у кількарічній експлуатації.

Ключові слова: реінжиніринг систем автоматизованого проектування; методологія UML; багатомовне транс

кодування; лінгвістична структура; породжувальна граматика

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186–205

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 205

DOI: https://doi.org/10.15276/aait.03.2019.2

УДК 004.4'2

АНАЛИЗ И ОБОБЩЕНИЕ РЕЗУЛЬТАТОВ КОМПЛЕКСНЫХ ЭКСПЕРИМЕНТАЛЬНЫХ

ИССЛЕДОВАНИЙ ПО РЕИНЖИНИРИНГУ ОТКРЫТЫХ СИСТЕМ

АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ

 Станислав Сергеевич Великодный
 ORCID ID: https://orcid.org/0000-0001-8590-7610, velykodniy@gmail.com

 Одесский государственный экологический университет ул. Львовская, 15.Одесса, 65016, Украина

АННОТАЦИЯ

 В статье представлены заключительные результаты научного исследования по разработке моделей и методов

реинжиниринга, а также технологий мультилингвистического перекодирования открытых систем автоматизированного

проектирования. Общей чертой для всех программных систем является то, что под влиянием времени и других

неотъемлемых факторов информатизации, а именно обновление: операционных систем, языков программирования,

принципов действия распределенных систем обработки данных и др. происходит эволюционное старение видов

обеспечения. Такая тенденция приводит к ухудшению скоростных, информационно-коммуникационных, графических,

временных и других характеристик, вплоть до полного отказа системы. Реинжиниринг – это процесс, который позволяет

удобно и быстро создавать новые, усовершенствованные программные системы, используя опыт предыдущих программных

продуктов. Цель статьи – систематизировать результаты интеграции компонентов повторного использования, накопленных

разработчиками за определенное время развития отраслевых систем автоматизированного проектирования в обновлённые

программные структуры готовых ресурсов. По полученным научным и практическим результатам выполняется анализ

разработанных моделей и методов реинжиниринга видов обеспечения открытых систем автоматизированного

проектирования. В целом, реинжиниринг включает в себя процессы реорганизации и реструктуризации программной

системы, перевод отдельных компонентов системы на другой, более современный язык программирования, а также

процессы модификации или модернизации структуры и системы данных. В исследовании задействованы следующие

методы: сборочного, конкретизирующего, синтезирующего и композиционного программирования, методы порождающих

и распознающих грамматик. В настоящее время, процесс проектирования новых программных продуктов не слишком

эффективен без использования UML-методологии, однако при ее применении скорость разработки повышается в разы.

UML, как язык графического описания для объектного моделирования, кроме простого проектирования, поддерживает еще

функции генерации и реинжиниринга кода на основе рассмотренных в данной статье моделей. Отличительной

особенностью приведенных исследований, является возможность поддержки работы десяти самых популярных языков

программирования. При применении указанных технологий удается автоматизировать процесс перекодирования

компонентов программного обеспечения, и за счет этого, высвободить рабочее время программистов от рутинного

перепрограммирования, а также уменьшить вероятность возникновения структурных ошибок, которые наследуются от

предыдущей системы. Использование полученных результатов позволит значительно повысить эффективность применения

систем автоматизированного проектирования в таких областях их использования как: машиностроение, сфера

телекоммуникаций, управления производством и транспортом, образование и др. Разработанные модели и методы

пригодятся системным архитекторам и инженерам-программистам, которые задействованы в перепроектировании

программного обеспечения, находящегося в многолетней эксплуатации.

Ключевые слова: реинжиниринг систем автоматизированного проектирования; методология UML; многоязычное

транскодирование; лингвистическая структура; порождающая грамматика

ABOUT THE AUTHORS

Stanislav Sergeyevich Velykodniy, Dr. Sci. (Eng), Associate Professor of the Department of Information
Technology, Odessa State Environmental University, 15 Lvivska Str. Odesa, 65016, Ukraine

velykodniy@gmail.com. ORCID ID: https://orcid.org/0000-0001-8590-7610.

Research field: Software Design, Software Analysis and Testing, Software Project Management

Станіслав Сергійович Великодний, доктор техніч. наук, доцент кафедри Інформаційних технологій,

Одеський державний екологічний університет, вул. Львівська, 15. Одеса, 65016, Україна

https://orcid.org/0000-0001-8590-7610

