Applied Aspects of Information Technology 2019; Vol.2 No.3: 186-205

DOI: https://doi.org/10.15276/aait.03.2019.2
UDC 004.4'2

ANALYSIS AND SYNTHESIS OF THE RESULTS OF COMPLEX EXPERIMENTAL RESEARCH
ON REENGINEERING OF OPEN CAD SYSTEMS

Stanislav S. Velykodniy
ORCID ID: https://orcid.org/0000-0001-8590-7610, velykodniy@gmail.com
Odessa State Environmental University, 15, Lvivska Str. Odesa, 65016, Ukraine

ABSTRACT

The article presents the final results of scientific research on the development of models and methods of reengineering, as well
as technologies of multilingual recoding of open systems of automated design. The common feature of all software systems lies in
the fact that there is an evolutionary aging of the types of support under the influence of time and other integral factors of
information, namely, updating: operating systems, programming languages, principles of the operation of distributed data processing
systems, etc. Such a tendency leads to deterioration of speed, information and communication, graphic, time and other
characteristics, up to a complete system failure. Reengineering is a process that allows creating quickly and easily new, improved
software systems, using the experience of previous software products. The purpose of the article is to systematize the results of the
integration of reusable component, which have been accumulated by developers over a certain period of development of sectoral
computer-aided design systems in updating the software structures of ready-made resources. Based on the obtained scientific and
practical results, the analysis of the developed models and methods of reengineering of types of support for open computer-aided
design systems is performed. In general, reengineering includes the processes of reorganization and restructuring of a software
system, conversion of individual system components into another, more modern programming language, as well as the modification
or modernization processes of the structure and data system. The study involved the following methods: assembly, specifying,
synthesizing and compositional programming, methods of generative and recognizing grammars. At present time, the process of a
new software products design is not very effective without the use of the UML methodology, but when it is applied, the speed of
development increases by times. UML as a language for a graphical description for object modeling, in addition to simple design,
supports also the function of generating and reengineering code based on model data, as discussed in the article. The distinctive
feature of this research is the ability to support the work of more than ten most popular programming languages. In applying these
technologies, it is possible to automate the process of software components recoding and, therefore, to free the working time of
programmers from routine reprogramming and reduce the probability of occurrence of structural errors inherited from the previous
system. The use of the obtained results will improve significantly the efficiency of the application of automated design systems in
such fields of their use as: mechanic engineering, telecommunications, production and transport management, education, etc. The
developed models and methods will be useful to system architects and program engineers involved in redesigning software already
being in their multi-year operation.

Keywords: CAD Systems Reengineering; UML Methodology; Multilingual Transcending; Linguistic Structures; Generative
Grammar
For citation: Stanislav S. Velykodniy. Analysis and Synthesis of the Results of Complex Experimental Research on Reengineering of Open
Cad Systems. Applied Aspects of Information Technology. 2019; Vol.2 No.3: 186-205. DOI: https://doi.org/10.15276/aait.03.2019.2

INTRODUCTION years. Of course, when updating the design

The main goal set before the computer-aided
design (CAD) for any purpose is to reduce the
design time of the object and reduce the personnel
required for this design, and as a consequence, the
cost of the finished design object.

The common feature of all CADs is that under
the influence of time and other inevitable factors of
informatization (upgrades: operating systems,
programming languages, principles of the operation
of distributed data processing systems, etc.) there is
an evolutionary aging of the types of CAD
maintenance. This tendency leads to a deterioration
of speed, information and communication, graphic,
time and other characteristics, up to the complete
system failure.

Hence, it follows that the CAD should be one
that develops. According to the world tendencies of
development, CAD relies on a life cycle of 3-4

© Velykodniy, S., 2019

object — CAD is also updated. At this stage, the
question arises: what to do when the system is
tightly tied to the design object? There is one answer
to this question: it is necessary to apply
reengineering on the CAD.

CAD reengineering is the evolution of the
system through radical change in order to increase
the usability, maintenance or change of its functions.
It includes processes for the reorganization and
restructuring of the CAD, a transfer of individual
components of the system to another, more modern
programming language (PL), as well as processes
for updating or modernizing the structure and data
system. In this case, architecture the system may
remain unchanged.

CAD reengineering is a target for obtaining a
new component by executing a sequence of
operations for making changes, upgrades or
modifications [1], as well as reprogramming

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/deed.uk

186 DOl:https://doi.org/10.15276/aait.03.2019.2

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

individual components of the CAD. It is
implemented by a set of models, methods and
processes that change the structure and capabilities
of components in order to obtain a module with
updated capabilities. New components are identified
by the names that are used when creating component
configurations and frameworks of CAD [2].

From the technical point of view, reengineering
is a solution to the problem of CAD evolution by
modifying its components and adapting the
architecture to a new environment [3], in which
components are placed according to the
configuration of the operating system. The reason
for the evolution may be the change of the PL of
CAD (for example, outdated: Fortran, Cobol or even
C, etc.) with the transition into modern object-
oriented languages (Java, C #, Python, etc.).

The goal of the article is to systematize the
results of the integration of reusable component
(RUC), accumulated by developers at a specified
time of the industry CAD development, into new
program structures of finished resources.

GOAL SETTING

One of the main tasks of modern programming
is the creation of theoretical and applied foundations
for construction of complex programs with simpler
program elements that are written in modern PLs. In
fact, solution of this problem is accomplished by

collection, combination or integration of
heterogeneous software resources and RUCs,
including modules and programs for the

implementation of a particular domain.

Linguistics, which studies language laws,
models and rules, is a scientific basis of any
language (including the programming language).
Generative linguistics, which was founded by
Avram Noam Chomsky (in the Soviet times,
sometimes was interpreted as “A. N. Khomsky”),
who created the revolution in language studies, is a
special branch of linguistics that should be used in
the structure of programming languages.

By way of the task of correct chains, formal
grammars are divided into generative and
recognizing. The generative grammars include those
ones by which it is possible to construct any correct
chain with an indication of its structure and it is
impossible to construct any wrong chains. For the
first time, the notion of generative grammar was
proposed by A. N. Chomsky. Recognizing grammar
is a grammar that allows to establish the correctness
of an arbitrary chain and, if it is correct, to find out
its structure. Formal languages include, in particular,
artificial languages for communication between the

operator and the computer (programming
languages).
The lingware of CAD considers the

construction of a software system with one or more
(mutually agreed) PLs, each of which is based on the
rules of a particular grammar and is considered by
the author of the presented article in [4] and [5].

The problem of CAD reengineering of various
industrial purposes has been discussed in detail in
[6]. The methodological principles for the CAD
reengineering have been laid down in [7]. Problems
of methods formation for conversion of software for
various software systems, for example, SCADA-
systems, was considered in [8].

Generalization of the stages of reengineering of
complex information systems and technologies is
given in [9]. Formation of the method for calculating
the indicators of project evaluation in the
implementation of reengineering software systems is
presented in [10]. Models and restrictions on the use
of reengineering on software systems are identified
in [11]. The method of presentation of an estimation
of reengineering of software systems using project
factors is formed in [12].

ANALYSIS OF RECENT RESEARCH
AND PUBLICATIONS

At present, there is a large number of software
that performs a large number of specialized tasks.
Some of them are tied to only one branch of
industry, while others are used in large numbers, but
the trend goes through the specialization of software
products in general [13].

Corporations that develop CAD, design a lot of
specialized software products, for example -
AutoDesk. They have a complete set of programs for
work with engineering structure (Inventor),
architecture (ArchiCad), design (3dMAX) and design
in a broad sense (AutoCad) [14].

Thanks to powerful computational tools in the
CAD using integrated modules containing banks and
databases (DB) of ready-made design solutions, it is
possible to quickly make adjustments to the necessary
parameters of products (sizes, form, order of
processing, etc.), which are manufactured; as well as
to the sequence of technological operations, that is to
reorient the whole production process [15], [16].

Such a reorientation (in the broadest sense) of a
CAD from a database can be defined as
reengineering of information provision [17].

Reengineering includes processes of
reorganization and restructuring of the software
system [18], the conversion of individual system
components into another, more modern

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

187

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

programming language, as well as processes for
updating or modernizing the structure and data
system [19].

The methodology outlined in [20] is useful as a
basic trajectory of research. Principles [21] and
studies in [22] have suggested practical aspects of
reengineering models [23].

One of the important components of the CAD is
the computer graphics, which is a collection of tools
and techniques through which input, transformation
and output of graphic information from specialized
environments are carried out [24].

Computer graphics is an actual branch of design
and application of computing systems that are
intensively developing in recent times [25]. The term
“computer graphics” means computational processing
of information, as well as the output of results in the
form of various graphic images. The data necessary
for results displaying in a graphic format is created
based on graphical information [26].

Particular interest in computer graphics has
become apparent in connection with the intensive
development and introduction of currently free and
open CADs not only in engineering, instrumentation,
radio electronics, interior design, but also in other
areas of production and training [27].

One of such CADs is BRL-CAD, a specialized
cross-platform open source system. It represents a
powerful 3D CAD for solid modeling using CSG
methods. This CAD includes an interactive
geometric editor, parallel beam tracing, rendering,
and geometric analysis [28].

BRL-CAD was developed for about 40 years
and has been used by the US armed forces. The
entire BRL project works from the source code, thus
it can be used on any platform: GNU/Linux,
MacOS, Solaris, and Windows.

Here are some definitions of open source
software and their design technologies.

Source code (usually just “crumbled”, also
“sources”, “program code”, “text of the program”) —
any set of instructions or announcements written in
the programming language and in a human-readable
[29]. The source code allows the programmer to
communicate with the computer with the help of a
limited set of instructions [30].

Program source code is a set of files that are
required to convert from a human-readable form to
some types of computer executable code [31]. There
are two possible ways to execute a source code:
compiling into a computer code using a compiler
(designed for specific computer architecture) or

executing directly from the text with the help of an
interpreter [32].

One of the first CADs, capable of developing in
both these areas, appeared because in 1979 the US
Army Ballistic Research Laboratory (BRL), now the
United States Army Research Laboratory, expressed
a strong need for instruments and tools that could
help in computer simulation and engineering
analysis of weapons systems (tanks, rockets,
airplanes, etc.) and their working conditions [33].

When none of the CADs existing at that time
appeared to be ready for this purpose, BRL
developers began to collect a set of utilities capable
of interactively viewing and editing geometric
models trees. Programmers began to develop their
own suite of applications that were designed to
display, edit and combine geometric models. In this
way, the BRL-CAD, the application package for
Constructive Solid Geometry (CSG), was created.

The first public release was made in 1984. In
December 2004, BRL-CAD became an open source
project. It is very important that BRL-CAD is
licensed under the terms of BSD and GNU GPL.

From now on, this CAD has been constantly
evolving, and new opportunities have emerged, but
now the very linguistic provision of the database
submission (C language) in the BRL-CAD
environment requires the transfer (reengineering) to
high-level languages (C or C#).

Today, thanks to about a million lines of C
code, BRL-CAD has become the most powerful
graphical modeling package that has been used by
more than 2,000 organizations around the world.

METHODS OF RESEARCH

The following methods have been used during
the research:

— method of assembly programming, which
explores the program elements, which are completed
with modules, objects, components, services, etc.;

— method of concretizing programming, used
in the presence of some universal software;

— method of synthesizing programming, which
is used from setting of problem, which is formed as
a model of calculation and specification of the
program for solving the set problem;

— method of composite programming, used in
the organization of functions and data in software
systems;

— method of assembly programming, used in
the presence of a bank of modules and components
of reuse;

188

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

— method of Chomsky’s generative and
recognizing grammars that are wused in the
construction of linguistic chains for formal
programming languages.

MAIN MATERIAL OF THE ARTICLE

The most important action for skeletal structure
and reengineering is the creation of two diagrams
[34]: class diagrams and component diagrams. It is
from them that the code of the future software
product [35] is generated. All other diagrams have
an auxiliary (relief) role [36] and should be used at
someone’s own discretion.

The implementation of this phase depends on a
technical specification and modern market
requirements, built in the so-called top-list of the
most popular programming languages, which
include: Java; C#; C++; PHP; Python [37] and more.

The choice of a CASE-tool depends on the
user's preferences. According to the author’s opinion
[38], the most optimal CASE-tool that supports the
import and generation of code written in the
languages mentioned above is Enterprise Architect
(EA). It is EA (version 14.0) to be considered by us
as an effective transcoding tool.

Proceeding from the problem, in the selected
simulation environment, there should be a lot of
possibilities in addition to the standard set of
diagrams (15 pcs.), it is necessary to carry out
efficiency analysis, which is business diagrams,
synchronization diagrams, etc.

In one of the most well-known environments,
Rational Rose, business diagrams and all subsequent
metrics are not implemented effectively [39]. At the
moment, there are few CASE-tools that support the
correct code generation in many languages,
especially if you do not count on the language itself,
and a software product that is developing in this
direction and has the best prospects for learning. The
convenience of work and the simplicity of the
interface were equally important. Of course, in terms
of interface simplicity, EA fails to keep pace with its
counterparts, but it is completely overlapped by its
efficiency [40].

PROCESS OF CODE GENERATION

UML, as a language for the graphical
description for object modeling [41], supports, in
addition to simple design, generation and
reengineering of code based on model data. As noted

earlier, code generation occurs from two diagrams —
class and components.

The component diagram serves as a convenient
link for us to connect classes and entire packages
that consist of similar modules. In the EA CASE-
tool, the component diagram does not have a direct
effect on code reproduction from the model, it only
performs auxiliary functions. Very revealing is the
fact, that when creating a complex software product,
it is not very convenient to reproduce a separate
class diagram, so further binding to the component
diagram consists precisely from the transfer of the
“Class” type modules to this diagram.

Therefore, in the EA software product, there is
such a convenient type of component, called
“Packaging Component” — this component has a
wide internal structure in the form of another
diagram. This internal diagram was created precisely
for the convenience of working with modules of the
“Class” type, but the possibilities of EA allow us to
create diagrams of any type there (if to investigate
the methodology in detail, it is quite convenient
because, for example, you can show the structure or
methodology of business diagrams) When you
create this component, a new component diagram
automatically appears inside it, which is very
convenient to load class modules. All modules that
will be created or moved to this diagram are
automatically tied to the component in which they
are located.

To generate a code, we will open a physical
location of modules of the “Class” type on the
screen, and then select all the necessary modules that
we want to play. Next, we indicate the location for
each element being created, and step by step we will
complete the generation (Fig. 1).

In essence, this process of code generation is
complete. However, how the skeleton structure of
our software product is related, it depends on what
types of communication and which variables,
operations, and attributes are specified in the class
diagram. It should not be forgotten that this is only a
general basis (template) for the code, all the main
code and processes must still be written by
programmers (Fig. 2).

The convenience of such a generation consist in
a general form structuring, the assistance in the
distribution of template tasks between programmers,
and almost complete exclusion of the problem of the
incompatibility of modules, because the entire
structure is already connected initially.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

189

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

» 5
@ Start Page IEE'CIass Model =
i ez |
Class1 <f Generate Code x
ot int =foy Ptk
¥ Metnod 100l 4 D:hJokropekasydmikaumtOHM S HAITA03_20194Class . java =]
e M Gi
/ Target language Details
Classz Class3 Ce M el
e o
+ Method2(: void + Methad3(: void
Irport(s] # Header(s] -Elnse
T
Fig. 1. Process of code generation
Source: compiled by the author
’Classl.java x I
wEE b= | [& |l |e2

N RN

2 /4 Classl.java

34/ Implementation of the Class Classl

4 /¢ Generated by Enterprise Architect

5// Created on: 29-Yep-2019 13:52:46

6// Original author: Rys

VELLGEETEE TSI E SRR

=

S using System;

10 using Systemw.Collections.Generic:
11 using 3ystem.Text;

12 using System.IO;

13

14 public class Classl {

15

16 private int Attrl;
17

15 public Classli{){
19

20 }

21

2z ~Class1(){

23

24 }

25

26 public woid Methodl{){
27

& }

Z9
30}/ /end Classl

Fig. 2. Generation result
Source: compiled by the author

DECOMPOSITION BRL-CAD SOFTWARE
INTO COMPONENTS

Class Diagram

In order to create new software based on the old
one, you need to analyze the structure of the primary
software product. The structure of BRL-CAD is
presented as program code in C language and is
divided into a large number of modules, each of
which contains one or more classes interrelated or
related to other modules. In addition to each module

understanding, the individual task is to understand
the relationship between classes and make a
coherent presentation. Since this is a direct work
with the code, we will represent the structure on
diagrams created especially for this: the diagrams of
classes and components.

The very general class diagram for the primary
software product is to be compiled first, so that it is
rather difficult to compose the immediately
connected diagram of the classes and components in
terms of the complexity of the work, while, as

190

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

experience has shown, the effectiveness of such
action does not exceed the time costs for work with
individual diagrams. That is, when decomposing any
product, the best decision will be decomposing into
components, while, when generating a new product,
it is better to create an exact and complex
interrelation.

To begin with, we need to find a “generalizing”
module (if, of course, it is present). Module, in
which all the main working submodules are
represented, is called generalizing. This kind of
representation is almost always used in the work of
open source software products for more
understandable and rapid parsing and further
modification of the code. It was decided to adhere to
this rule, and since it is precisely the same as
building an open source code, then you need to
structure the code as best as possible, that is to make
it “clean”.

In BRL-CAD, the entire C programming
language is located in the “incude” folder. Open the
file “brlcad.h”, which is our “generalizing” module
and see what kind of connection it has:

* system headers presumed to be available
* basic utilities */
* vector mathematics */
* non-manifold geometry */
* basic numerics */
* database format storage types */
“ raytrace interface constructs */
* trimmed nurb routines */
the write-only database
interface */
/* in-memory representations of
database geometry objects. these

* are subject to change and should not be
relied upon.
/* database object functions.

IEIEIEIEESS

Tibrary

the

There is a connection of submodules
responsible for certain operations here. Moreover, as
we have already mentioned above, even explanatory
comments are provided for improving the
convenience of working with the code.
Consequently, it is from here that the generation of a
new structure will begin. Each submodule represents
a whole set of files with related classes associated
with them, so all of these files will be presented as
“Interacting Packets” in the easiest way on the
diagram.

When creating the first package, which is called
“include” (in the name of the folder where the entire
executable code is located), it is proposed to select
the type to be used in the subsequent, internal,
diagram (Fig. 3).

MNew Diagram @
Name: Packagel Auto
Type
Select From: - Dimgram Types:
(@ UML Stuctural
lig UML Behavioral 73 Class
lgi Bxtended 22 Object
g Archimate ﬁ Composite Structure
gy BPMN 1.0 35 a8 Componert
|G SoaML %5 Deployment
(g BPMN 1.1
ligi Data Flow Diagrams
ligi Eriksson-Penker Exdtensions
Entity Relationship Di UML Package Diagrams describe the organization of
‘@ i ';YM © .\nns b Hiagiam packages, their elements and their comesponding
: indlflapping relationships.
SOMF 2.0 -
[ok][cencel |[Hep |

Fig. 3. Selection of the diagram type inside the
package
Source: compiled by the author

Since all subsequent modules will be separate
(interacting only at the data package transmission
levels) classes of relationships, it is more likely to
create them in the form of the same packages. When
creating these packages, you must again select the
type of diagram that will be used internally. Next,
choose a class diagram, so the interaction inside
these modules already takes the form of classes with
their operations and attributes. After adding all the
major packages, the project browser looks like it is
shown in Fig. 4.

Project Browser X
B =% w B-E- 1+
= L Model

5 B Class Model
Qg Class Model
> £

- Bp structure

- [_] bn.h

-] bu.h

-] common

- [_] db.h

-] nmg.h

- |_] nurb.h

- || raytrace.h

-] rfunc.h

-] rtgeom.h

-] wmath.h

-] wdb.h

Eﬁ Project Browser @ Resources

Fig. 4. Project browser after adding packages
Source: compiled by the author

Now when the main structure is complete,
proceed in particular to each package, with its
breakdown by classes and interconnections.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

191

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

Relations between packages will be considered after
their internal structure is determined.

Let's start with the packages. The first package
is called “bn.h”” and on the hard disk it is represented
by a single file with the same name. The first thing
to do is to restore its structure using the command
“Import C File” from the “Source Code
Engineering” graph.

In the end, we get the result, from which it is
evident that just one class has recovered, which is
strange. The file we tried to recover was not fully
read, as evidenced by the error graph. The report
window was also opened (Fig. 5).

Reverse Engineering Progress @

Curment Action

—importing C:\Program Files (x86)\BRL-CADY.18.DNinclude \bn h

There was an emor parsing C:\Program Files (x86)\BRL-CAD\7.18.0%ncludebn h on line 154. Unexpected symt|
Adding: Class -bn
Adding: Class - bn_tol

Resolve relationships:

—felationships for b

—relationships for bn_tol

~linking with existing attibutes

—fesolve generalizations

—resolve realisations

Complete!

4 T F

Close

Fig. 5. Reverse engineering report
Source: compiled by the author

In it, we see that besides reproduction of this
class, all the possible types of connections are
reproduced in the same way and all types of
relations are restored. However, this is not enough,
so when we open the window of the physical file of
the code location, we see that there are many more
classes there. The very first difference that arrests
attention is that the class played on the screen is the
only one that defines some variables, while all the
following use the #define command, which serves to
declare any constant. This constant can be taken
from other modules.

The file that we are interested in consists
mainly of constructs such as:

a) Struct bn_tol — class declaration;

b) BN_EXPORT BU_EXTERN (void

anim_tran, (mat_t m)) — process declaration;

c) #Define bn_cx_add (ap, bp) {(ap) ->re + =
(bp) -> re; (ap) -> im + = (bp) -> im;} — declared
constants.

Since we are not satisfied with the results of the
reverse engineering, we have to complete the
analysis on the diagrams manually. To do this, we
need to understand what exactly to look for in the
files. First of all, of course, the declared classes and
their variables are of interest, the general structure
and the shape of the diagram depend on it. After the

classes and variables are recreated, it is necessary to
take on the processes that the given classes will take.

The process of reproduction of a full-fledged
structure up to each variable is not necessary, in the
reengineering it is important to understand the
process of software modules work and to make the
most understandable scheme, which will be
convenient to work not only on someone’s own, but
also to explain the principles to the programmers
who will reproduce the new modules. Therefore, we
will not specify many small classes and processes or
we will combine them into larger diagram processes.

The example of a schematic association of
processes.

The program code contains many small
processes with explanations such as:

BN_EXPORT BU_EXTERN(void anim_dy_p_r2mat,
(mat_t m,
double v,
double p,
double r));

kLR

* @brief Make a view rotation
given desired yaw, pitch and

matrix,

roll. (Note that the matrix 1is a
permutation of the object rotation
* matrix).
BN_EXPORT BU_EXTERN(void anim_dy_p_r2vmat,
(mat_t m,
double yaw,
double pch,

double ri11));

EE

@rief make a _ rotation matrix
corresponding to a rotation of "x")
* radians about the x-axis, "y" radians

about the y-axis, and then

z" radians about the z-axis.

The comments clearly indicate: what each
process replies for (once again remember that this is
one of the conveniences of working with open
source software, although this convenience has a
number of shortcomings). In our example, these
processes are responsible for rotation of the selected
object in the given coordinate system: X, Y, Z, under
which it is monitored, any deviation.

In the diagram, we generally call this a Rotation
process and will not go into details, because at least
later, when working with programmers we will have
to develop a new model, taking into account the
specificity of the programming language. By doing
this, we will facilitate and reduce the process of
developing the diagrams, because there are more
than thirty such processes in one such “bn.h” file.

We begin to construct the diagram, taking into
account combination of non-essential classes. Let's
show the stages in detail on one of the classes
(Fig. 6; Fig. 7):

192

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

struct bn_unif {
unsigned long magic;
Tong msr_seed;
int msr_double_ptr;

double *msr_doubles;
int msr_long_ptr;
Tong *msr_longs;};

#define BN_CK_UNIF(_F)
BN_UNIF_MAGIC, “bn_unif”)
#define BN_CK_GAUSS (_p)

BN_GAUSS_MAGIC, “bn_gauss”)

BU_CKMAG(_p,

BU_CKMAG(_p,

The final representation of the class diagram for

the file “bn.h” is shown in Fig. 8.

bn_unif Attributes: msr_duuble_pt_r- TR TY YT ﬁ

General | Detail I Constrairts I Tagged Values |
MName:
Alias: [l Derived [7] Static
Type: int + [[[JPropety [|Const
Scope: | public -
Stereotype: - [
Containment: Mot Specified -
Initial: &l
Notes: B I UM 2= ¥ %@
-) Coom) o
Mame Type Initial Value

¥ magic unsigned long

i “msr_doubles double

W msr_longs long

i@msr_double_ptr irt

wmsr_long_ptr it

iwmsr_seed long

’ Close] [Cancel] [Help

Fig. 6. Filling in the attributes of bn_unif class

Source: compiled by the author

class bn.h /

bn_unif

magic: unsigned long
*msr_doubles: double
*msr_longs: long
msr_double_ptr: int
msr_long_ptr: int
msr_seed: long

Fig. 7. Final representation of bn_unif class
Source: compiled by the author

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

193

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

class bn.h /

bn_table

+ magic: unsigned long
+ nx:int

bn_poly

o

bn_multipoly : int

cf[BN_MAX_POLY_DEGREE+1]: double

dgr: int
magic: unsigned long

bn_unif

+ + 4+ + 4+

magic: unsigned long
*msr_doubles: double
*msr_longs: long
msr_double_ptr: int
msr_long_ptr: int
msr_seed: long

L

«structy»
bn_tol
+ dist: double bn_complex
+ dist_sq: double —
+ magic: unsigned long + im: double
+ para: double + re: double
+ perp: double
bn_multipoly
+ **cf: double
+ dgrs: int
+ dgrt: int
+ magic: unsigned long
Processes

+ assignments() : void
+ renaming variables() : void
+ structuring variables() : void

bn_gauss

*msr_gauss_doubles: double
*msr_gausses: double
magic: unsigned long
msr_gauss_dbl_ptr: int

bn_tabdata

msr_gauss_ptr: int
msr_gauss_seed: long

+ o+ o+ o+ o+ o+

+ magic: unsigned long
+ ny: int

Fig. 8. Class diagram for “bn.h”

Source: compiled by the author

It should be taken into account that this diagram
is not a complete reflection of the entire file,
therefore less significant classes take a lot of space,
but they are not essential in the reflection. The same
applies to processes — there are more than two
hundred of them, while they only announce or
structure the data, so they are schematically
displayed, but due to the fact that each class is
inclined to influence any processes, it is necessary to
show it on the diagram (Fig. 9).

“Association” is chosen as communication,
because this communication carries information
about the relation between objects within the
software. Associations can be specified and display
which class is it and how it is related to others.

Project Browser

BlEaiE m B-E- +F

H

-
- |_] common

- [db.h

bn.h

%g bn.h

bn_complex
bn_gauss
bn_multipoly
¢ ~cf

y dgrs

g dgrt

magic
bn_poly
bn_tabdata
bn_table
wstructs bn_tol
brn_unif

bu.h

m

Iﬁ Project Browser @Resaurces

Fig. 9. Diagram in the form of a browser
Source: compiled by the author

194

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

After completing the analysis of the first file
called “bn.h”, the last step in working with it is to
show the connection of this “package” with others.
At the beginning of the file, there are the following
lines:

/* interface headers */

#include “bu.h” /* vrequired for
BU_EXTERN, BU_CKMAG */

#include “vmath.h” /* required for mat_t,
vect_t */

This entry indicates that we have a relation with
other packages included in this diagram, so this link
should also be displayed. It is necessary to use the
type of connection “dependency”, so the execution
of mathematical and other functions in the file
depends on these two connected components. As a
result, in the package diagram, this will look the
same as in Fig. 10.

pkg structure J

Fig. 10. Relationship of “dependence” between

packages
Source: compiled by the author

In some cases, the relationship between classes
can be neglected because the work with them is at
the presentation level of the files (packages), which
means that access to the class from the “bmath.h”
file will not occur from the inside, but from the
outside, for example from the “bn.h” file. Similarly,
in some cases, the links will be displayed in the title,
for example, the relationship between super- and
child classes (Fig. 11).

That is, the “rt_revolve_internal” class is the
descendant of the “rtgeom” class.

At this stage of the study, the “bu.h” and
“vmath.h” packages are not yet filled with classes
and functions, so their reflection, so far, is purely
schematic.

Thus, it was investigated how to restore files
from C language manually. All files in this software

project were considered similarly to display the
complete diagram (Fig. 12).

class rtgeom.h ~

«struct»
rtgeom::
rt_revolve_internal

ang: fastf_t

axis2d: vect2d_t
axis3d: vect_t
magic: unsigned long
r: vect_t

v2d: point2d_t

v3d: point_t

R

«struct»
+ sk rt_sketch_internal*
+ sketch_name: bu_vls

Fig. 11. Descendant class
Source: compiled by the author

Component diagram

Component diagram is the second diagram that
participates in generating the code of the future
software product and for this purpose it should be
associated with the first diagram — a class diagram.
We will analyze a component diagram for the
primary software product according to the classical
canons [42], with a breakdown into 3 parts:

a) deployments that ensure the direct execution
of the system'’s functions — such components may be
shared libraries with the “*.dII”” extension;

b) work products are usually files with source
code programs, for example, with the extension
“* h” for the C language;

c) executive, representing modules with the
extension “*.exe”.

In the first step, not so much the program code
is necessary as the physical location and the overall
software architecture (Fig. 13).

There are 4 folders in this structure in addition
to executable files (“archer” and “brlcad”). The
“bin” folder contains the main and auxiliary “exe”-
files that run separate modules (the specifics of a
software product: each module does not integrate
into the interface but connects to a separate
window).

The folder “include” contains a work product -
files with texts in “C” programming language. The
folder “lib” contains the library files, and the folder
“share” contains text documents with descriptions,
license agreements, pages on the Internet, generally
auxiliary files.

Having considered this structure, you can
already build a “skeleton” of the diagram and it will
look like on Fig. 14.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

195

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

[rthemcn | bk
Q + e % +|‘Ih7m=
[=] + exported_pipept
{from indude) T~ ~ E *"‘!"'-
: S fﬁnmlndnﬂe’\
: T I — [€ stmmtar meary
Cr i T~ — — P
[] + bn_comptex | T~ :::—::: || +most
I e | Tl e e e
+ bn_paoly = LU= | __
% +bn tabdata | r == [=] + bu_mapped_fie ===
Q + bn_table | _ = Q + bu_shuctpars
[+bn_tol = . : P //7Q+pmnes=s
|=] +bo_unir T 1 - - || + struct
e ~< T - [+ et y
Z rom ipdude) - L P —_’___—l - - %,.{'b..ma&} - z
e ! \\/”-"’“‘] +wdn -7 ! S e T trom fchsde)
P ! =X i [+wdb_metabanpt P " \\ s ’«‘ }
// — - \\ } - ! N e / |
- | \ ! . = N 4 I
[e=m] - } \ ! L rﬁvmmd:l:!l«\ ~. ! o J i
% :::......,m....;— : \\ : // - - \\ AN “ f // \\\ ff :
[£] *+ pe_pe_m= f““-k_‘_j“ \\ : ////// \\\ \\\ ‘I /// \\\ I’/ F
(frominciude) : = — | meviraceh \\ ‘-5—‘4| \\ ,/f i
=) R e | T *i‘?%ffﬁgfzm A
::::_mw_imnll B : f“""rl"'"‘"‘k.l A - 'v\‘ -~ t, \\\ :
: f \\ \\,,”/’ \\ Mm.ﬁ{“’ T ‘fl \\ :
tfrominciude) : f' _ _\&\’ - N \\\ \,\ ‘:,{\ - \\ i
e — TN N B —
= == lx \\ \\ ~ \\\ l\\ .'/ ;mp
- I A A ST U T e
= ! N S N 3 / .
ifrom include) == T .__,i N . \\ ‘i /" #rominciade)
T~ N ~ \ \ i
-~ N \\ N\ \ /
\“\‘\ \\\ S R /:‘
+ =anenymous ~~ \AAL_‘
W e e S
|| + <anonymous>- =] +numn 7__—__ﬁ__ﬁhg+s'zz_t
=
[5] + nme_stmat_count= {from inciude) =
(from include) ffrom inciude)
Fig. 12. Full diagram of project packages
Source: compiled by the author
e The next step in working on this diagram is to
include fill the packets with data. Let's start with the most
lib important package — “include”, which contains
| == executable files.
archer 5 - - -
& bricad Let’s rebuild the structure inside the folder and
B8 uninstall bind the entire class diagram to it. Since all

Fig. 13. Physical location of the application

Source: compiled by the author

cmp Component Model
bin
L
-
~
_
- -
7 v [incluge |

wexecutables | e —— — — — — —— — — —
uninstall.exe

executable files are written in C language, that is, in
one format, then we will not create a large number
of components — we limit ourselves to one. We will
name it the general name “Source code” and indicate
in the specification that it is the language “C” and
then we bind the class diagram, which contains the
entire code of the component.

The overall sequence is:

a) in the project manager, choose a diagram
containing the required classes;

b) find the component to which the diagram
will be attached;

c) transfer the diagram to the batch component.

At the moment of the transfer, the following

process takes place: the diagram itself goes into the
component hierarchy, and all classes remain in the

Fig. 14. Primary structure
Source: compiled by the author

old place, in their subdivision of the diagrams
(Fig. 15).

196

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

The convenience of such a structure is that the
diagrams have been connected, that is, the transition
to a class diagram can be done only through a
dedicated component, but the classes themselves
have not moved, which has greatly facilitated
readability, and in the future, a change in the
structure.

All major modules have been upgraded and
only some of the details have to be completed, so the
folder besides the code contains another folder with
configuration files that directly affect the code.
Therefore, we will create a folder called “config”,
fill it with the components of the corresponding file
and continue to divide the links in the data packet
(Fig. 16).

In the “config” folder, the files do not interact
with each other, so internal connections are not
required, but in general, each of these files interacts
with the component “Source code”, which means
their connection. It remains only to determine the
type of connection.

In any of the files in the “config” folder there is
a set of numbers to which executable files are
referred, that is, when changing the number, the
code itself changes. For this kind of interaction,
there is a special type of connection, called
“dependency”. Therefore, we will place it on the
diagram, indicating that the “Source code” batch
component depends on the “config” folder (Fig. 17).

In the same way, we implement other 3 folders
on the diagram — “lib”, “bin” and “share”. However,
there are some differences. In the “lib” folder, there
is a huge amount of libraries, each of which can be

Project Browser

ERERRERETRNE R =R o
= g Model i

= |Eld Class Model

=)] include

BP0 structure

-] € standard library

-] bn.h

-] brep.h

- [buh

-] commeon.h

-] db.h

-] db5.h

-] nmg.h

-] nurb.h

- pch

- [raytraceh

-] rfunc.h

-] tgeom.h

-] vmath.h

-] wdb.h

= [&] Component Model
a8 Component Model
+] Internal Structures
[bin
- 1 include

m

g Oy s O O s s s T Oy

X Project Browser >

EE Project Browser @ Resources

EE Project Browser @ Resources

represented as an independent component, but it can
be done only manually and it takes a lot of time, so
let's go by the path of least resistance — transferring
all the libraries to the diagram as “artifacts”.

Artifact is any artificially created element in the
system. Artifacts can be any type of file, even
elementary pads, quite apart from code files and
libraries. In this case, it would be entirely justified to
apply structuring exactly in this way, but even
though such a move makes it easier to work, you
need to specify a type, or as it is called in UML, a
stereotype of the file (Fig. 18). Reproducing each
artifact, we set its specification.

After playing the modules in the diagram, we
set up the links between them. As it was seen from
Fig. 13, the folder contains the “Uninstall.exe” file.
If it is activated, then the uninstallation of the CAD
occurs, that is, this file affects every other physical
(and not only) location of the software system.

As a result, all other folders and files are
associated with this component as a “dependency”
connection. All we have to do is to link our main
packages. Therefore, the “bin” package is a folder
with the main and auxiliary “exe” files, and two
other packages — “lib” and “include” (libraries and
executable files with code) “realize” the “bin”
package. For this, there is a special type of
connection with the similar name “realize”.

Now the packages are recreated, the links are
also binded to the class diagram executed. The result
of the work in general is shown in Fig. 19.

it W BB+

-] brep.h -
- buh

-] common.h

- [db.h

- [db5.h

-] nmg.h

+
+ | nurb.h
B

- [peh

- [raytraceh

-] rtfunc.h

-] rtgeom.h

-] vmath.h

-] wdb.h

= [@] Compeonent Model
a8 Compenent Model
+ 1 Internal Structures

. [bin

= | include

. &8 include

- [conf

g

BP structure

- [lib

i gl wexecutables uninstall.exe

m

Fig. 15. Changes in project manager
Source: compiled by the author

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

197

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186-205

cmp conf /
FILE
gl CMakeLists ‘_‘1
:li:;‘:l' afile» «file»
COUNT BricadConfig tmpl
ascnpts
make
Enles «files «iles
DATE MINOR PATCH
«file» «filex «filen
USER MAJOR PATH
Fig. 16. Presentation model of the “config” folder
Source: compiled by the author
cmp include
conf
-] + CMakelists
E + BricadConfig.tmpl
E + COUNT
Componenti % * 2?)15‘;5'
+
T E] + MAJOR
E + make
E + MINOR
E + PATCH
E + PATH
E + USER
Fig. 17. Interaction within the “include” folder
Source: compiled by the author
198 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

START DESIGN LAYOUT PUBLISH COMNFIGURE COMNSTRUCT CODE SIMULATE EXECUTE EXTEND
— N Cenerate - p— p—
/\{jD |,7>} e 5 [EY Generate All [= # R = =
Window Scripting D |§
’ e Properties
Show Tod General table.tcl
= Rules Stereotype: script library
M Requirements
of)
Companent ;Dnsm-amts Stafus: Proposed -
CEnarios .
¥ L | i= = & .
B4 Package =- Related BIruUuZ EESEE Y Alias:
. Files
&) Packaging Compor Links Stereotype for table.tcl X Kepwards:
£] Component
B cass Stereotypes Author: Rys -
=& Interface Profile: EALIML = Complesity: | Easy -
B objec
o Port Stereotypes A Anplyto Language: s -
T Expose Interface F Audi.ledCheckhsl arl?facl - \ersion: A
T [BPSim artifact
D‘-:ncument o [] BPSimCustomP epart artifact Phase: 1.0
- [] BPSimRepart artifact
Component Relationsh Checklizt artifact
Common [] database connection artifact
Artifacts [EAMatrixSpecification artifait Package: Class Model
[E&RepartSpecification artifact
[] E&UserStary dacumentartifact Created 29.06.2019 16:31:19
S EGAE - Modfied: | 25.06.2019 16:31:19
Main EEGTELERELH

Fig. 18. Stereotype and program profile selection
Source: compiled by the author

DISCUSSION

The present article summarizes the process of
reverse engineering on the example of the open
BRL-CAD. The study has been carried out using the
UML methodology using Enterprise Architect
CASE-tool. The UML methodology is quite
voluminous and the project has considered several
diagrams that are used to design a new product.

The main focus was on the class and
component diagrams. This is due to the fact that the
code generation and subsequent work of
programmers will occur directly from these
diagrams, while other auxiliary diagrams serve only
to explain complex project specifications, which,
however, does not deemphasize their significance in
the project.

In the most progressive countries of the world,
new products have not been developed “from
scratch” for a long time, for them systems that help
to create any necessary structure much more quickly
and efficiently are used. The UML methodology and
related software products serve to improve the
design and structuring of data. This methodology
has been actively used since recently, but very
quickly integrated into the overall design structure.
The convenience of the reengineering methodology

is that it is not tied to any of the development
methods and is very flexible in use.

The development of the UML methodology for
reverse engineering is typical for the West and parts
of Europe. At the beginning of the research (that is,
in 2010), specialists from our country have just
begun to work on the active exploitation of this
methodology in the form in which it is presented
now.

The open and free BRL-CAD has served as an
excellent prototype for work. The advantage of such
systems is that they are distributed under a free
license and there are no legal issues with copying,
modification or other actions related to the software
code. Similarly, it should be noted that because the
code was made open, the developers tried to make it
also understandable. This is due to the large number
of comments in the program code.

One of the major disadvantages of BRL-CAD is
the lack of a clear graphical product interface,
corrected and improved in the prospects for software
product reengineering. However, developers and
designers usually develop the interface from the
middle of the project, or even closer to the end,
when the full full functionality and working
principles are already known.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

199

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

cmp Component Model /

=5
5

mw
+
w
=N
El
h
g
mn

+ archer

+ archer.bat

+ B50-NMg.exe

+ 35029 exe

+ ascZpix.exe

+ bolt.exe

+ bot-bldxf.exe
+ bot_dump.exe
+ bot_shell-vtk exe
+ bottest. exe

+ brep_cube. exe
+ brep_simple.exe
+ breplicator.exe
+ bridowal | exe

+ btclsh.exe

+ bw-fl.exe

+ bw-pix.exe

+ bwish.exe

+ bwmod. exe

+ cat-fb.exe

+ cell-fb.exe

+ clutter.exe

+ cmap-fo.exe

+ coil.exe

+ contours. exe

+ conv-vglg.exe
+ oy-g.exe

+ dbupgrade.exe
+ duf-g.exe

+ enf-g.exe

+ euclid-g.exe

+ eudlid_format.exe
+ eudlid_unformat.exe
+ fastd-g.exe

+ fb-bw.exe

+ fb-cmap.exe

+ fbo-fb.exe

+ fb-orle.exe

+ fb-pix.exe

+ fb-png.exe

+ forle.sxe

+ fbanim.exe

+ fbchars.exe

+ fhclesr.exe

+ fbcmap exe

+ fomrot. exe

+ fofade.exe

+ fbframe.exe

+ fbfree.exe

+ fbgamma.exe
+ fbgammameod . exe
+ fhgrid.exe

+ fohelp.exe

+ fblabel.exe

+ fbline.exe
' + fbscanplot.exe
‘ + fhserv.exe

wrealizes

lib

wexecutablex
uninstall.exe

..::_ _______________

include

‘ + itcl34.lib
‘ + itclstub34. lib
! + itk34 lib

+ ithstub34.lib
‘ + libadrt.lik
‘ + licanalyze lib
‘ + libbn.lib

+ libbu.lib
E + libdm. lik
‘ + libfb.lib
‘ + libgev.lib
‘ + libged.lib
‘ + liboptical lib
E + liborle. lib
E + liborle. lib
‘ + libpkg.lib
‘ + libpng.lib
+ libregex. lib
+ libet. lik
+ libsysv.lib
+ libtclcad. lik
+ libutahrle.lib
+ libwdb.lib
+ libz.lik
+ opennurbs. lib
+ tcl85.lib
+ telstub85.lib
+tB5.1ib
+ tkhtmil.lib
+ tkpng lib
+ testub85. lib
+ titable.lib

. + iwidgets4.0.2
. +1cl8 B

i +te5
. + tkhtm|3.0

. + Thiahle2 10

5
share

arealizes

. + conf

. + Source code

‘ + AUTHORS
E + COPYING

+ HACKING

‘ + INSTALL

+ NEWS
+ README

Fig. 19. Complete diagram of BRL-CAD components

Source: compiled by the author

200

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.3: 186-205

CONCLUSIONS

The article analyzes and summarizes the results
of complex experimental research of new methods
of multi-linguistic transcoding of open source
software. The distinctive feature of the studies under
review is the ability to support the work of more
than ten most popular programming languages.
When applying these technologies, it is possible to
automate the process of recoding software
components and, therefore, to free programmers
from routine reprogramming and reduce the
probability of occurrence of structural errors
inherited from the previous system.

In the article, the technology of multi-linguistic
transcoding has not been only given, but also
analyzed. The problem of this field for our country
is the lack of any educational materials; although
this situation allows to use software products and
build or restore code, but it hides some interesting
and useful features from users. Therefore, the task
was to consider and systematize the process and the
logic of reverse engineering and to form the basis of
a scientific paradigm, which allows the system
architect to understand the principles of this
reengineering.

Reengineering is a process that allows to create
new, improved software systems quickly and easily,
using the experience of previous software products.
With the introduction of this methodology, we can
conclude that the efficiency and speed of work has
grown considerably also because of the fact that
UML is a convenient language that coordinates the
actions of all employees and helps to distribute tasks
between performers.

From an economic point of view, reengineering
is generally advantageous — it is a significant time
and effort savings for programmers, it helps in
project coordination, and optimizes the number of
employees, although there are some situations where
software reengineering is not the best solution. In
any case, before performing the evolutionary
improvement, it is necessary to evaluate the
feasibility of a software project reengineering - this
is also a series of publications by the author of this
article.

At this time, the process of designing new
software products is not very effective without the
use of the UML methodology, but with its use — the
speed of development increases at times.

Summing up the results, we can state that in the
article:

1) Generalization of the results of experimental
studies at the level of presentation of classes and
components presented using a unified modeling

language — UML, with processing and interpretation
of results at CASE-tools level has been performed;

2) The results of source code conversions have
been analyzed and summarized, the main of which is
the reduction of labor productivity of the CAD
creation;

3) The generation of new linguistic structures
has been improved, based on reconstructed unified
diagram models, which allows to preserve the
properties of relations between classes and between
components.

4) Methods of importing encapsulated
components of the CAD that allows re-encoding the
components regardless of the programming language
have been developed further.

Using the results will significantly improve the
efficiency of the CAD use in such fields of their use
as: mechanic engineering, telecommunications,
production and transport management, education,
etc.

The developed models and methods will be
useful to system architects and program engineers
involved in redesigning software already being in
their multi-year operation.

Properly executed reengineering is
characterized by the achievement of practical
results:

a) Reducing the risk of errors in the future
update of the CAD;

b) Reduction of the product cost due to the
repeated use of software components in the
development of a new CAD;

¢) Reduction of the labor productivity of the
creation of the CAD due to the almost complete
elimination of routine reprogramming operations of
many already identified components.

Thus, the main problem of the study was the
systematization of methods of reengineering
software components into new software structures,
systems and ready-made information resources
accumulated by humanity at a specified time. This
new direction does not yet have standard solutions to
the problem of the gradual transformation of the
multi-linguistic description, the implementation of
generation, debugging, and integration for the final
software system.

Therefore, the possible directions of the
research continuation and the prospects for the
development of the following studies on the
following topics are:

1) Industrial testing for fault tolerance and
practical testing of implementation of software
systems multi-linguistic transcoding that will allow
them to be improved on an industrial basis;

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

201

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186-205

2) Creation of reengineering models for each science and technology and design processes
other types of CAD provisioning that will be development, improve the efficiency of technical
redesigned. support of software systems, and reduce operating

Complete reengineering of the CAD will costs.
overcome the contradiction between the pace of

REFERENCES

1. Link, D., Behnam, P., Moazeni, R. & Boehm, B. “The Value of Software Architecture Recovery for
Maintenance” (Submitted on 23 Jan 2019 in Cornell University). — Available from:
https://arxiv.org/abs/1901.07700. — Active link — 27.06.2019.

2. Lavrishcheva, E. M., & Grishchenko, V. N. “Sborochnoe programmirovanie. Osnovy industrii
programmnyh produktov”. [Assembly programming. Fundamentals of the software industry] (in Russian).
Naukova dumka. Kiev: Ukraine. 2009. 372 p.

3. Subriadi, A. P., Mugtadiroh, F. A. & Dewi, R. S. “A model of owner estimate cost for software
development project in Indonesia”. — Available from: https://onlinelibrary.wiley.com/
doi/abs/10.1002/smr.2175. — Active link — 27.06.2019.

4. Velykodniy, S. & Tymoficieva, O. “The paradigm of linguistic supply submission by generative
grammar assistance”. American Scientific Journal. 2017; No.17: 4-7.

5. Velykodniy, S. & Tymofieieva, O. “Reengineering Models of Linguistic Providing Software
Systems”. Advances in Quantum Systems in Chemistry, Physics and Mathematics, Ser.: Progress in Applied
Mathematics and Quantum Optics, Eds. A. Glushkov, O. Khetselius, V. Buyadzhi. FOP Panov. Kharkiv:
Ukraune. 2017. p. 385-388.

6. Velykodniy, S. S. “Problema reinzhiniringa vidov obespecheniya sistem avtomatizirovannogo
proektirovaniya”. [The reengineering problem of ensures types CAD/CAM/CAE-systems] (in Russian).
Control Systems and Computers. 2014; No.1: 57-61. 76.

7. Velykodniy, S. S. “Metodo-logicheskie osnovy reinzhiniringa sistem avtoma-tizirovannogo
proektirovaniya. [The method-logical bases of reengineering CAD/CAM/CAE-systems] (in Russian).
Control Systems and Computers. 2014; No.2: 39-43.

8. Velykodniy, S. & Tymofieieva, O. “Multilingual recording method designed for SCADA-system’s
software upgrade”. Automation of technological and business-processes. 2017; Vol.9, Iss.1: 17-22.

9. Velykodniy, S. & Tymofieieva, O. “Sposib multylinhvistychnoho perekoduvannia prohramnoho
zabezpechennia skladnykh informatsiinykh system ta tekhnolohii”. [The way of multilingual software
transcoding for complex information systems and technologies] (in Ukrainian). O. S. Popov’s ONAT
Scientific Works. 2017; No.2: 153-159.

10. Velykodniy, S., Tymofieieva, O. & Zaitseva-Velykodna, S “Metod rozrakhunku pokaznykiv otsinky
proektu pry vykonanni reinzhynirynhu pronhramnykh system”. [The calculation method for indicators project
estimation in the implementation of software systems reengineering] (in Ukrainian). Radio electronics,
computer science, control. 2018; No.4: 135-142. (Web of Science). DOI: https://doi.org/10.15588/1607-
3274-2018-4-13.

11. Velykodniy, S. “Idealizovani modeli reinzhynirynhu prohramnykh system”. [The idealized models of
software systems reengineering] (in Ukrainian). Radio electronics, computer science, control. 2019; No.1:
150-156. (Web of Science). DOI: https://doi.org/10.15588/1607-3274-2019-1-14.

12. Velykodniy, S. “Method of presenting the assessment for reengineering of software systems with the
project coefficients help”. Innovative technologies and scientific solutions for industries. 2019; No.1(7): 34—
42. DOI: https://doi.org/10.30837/2522-9818.2019.7.034.

13. Afshari, A. R., Brtka, V. & Cockalo-Hronjec, M. “Project risk management in Iranian software
projects”. Journal of Engineering Management and Competitiveness (JEMC). 2018; VVol.8 No.2: 81-88.

14. Blum, B. “Software engineering: a holistic view”. — Available from:
https://dl.acm.org/citation.cfm?id=SERIES9569.128915. — Active link — 24.06.2019.

15. Klein, M. “Reengineering metho-dologies and tools. A Prescription for Enhancing Success”.
[Electronic resource]. — Access mode: https://www.tandfonline.com/doi/abs/ 10.1080/10580539408964633.
— Active link — 23.06.2019. DOI: https://doi.org/10.1080/10580539408964633.

16. Boehm, B. “Software Risk Management”. - Available from:
https://link.springer.com/chapter/10.1007%2F3-540-51635-2 29. — Active link — 24.06.2019, DOI:
https://doi.org/10.1007/3-540-51635-2_29.

202 ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

https://arxiv.org/abs/1901.07700
https://www.tandfonline.com/author/Klein%2C+Mark+M
http://dx.doi.org/10.1080/10580539408964633

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186-205

17. Grover, V. & Malhotra, M. “Business process reengineering: A tutorial on the concept, evolution,
method, technology and application”. - Available from:
https://www.sciencedirect.com/science/article/abs/pii/S0272696396001040. — Active link — 23.06.2019.
DOI: https://doi.org/10.1016/S0272-6963 (96)00104-0.

18. Manganelli, R. & Klein, M. “The Reengineering Handbook: A Step-by-Step Guide to Business
Transformation”. [Electronic resource]. — Access mode: https://www.sciencedirect.com/
science/article/pii/S00https://journals.lww.com/jhgonline/Citation/1995/03000/The_Reengineering_Handboo
k A _Step by Step Guide.1l.aspx. — Active link — 26.06.2019. DOI: https://doi.org/10.1097/01445442-
199503000-00011.

19. Jacobson, 1., Ericsson, M. & Jacobson, A. “The Object Advantage: Business Process Reengineering
with Object Technology”. ACM Press. — Available from: http://eaststemcell.com/files/
storage.cloud.php?id=MDIwMTQyMjgsMQ==. — Active link — 20.06.20109.

20. Boehm, B. “Spiral Development: Experience, Principles and Refinements”. Special Report: CMU /
SEI-2000-SR-008. 2000. 37 p.

21. Hammer, M. & Champy, J. “Reengineering the corporation: A manifesto for business revolution”.
[Electronic resource]. — Access mode: https://www.sciencedirect.com/science/
article/pii/S0007681305800643?via%3Dihub. — Active link — 21.06.2019. DOI: https://doi.org/
10.1016/S0007-6813(05)80064-3.

22. Selby, R. W. “Software Engineering: Barry W. Boehm's Lifetime Contributions to Software
Development, Management and Research”. Publ. John Wiley & Sons. New Jersey. 2017. 818 p.

23. Bochm, B. “A Spiral Model of Software Development and Enhancement”. ACM SIGSOFT
Software Engineering Notes. 1986; VVol.11 Iss.4:14-24. DOI: https://doi.org/ 10.1145/12944.12948.

24. Nevlyudov, 1. Sh., Velykodniy, S. S. & Omarov, M. A. “Ispol'zovanic CAD/CAM/CAE/CAPP pri
formirovanii upravlyay-ushchikh programm dlya stankov s ChPU”. [Using CAD / CAM / CAE / CAPP
when forming control programs for CNC machines] (in Russian). Eastern-European Journal of Enterprise
Technologies. 2010; Vol.2 Issue 2(44): 37-44.

25. “Unigraphics Direct Interface: Reference Manual”. Southampton: ICEM Ltd. 2014. 392 p.

26. Werner, J. “The Case for Verifying and Optimizing Tool Paths”. Irvine: CGTech. 2003. 5 p.

27. Velykodniy, S. S., Tymofieieva, O. S., Zaitseva-Velykodna, S. S., & Niamtsu, K. le. Porivnyalniy
analiz vlastivostey vidkritogo, vilnogo ta komertsiynogo programnogo zabezpechennya. [A comparative
analysis of the properties of open, free and commercial software] (in Ukrainian). Information Technology
and Computer Engineering 2018; No.1(41): 21-27.

28. Velykodniy, S. S., Burlachenko, Zh. V. & Zaitseva-Velykodna, S. S. “Reinzhyniryng grafichnyh
baz danyh u seredovyshhi vidkrytoi' systemy avtomatyzovanogo proektuvannja BRL-CAD. Modeljuvannja
povedinkovoi' chastyny”. [Graphic data-bases reengineering in BRL-CAD open source computer-aided
design environment. Modeling of the behavior part] (in Ukrainian). Transactions of Kremenchuk Mykhailo
Ostrohradskyi National University 2019; No.2(115): 117-126. DOI: https://doi.org/10.30929/1995-
0519.2019.2.117-126.

29. Miles, R. & Hamilton, K. “Learning UML 2.0”. O'Reilly Media. 2006. 288 p.

30. Hay, D. C. “UML and Data Mode-ling: A Reconciliation Technics Publications”. 2011.242 p.

31. Haigh, T. “How Data Got its Base: Information Storage Software in the 1950s and 1960s”. IEEE
Annals of the History of Computing. 2010; Vol.31 Iss. 4: 6-25. DOI: https://doi.org/
10.1109/MAHC.2009.123.

32. Date, C. J. “Date on Database: Writings 2000 —2006”. Apress. New York City: 2006. 566 p.

33. Velykodniy, S. S., Burlachenko, zZh. V. & Zaitseva-Velykodna, S. S. “Reinzhyniryng grafichnyh
baz danyh u seredovyshhi vidkrytoi' systemy avtomatyzovanogo proektuvannja BRL-CAD. Modeljuvannja
strukturnoi chastyny”. [Graphic data-bases reengineering in BRL-CAD open source computer-aided design
environment. Modeling of the structural part] (in Ukrainian). Transactions of Kremenchuk Mykhailo
Ostrohradskyi National University. 2019; No. 3(116): 130-139. DOI: https://doi.org/10.30929/1995-
0519.2019.3.130-139.

34. Carroll, E. R. “Estimating Software Based on Use Case Point”. OOPSLA '05: Companion to the
20th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, San Diego: CA. 2005. p. 257-265. DOI: https://doi.org/10.1145/1094855.1094960.

35. Cohn, M. “Agile Estimating and Planning”, Publ. Prentice Hall. NY. 2005. 368 p.

36. Clemmons, R. “Project Estimation with Use Case Points”. Cross Talk. 2016; VVol.2 Iss.: 18-22.

ISSN 2617-4316 (Print) 203
ISSN 2663-7723 (Online)

https://mgfp23dpa03.storage.googleapis.com/MDIwMTQyMjg5MQ==03.pdf
https://mgfp23dpa03.storage.googleapis.com/MDIwMTQyMjg5MQ==03.pdf
https://www.sciencedirect.com/science/article/pii/S0007681305800643?via%3Dihub#%21
https://doi.org/10.1016/S0007-6813%2805%2980064-3

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186-205

37. Kalnauz, D., & Speranskiy, V. “Productivity estimation of serverless computing”. Applied Aspects
of Information Technology. 2019; Vol.2 No.1: 20-28. DOI: https://doi.org/10.15276/aait.02.2019.2.

38. Velykodniy, S. S., Burlachenko, Zh. V. & Zaitseva-Velykodna, S. S. “Software for automated
design of network graphics of software systems reengineering”. Herald of Advanced Information
Technology. 2019; Vol.2 No.2: 95-107. DOI: https://doi.org/10.15276/hait.02.2019.2.

39. Boggs, W. & Boggs, M. “UML & Rational Rose”. Lori. SPb.: Russian Federation. 2008. 600 p.

40. Fauler, M. “UML. Osnovy. Kratkoe rukovodstvo po standartnomu yazyku ob’ektnogo
modelirovaniya” [UML. Basics. A quick guide to the standard object modeling language]. Simvol-Plyus.
Moscow: Russian Federation. 2011. 192 p.

41. Robinson, S. Kornz, O. & Glinn, J. “C# dlya professionalov”. [C# for professionals]. Lori. Moscow:
Russian Federation. 2005. 1000 p.

42. “Object Management Group. OMG Unified Modeling Language (OMG UML). Version 2.5”.
Object Management Group. 2013. 831 p.

Conflicts of Interest: the authors declare no conflict of interest

Received 26.04.2019
Received after revision 03.06.2019
Accepted 18.06.2019

DOI: https://doi.org/10.15276/aait.03.2019.2
VJK 004.4'2

AHAJII3 TA Y3ATAJIBHEHHA PE3YJIBTATIB KOMIUVIEKCHUX EKCITIEPUMEHTAJIBHUX
JOCJIIZKEHD 3 PEIHOKMHIPUHI'Y BIAKPUTUX CUCTEM ABTOMATHU30BAHOTI'O
INPOEKTYBAHHA

Cranicnas CepriiioBuy Beaukoanuii
ORCID ID: https://orcid.org/0000-0001-8590-7610, velykodniy@gmail.com
Opecbkuii AepaBHUI eKOJOTIYHUI yHiBepcuTeT, ByI. JIbBiBCbKa, 15. Oneca, 65016, Ykpaina

AHOTALISA

VY cTaTTi MOJArOTHCS 3aKIIOYHI PE3YJIbTATH HAYKOBOTO JOCHTIPKECHHS 3 PO3POOJCHHS MOJENCH Ta METOJIB PEIHKUHIPUHTY, a
TaKOX TEXHOJIOTii MyJNbTHIIHTBICTHYHOTO MEPEKOIYBaHHS BIIKPHTHX CHCTEM aBTOMAaTH30BaHOIO NMpoekTyBaHHs. CHIIBHOI pUCOIO
JUISL YCIX MPOTrpaMHUX CHUCTEM € Te, LIO ITiJ] BIUIMBOM 4acy Ta iHIIMX HeBiJ €MHUX (akTopiB iHpopMaTH3alil, a caMe OHOBJICHHS:
OTepalifHUX CUCTEM, MOB IIPOTPaMyBaHHS, IPUHIIHIIIB il PO3MOIIICHUX CHCTEM 0OpOOKH JaHWX TOIIO, BiTOYBA€THCS €BOIIOIIIHE
cTapiHHA BUIB 3a0e3neueHHs. Taka TeHIeHIis TPU3BO/Ie O TOTIPIICHHS IIBUIKICHHUX, IHPOPMAIIiiTHO -KOMYHIKAIlIHHUX, TpadiqHUX,
4acOBUX Ta IHIIMX XapaKTEPUCTHK, aX [0 MOBHOI BiIMOBH CHCTEMH. PEiHXXUHIPUHT — Iie TpoLIeC, SIKUil I03BOJISIE 3PYYHO i IBHIKO
CTBOPIOBATH HOBI, YIOCKOHAJIEHI ITPOTPaMHi CHCTEMH, BHKOPHUCTOBYIOUYH JOCBiJI MTOTIEPEAHIX MPOrPpaMHUX MPOAYKTiB. MeTa cTarTi —
CHCTeMaTU3yBaTH Pe3yJIbTaTH iHTerpalii KOMIIOHEHTIB IOBTOPHOIO BUKOPUCTAHHS, [0 HAKONIMYEHO PO3POOHHKAaMHM 332 BU3HAYECHHUN
4ac PO3BUTKY Taly3eBHX CHCTEM aBTOMAaTH30BAHOTO IPOEKTYBAHHS y OHOBJIEHI MpPOTpaMHi CTPYKTYpH TOTOBHX pecypciB. 3a
OTPUMaHHMH HayKOBUMH Ta NPAKTUUYHHMH Pe3yJbTaTaMH BHKOHYETHCS aHaJI3 pO3pOOJIEHHX MOAENeil Ta METOMIB peiHXKUHIPHHTY
BUIIB 3a0e3MeueHHs] BIIKPUTHX CHCTEM aBTOMAaTH30BAaHOTO MPOEKTYBAaHHS. 3arajioM, PeiHmKHHIPUHT MICTHTh y co0i mpouecu
peoprasizamii Ta pecTpyKTypH3alii IporpaMHOi CHCTEMH, MEPEBEACHHS OKPEMHUX KOMIIOHEHTIB CHCTEMH B iHIIY, Cy4acHIIIy MOBY
MpoTrpaMyBaHHs, a TaKOXK MporecH Moaudikamii abo MOAepHi3alii CTPYKTYpH 1 CHCTeMH JAaHHWX. B mocmimkeHi 3aaisHi HacTyIHI
METO/IM: CKJIaJaJbHOTO, KOHKPETHU3YIOYOrO, CHHTE3YIOYOTr0 Ta KOMIIO3MLIHHOTO NpOTpaMyBaHHS, METOJM IOPOIKYBAJIbHHX I
po3mi3HaBaJbHUX rpamMaTvk. Ha 1eil wac, mpoliec NpOeKTyBaHHS HOBUX IPOTPAaMHHX MHPOAYKTIB € HE HaaATo eeKTHBHHM Oe3
Bukopucranus UML-Metonostorii, ane npu i 3acToCyBaHHI HIBUAKICTH po3poOKu mifBUIIyeThCs y pasn. UML, sk MoBa rpadiunoro
OmuCy JUIsl 00'€KTHOTO MOJIETIOBAHHS, OKPIM IPOCTOr0 NMPOEKTYBAaHHs, MATPUMYE Iie i QyHKIIiI0 reHepalil Ta peiHKUHIPHHTY KOy
Ha OCHOBI JJAHUX MOJIEJICH, caMe SKi PO3TIISHYTO Y MOJaHii cTarTi. BiAMIHHOIO 0COONUBICTIO HABENCHHUX JOCIIIKEHb € MOXKIIUBICTh
MiATPUMKH poOOTH Oinble ecsATH HAWMOMYJIAPHIMIMX MOB NporpamyBaHHs. [Ipu 3acTOCyBaHHI HaBEJEHUX TEXHOJOTIH BIAEThCS
ABTOMATH3yBaTH MPOLIEC MEPEKOAyBaHHS KOMIIOHEHTIB TPOrPAMHOro 3a0€3MeUeHHs Ta, 32 PaXyHOK LIbOTO, BUBIJILHUTH poOoYHil yac
MPOTPAMICTIB Bil PYTHHHOTO TMEPENpOTrpaMyBaHHS 1 3MEHIIUTH BIPOTiOHICTE BHHHUKHEHHS CTPYKTYPHHX ITOMHJIOK, IIIO
YCHaAKOBYIOTHCS Bifl IOIEPEIHBOI CHCTEMH. BHKOPHCTaHHS OTpPUMaHUX pe3yJbTaTiB HaJacTh 3HAYHE MiJIBUIIECHHS e€PEeKTUBHOCTI
3aCTOCYBaHHS CHCTEM aBTOMATH30BAaHOTO MNPOCKTYBAHHS y TaKMX Tajiy3sX IX BHKODHCTAaHHS $IK: MallMHOOymyBaHHs, cdepa
TEJICKOMYHIKAI[ii, ypaBliHHS BUPOOHHUIITBOM Ta TPAHCIOPTOM, OCBiTa Tomio. Po3pobneni mMoneni Ta METOAM CTaHYTh y Harofi
CHCTEeMHHMM apXiTeKTopaM Ta iH)KeHepaM-TporpamicraM, siki 3afisHi y NepernpoeKTyBaHHI IPOrpaMHOr0 3a0e3MeueHHs, 10 BKe
3HAXOAATHCS Y KiJIbKapivHiil eKcrtyaTarii.

Kiio4oBi ciioBa: peiHmXHHIPUHT CHCTEM AaBTOMAaTH30BaHOTO INpOeKTyBaHHs, Meronpojorii UML; GaratomMoBHE TpaHC
KOJIyBaHHSI; JIIHI'BICTHYHA CTPYKTYpa; MOPOKYBalbHA IpaMaTHKa

204 ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology 2019; Vol.2 No.3: 186-205

DOI: https://doi.org/10.15276/aait.03.2019.2
YJK 004.4'2

AHAJIN3 U OBOBIIEHUE PE3YJBbTATOB KOMIVIEKCHBIX SKCITEPUMEHTAJIBHBIX
HUCCIEAOBAHUMMU 11O PEUHKMHUPHUHI'Y OTKPBITBIX CUCTEM
ABTOMATHU3NPOBAHHOI'O IPOEKTUPOBAHUSA

Cranucaas Cepreesuu Bequkognbiii
ORCID ID: https://orcid.org/0000-0001-8590-7610, velykodniy@gmail.com
Opecckuii TocyAapCTBEHHBIN IKOJIOTHUeckuil yHuBepcureT yi. JIbBoBckas, 15.0xecca, 65016, Ykpauna

AHHOTALIUS

B crartee mpencraBieHBl 3aKITIOYUTENBHBIE PE3yIbTaThl HAYYHOTO HCCIIENOBAaHMS MO pa3paboTKe MoJIelell W MeTOJO0B
PEMH)KHHUPHHTA, a TaKXKe TEXHOJOTHH MyJIbTHIMHIBUCTHYECKOTO IIEPEKOANPOBAHMS OTKPHITBIX CHCTEM aBTOMAaTH3MPOBAaHHOTO
npoektupoBanus. OOmiel depToil Uit BceX MPOrpaMMHBIX CHCTEM SBIAETCA TO, YTO IOJ BIMSHHEM BPEMEHH H IPYTUX
HEOTBEMIIEMBIX (AKTOPOB HMH(POPMATH3ALUM, a4 MMEHHO OOHOBIEHHE: OIECPALMOHHBIX CHCTEM, S3BIKOB IPOTPaMMHPOBAHUS,
MPUHIUIOB AEHCTBUSA pACIpPElENeHHBIX CHCTeM O0OpabOTKM [aHHBIX M JAp. HPOUCXOAUT 3BOJIOLMOHHOE CTapeHHe BHIOB
obecniedeHus. Takas TEHASHLHS MPUBOAUT K YXYAIIEHUIO CKOPOCTHBIX, MH(POPMALHMOHHO-KOMMYHUKALMOHHBIX, TPaHMUECKUX,
BPEMEHHBIX M JPYTUX XapaKTEPUCTHK, BIUIOTH JIO0 IOJIHOIO OTKa3a CHUCTEMbI. PEMHIKMHUPHUHT — 3TO IPOLECC, KOTOPBII MO3BOJISIET
yI0OHO U OBICTPO CO37aBaTh HOBBIE, YCOBEPIICHCTBOBAHHBIC TPOTrPAMMHBIC CHCTEMBI, UCIIOIB3YS OIBIT MPEABIAYIIUX POrPaMMHBIX
poaykToB. Llens craTbu — cUCTEMaTU3UPOBATh Pe3yIbTaThl HHTEI AU KOMIOHEHTOB IIOBTOPHOI'O UCIIOJIb30BAHUS, HAKOIICHHBIX
pa3paboTYMKaMK 32 ONpeeIeHHOEe BpeMs Pa3BUTHUS OTPACIEBBIX CUCTEM aBTOMAaTH3MPOBAHHOTO MPOCKTHPOBAHUS B OOHOBJIEHHBIE
IIPOrpaMMHBIE CTPYKTYpPbhl FOTOBBIX pecypcoB. [0 HonyueHHBIM Hay4YHBIM M IIPAKTUYECKUM pe3yJbTaTaM BBIIOJIHACTCS aHAIM3
pa3pabOTaHHBIX MoOJeNell M METOJOB pPEHMHXUHHPUHTA BHAOB OOECIEUEHUS OTKPBITBIX CHCTEM aBTOMAaTH3HMPOBAHHOTO
MIPOEKTHPOBAHHUA. B Ie70M, peHHXKMHHPHHT BKIIOYaeT B ce0S IPOIECCH PEOPTaHU3aldM M PECTPYKTYPU3alUH HPOrPaMMHON
CHCTEMBI, TIEPEBOJ OTAENBHBIX KOMIIOHEHTOB CHCTEMBI Ha ApYyroi, Ooyiee COBPEMEHHBIH S3BIK MPOTPAMMHPOBAHHSA, a TaKKe
mponeccsl MOAU(UKAIUKY WIM MOJEPHU3ALUM CTPYKTYpPHl M CHCTEMBI JaHHBIX. B HcciemoBaHMM 3aJeHCTBOBAHBI CIEAYIOIINE
METOJBI: COOPOYHOr0, KOHKPETU3UPYIOLIET0, CHHTE3NPYIOIIEro ¥ KOMIO3UIIMOHHOTO TPOrPaMMHUPOBAHHUS, METOBI OPOKAAFOLIHX
U pacHo3HAIOIIMX IpaMMaTuK. B Hacrosiee Bpems, MpOLECC INPOEKTUPOBAHUS HOBBIX IPOTrPaMMHBIX IPOJYKTOB HE CIHIIKOM
s¢dexTrBen 6e3 mcnonp3zoBannss UML-MeTononmorny, ofHaKoO MpU e NMPUMEHEHHH CKOPOCTh Pa3pabOTKHU IOBBIMIACTCS B Pasbl.
UML, kaK s3bIK rpaiIecKOro OMUCAHMS ISl OOBEKTHOTO MOJICINPOBAHHMsI, KPOME IIPOCTOTO NMPOSKTHPOBAHUS, MOJIEPKUBAET CIIe
GYHKIMHE TeHepalud W PEHHKHHUPHHTa KOJa Ha OCHOBE PAcCMOTPEHHBIX B JAaHHOM cTaThe Mopeneid. OTnmuutensHOi
0COOCHHOCTBIO TIPUBEICHHBIX HCCIEA0BAHHH, SBISIETCS BO3MOXKHOCTh IOMNEPKKH PabOTHI JECATH CaMBIX IMOMYISPHBIX S3BIKOB
nporpaMmupoBanusa. [IpM TpHMEHEHHMM YKa3aHHBIX TEXHOJOTHMH yHaeTcsi aBTOMATHU3HPOBATh MPOLECC MEPEeKOJUPOBAHUS
KOMIIOHEHTOB IPOTPAMMHOTO OOECII€UeHHsI, M 3a CUeT 3TOr0, BBICBOOOIUTH pabouee BpeMs HPOrPAMMHCTOB OT PYTHHHOTO
MIeperporpaMMHPOBaHUs, @ TaKKe YMEHBUINTH BEPOSTHOCTh BO3HHKHOBEHHS! CTPYKTYPHBIX OIIMOOK, KOTOpBIE HACIEOYIOTCSI OT
npeabIayneil cucTeMsl. Vcronbp30BaHue MOTyYeHHBIX Pe3y/IbTaToB MO3BOJIHUT 3HAYUTEIBHO MOBBICUTE () (HEKTHBHOCTH IPUMEHEHUS
CHCTEM aBTOMATH3UPOBAHHOTO IIPOSKTUPOBAaHMSA B TaKMX OOJAcTAX HX HCIONb30BaHUS KaK: MAIIMHOCTPOEHHE, cdepa
TEJICKOMMYHHKAIMH, YIpaBiIeHHs HPOU3BOACTBOM M TPaHCHOPTOM, oOpa3oBaHWe W Jp. Pa3paboTaHHBIE MOIENM W METOJBI
MIPUTOJSITCST CHCTEMHBIM apXHTEKTOpaM M HI)KEHepaM-TPOrpaMMHCTaM, KOTOpPBIE 33/eHCTBOBAHBI B IIEPEIPOCKTUPOBAHUH
MIPOTPaMMHOTO 00€CTICUeHNs, HaXOISIIIET0Cs] B MHOTOJICTHEH SKCIITyaTaluH.

KnroueBble c10Ba: PEHHXMHUPHHT CHCTEM aBTOMATH3HPOBAHHOTO MPOEKTHpOBaHHSA; Merojonorus UML; MHOros3erdHOe
TPaHCKOIMPOBAHHUE; JIMHIBUCTUYECKAs! CTPYKTYPa; IMOPOXKIAOIIAs TPAaMMAaTHKa

ABOUT THE AUTHORS

L Stanislav Sergeyevich Velykodniy, Dr. Sci. (Eng), Associate Professor of the Department of Information
i Technology, Odessa State Environmental University, 15 Lvivska Str. Odesa, 65016, Ukraine
velykodniy@gmail.com. ORCID ID: https://orcid.org/0000-0001-8590-7610.

Research field: Software Design, Software Analysis and Testing, Software Project Management

CraniciaB CepriiioBuu BenukoaHuii, JOKTOp TexHi4. HayK, OOUEHT kadenpu IHPopmMamiiHMX TEXHOJOTIH,
Opnechkit [epKaBHUH eKOJIOTIUHMH yHiBepcuTeT, Byl JIbBiBChKa, 15. Oneca, 65016, Ykpaina

ISSN 2617-4316 (Print) 205
ISSN 2663-7723 (Online)

https://orcid.org/0000-0001-8590-7610

