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ABSTRACT 

Cloud computing has enabled organizations to focus less on their IT infrastructure and more on their core products and ser-

vices. In fact, Cloud is no longer viewed as an alternative to hosting infrastructure. Serverless computing is a technology, also known 

as function-as-a-service, that gives the cloud provider complete management over the container function run on as necessary to serve 

requests. As a result, the architectures remove the need for continuously running systems and serve as event driven computing. Serv-

erless computing presents new opportunities to architects and developers of Cloud-oriented solutions. Primarily, it provides a simpli-

fied programming model for distributed Cloud-based systems development, with the infrastructure abstracted away. It is no longer 

the concern of the developer to manage load balancers, provisioning and resource allocation (although system implementers need to 

be aware of such things). This reduced focus on operational concerns should allow greater attention to be paid to delivering value, 

functionality and an ability to adapt rapidly to changes. Such issues as deployment, monitoring, quality of service and fault tolerance 

are moved into the hands of the Cloud provider and still need to be actively considered and managed. Serverless computing is still in 

its infancy and while the model matures further, tools will be created to allow developers and architects to create patterns and pro-

cesses to fully exploit the advantages of the Serverless model. This paper explores the performance profile of a Serverless ecosystem 

under low latency and high availability. The results of application and performance tests for image recognition by using neural net-

works are presented. The proposed implementation uses open source libraries and tools: TensorFlow for the study of machine learn-

ing and LabelImg for data preparation. A correlation between the amount of experimental training data and recognition accuracy is 

studied and shown. For experiments, the software package was developed using the Python scripting programming language and .Net 

technology. The developed software showed excellent accuracy of recognition using regular computer with low-cost hardware. Inter-

action of the client side with the “server” is carried out using HTTP-requests in any browser with low-speed network connection. 
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INTRODUCTION 

Serverless is a leading technology, since it 

working physically on a server, but it does not need 

to configure infrastructure. Serverless can be distin-

guished among such an event-oriented architecture 

and function as a service (Function-as-a-Service) 

[1]. We can see that the Serverless architecture of-

fers application computing for the microservices in 

which the event is caused by other systems and re-

sources, and the micro-services are described as 

formal syntax written in program functions. A new 

entry in the database, repository allocation, or Inter-

net notifications is a variety of examples of events 

that may simply be messages or will be processed. 

Sometimes an event is created with a certain amount 

of time with a subscription, but in many cases, a sig-

nificant amount of event messages must be pro-

cessed immediately. Horizontal scaling for pro-

cessing simultaneous queries is one for the charac-

teristics of cloud computing [2]. New event message 

handled in an instance of the isolation function and 

few examiners are needed when several event mes-

sages are created simultaneously.  
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The event created by mobile application, pro-

cessed with light weights, but the amount of incom-

ing traffic is usually unpredictable, so such programs 

must be deployed on a specific platform, build with 

using dynamic redundancy and resource manage-

ment, such as Serverless computing [3]. 

On the one hand, it provides developers with a 

simplified programming model for creating cloud 

applications, which eliminates most, if not all, op-

erational problems; it reduces the cost of deploying 

cloud code by charging for execution time, rather 

than for resource allocation; and this is a platform 

for rapid deployment of small pieces of cloudy code. 
Serverless model provides new capabilities that 

make writing more scalable microservices easier and 

cost effective as the next step in evolution of cloud 

computing architectures that can be used for differ-

ent technology tasks. There is a series of tasks de-

voted to development of easy and effective solutions 

with use of modern cloud functions. However, most 

of them cannot be tested using regular low-cost 

equipment. 
The aim of the work is to estimate the produc-

tivity of Serverless computing for image recognition 

tasks. To attain the aim, it is needed to solve the next 

tasks: perform a review of the modern cloud compu-
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ting technologies and develop corresponding soft-

ware tools, that can be used both on regular PC and 

cloud platform. 

 

1. TECHNOLOGY INTRODUCTION 

1.1. State of art of Serverless Computing 

Someone thinks that servers are not needed for 

Serverless computing [4]. This is actually not true. 

Serverless functions still use physical servers. To 

explain this, we use an example of a traditional n-

tier application with server logic and show how it 

will differ using Serverless architecture (Fig. 1). 

       In a Serverless architecture, several things can 

change including the server and the database. An 

example of this change would be creating a cloud-

provisioned API and mapping specific method re-

quests to different functions. 

 
Fig. 1. Traditional architecture in which server  

          provide and managed by developer 
Source: compiled by the authors 

       Instead of having one server, our application 

now has functions for each piece of functionality 

and cloud-provisioned servers that are created based 

on demand. We could have a function for searching 

for a book, and a function for purchasing a book. We 

also might choose to split our database into two sep-

arate databases that correspond to the two functions 

(Fig. 2). 

 
Fig. 2. Serverless architecture where servers are 

          scale up and down based on demand 
Source: compiled by the authors 

       There are a couple of differences between the 

two architecture diagrams. One is that in the on-

premises example, you have one server that needs to 

be load-balanced and auto-scaled by the developer. 

In the cloud solution, the application is run in state-

less compute containers that are brought up and 

down by triggered functions. Another difference is 

the separation of services in the Serverless example 

[5]. 
       Triggers are simply events. They are services 
and HTTP requests that create events to start up 
functions for response. Triggers are usually set with-
in the function console or the command-line inter-

face and are typically created within the same cloud 
provider’s environment. A function must have exact-
ly one trigger. There are three types of triggers: 
HTTP trigger, Database trigger and Object Storage 
trigger. 
       1) HTTP Trigger is a simple but provide rich 
format for call function with various content type, 
such as a files, text, JSON, and PUT, POST and 
DELETE HTTP methods. 

2) Database Trigger call function when there is an 
insertion, modification or deletion of any record in a 
table, which behaves like a stack collection. Google 
provide pub/sub trigger in Serverless platform and it 
would be exchangeable by database trigger because 
Google Function does not have database trigger. 

3) Storage Object Trigger. 
       In AWS, a trigger can be an HTTP request or a 
call to another AWS service. Azure functions also 
use service triggers, but they also capture the idea of 
bindings. Input and output bindings offer a declara-
tive way to connect to the data of your code. Bind-
ings are not similar to triggers, as you, as a develop-
er, specify connection strings and other properties in 
your configuration functions. Unlike launching, 
bindings are optional, and a function can have mul-
tiple bindings. 
       An example of a program with a trigger is the 
record in the API Query Tab. We have a table in 
Azure storing information about employees and 
whenever a POST request comes with new infor-
mation about employee and we want add another 
row in the table. We can do this by running the 
HTTP Trigger, the Azure function, and the Tabbed 
output bindings. 
        By using the trigger and bindings, we can write 
more general code, which does not make the func-
tion of relying on the details of the services with 
which it interacts. Information about incoming 
events from services is introduced into our function. 
Data output to another service, for example, adding 
a row to a table in the Azure tables’ repository, may 
be the execution of using the value that returns to 
our Function. The Trigger and HTTP bindings have 
the name of the authority, Please Act as an Identifier 
that will be used in the Functions Code to access the 
trigger and accessory. The trigger and bindings can 
be configured on the Azure Functions portal integra-
tion tab. This configuration is displayed in the func-
tion JSON file in the function directory. This file can 
also be manually configured in Extension Editor. 
       Serverless computing calls can support distribut-
ed data processing with bandwidth, latency, and dis-
tributed computing performance. There are certain 
limitations that we need to know before using the 
function, for example, there are several event han-
dlers: 
1) HTTP, Object Storage and Database; 

2) Not large amount of memory – from 512 MB to 3 

GB of memory per container;  
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3) Maximum time allowed for the function is al-

lowed from 5 minutes to 10 minutes; 

4) 500 MB cache. 

       Platforms comparison could be helpful for 

new users of Serverless and may to understand the 

base information of the Serverless platform  

(Table 1) [6]. 

       Amazon Lambda was the first Serverless plat-

form that was presented in 2014 [7]. It defined few 

key aspects like a cost, programming model, deploy, 

security and monitoring. That supports many lan-

guages, e.g., Node.JS, Python, Java, GoLang, .NET. 

Platform use advantage of AWS’s ecosystem [8].  

       Microsoft Azure Functions provide HTTP web-

hooks and integration with Microsoft Azure web 

services. The platform supports C#, F#, Node.JS, 

TypeScript, Batch, Bash, PowerShell and Java. The 

runtime code is open-sourced and available on 

GitHub repository under MIT license [9], [14]. 

        Google Cloud Functions provides basic func-

tions to run Serverless functions that wat written in 

Node.JS for HTTP calls or events from another 

Google Cloud services. The functionality currently 

is limited but expected grow in future [10]. 

Table 1.  Platform comparison 
 AWS Lambda Google Functions Azure Functions 

Programming 

language 

Node.js, Python, 

Java, NET, Go-

lang 

Node.js C#, F#, Node.js, 

PHP, Type-

Script, Batch, 

Bash, Pow-

erShell, Java 

Triggers 18 triggers (with 

S3, DynamoDB) 

3 triggers 6 triggers (with  

Blob, Cosmos 

DB) 

Memory price $0.0000166/GB-s $0.00000165/GB-s $0.000016/GB-s 

Execution 

price 

$0.2 per 1M $0.4 per 1M $0.2 per 1M 

Free Tier First 1М  First 2М  First 1М  

Maximum 

memory  

3008MB 2048MB 1536MB 

Operation 

system(OS) 

Linux Debian 

GNU/Linux 8 

(jessie) 

Windows NT 

CPU per con-

tainer 

2900 MHz,1 core 1.4GHZ 2200 MHz, 2 

Processors 

Maximum 

code size 

50/250MB 

(compressed/ 

uncompressed)  

100/500MB 

(compressed/ 

uncompressed) 

100/500MB 

(compressed/ 

uncompressed) 

Source: compiled by the authors 

According to the table, AWS Lambda offers a 

widest range of programming language [11]. We 

also could see that cost price based on metrics, first 

– the number of invocations by function. Second, the 

time that is taken by a function to execute. Invoca-

tion to the Serverless function is cost-effective in all 

Serverless providers. All providers have similar 

price policy. 

        Each Serverless platform provides different 

programming language support, which developers 

can use for creating function with their own a lan-

guage preference [12]. As interpreted language, we 

can find Node.js for JavaScript and Python runtime 

environment, as most supported. Compiled lan-

guages such as Java and .NET are also supported, 

although there is no built-in web editor for their lan-

guages. The Table 2 shows the languages supported 

by each platform. 

Table 2. Language support comparison 

Programming  

Language 

AWS Google Azure 

Python 2.7, 3.6 2.7 - 

Java 8 - 8 

NodeJs 4.3, 6.10, 

8.10 

6.11, 

5 

6 

NET Core 1, 2 - 1, 2 

Other Golang 

1.x 

- F# 4.6, Experi-

mental(Python, PHP, 

Batch, Bash, Pow-

erShell) 
Source: compiled by the authors 

1.2. Evaluation of Serverless v.s.Virtual  

Machine 

       Serverless does not offer high performance 

computing or a cheap pricing model compared to 

Amazon EC2. Virtual machines in cloud computing 

offers several options for scaling computing re-

sources, through network bandwidth and perfor-

mance, which requires optimal planning, and man-

agement. Serverless provide resource processing for 

lightweight functions without management objec-

tives and offer cost-effective solutions.   

       Amazon, for example, offer a wide range of 

EC2 machines optimized for various task and reach-

es 128 CPU and 3.8TB of memory. AWS Lambda 

provide to launch function thousandth time with 

small amount of memory (up to 3008MB or 2.8GB), 

which can reach to 2.8TB. 

       Serverless is powered by containers, which have 

near zero start-up and run without latency during a 

function life cycle. 

       For this comparison we should use function that 

requested allocate CPU resources to an instance of a 

function with simultaneous calls [13]. Multiplying 

for two-dimension array (matrix) is suitable for this. 

Fig. 1 shows the function execution time with multi-

plying 50; 100; 250; 500 and 1000 elements in each 

array. 

       For each case, several dozens of launches were 

carried out to avoid different nature delays and other 

actions that could lead to errors in the results. The 

Fig. 3 shows the averaged results. It can be noticed 

that the AWS lambda has a slight performance ad-

systems and technologies
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vantage in compare to Google Cloud and Microsoft 

Azure Functions.  

 

Fig. 3. Dependency of execution time on array  

         length for different cloud computing  

providers:  

          1 – Amazon; 2 – Microsoft; 3 – Google 
Source: compiled by the authors 

       Multiplication of multidimensional arrays re-

quires considerable resources. The performance re-

sult of multiplying of two 500 elements arrays fol-

lowed by function calls is presented in Fig. 4.  

 

 
 

Fig. 4. Function bandwidth with concurrent calls: 

1 – Amazon; 2 – Microsoft; 3 – Google 
Source: compiled by the authors 

       The measurements were carried out with differ-

ent numbers of simultaneous calls, from 25 to 500. 

AWS showed an almost linear relationship during 

the call and the worst result with scalability from all 

platforms. Measurements were carried out from all 

platforms. The performance of Azure features is 

very different on other platforms with fewer calls. 

Interestingly, it persists throughout the iterations of 

the test. At the same time, it showed almost lazy de-

pendence with such calls and better results with 

small numbers of calls. 

 

2. PRACTICAL USE OF TECHNOLOGY 

 
There are several areas where Serverless can 

play an important role as in research as well as in a 

commercial using. Image or document processing 

for CDN is applicable for Serverless. Internet of 

Things (IoT) is also one of the use cases for Server-

less, because IoT devices typically have a small 

computing power to process information and they 

need to user remote processing resources. For exam-

ple, there is cooling and another similar process that 

requires constant temperature control. When cooling 

is not working or there are problems with work, 

function can execute live migration of workload 

and/or send signal about problem. 

Advantages: 

       1) Cost: Serverless can be more cost-effective 

than renting or purchasing a fixed quantity of servers 

which generally involves significant periods of un-

derutilization or idle time. It can even be more cost-

efficient than provision. 

       2) Elasticity: in addition, a Serverless means 

that developers and operator do not need to spend 

time for setting up auto scaling or systems. The 

cloud provider is responsible for seamlessly scaling 

the capacity to the demand. 

       3) Small teams of developers are able to run 

code themselves without the dependence upon teams 

of infrastructure and support engineers; more devel-

opers are becoming DevOps skilled and distinctions 

between being a software developer or hardware 

engineer are blurring. 

       4) Productivity: one of the greater benefits in 

implementing a Serverless solution in its ease of use. 

There is little ramp-up time need to begin program-

ming for a Serverless application. Most of this sim-

plicity is thanks to services, provided by cloud pro-

viders that make it easier to implement solutions. 

The programmer does not need to implement or 

work with multithreading or handling HTTP re-

quests in their code.  

Disadvantages: 

       1) Performance: Serverless may suffer greater 

response latency than code that is continuously run-

ning on a dedicated server, virtual machine. This is 

because cloud providers typically “pull down” the 

Serverless code completely when not in use. This 

means that if the runtime (such as Java and .Net 

runtimes) requires amount of time to start up – it 

create additional latency.  

       2) Resource limits: Serverless computing is not 

suited to some computing workloads, such as high-

performance computing, because of the resource 

limits imposed by cloud providers, and because it 

would likely be cheaper to bulk-provision the num-

ber of servers believed to be required at any given 

point in time. 
       3) Monitoring and debugging: diagnosing per-
formance or excessive resource usage problems with 
Serverless code may be more difficult than with tra-
ditional server code, because although entire func-
tions can be timed, there is typically no ability to dig 
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into more detail by attaching profilers, debuggers or 
APM tools. Furthermore, the environment in which 
the code runs is typically not open source, so its per-
formance characteristics cannot be precisely repli-
cated in a local environment. 
       4) Standards: Serverless computing is very new 
and not currently bounded by standards so that port-
ability can be an issue when moving business logic 
from one public cloud to another. Cloud Native 
Computing Foundation (CNCF) is working on de-
veloping a specification with Oracle. 

2.1. Optimization  

       Circuit Breaker Pattern allows a call to an unre-
sponsive system component to be aborted without 
needlessly consuming resources trying to repeatedly 
connect and retry. There will be occasions when 
components are unresponsive and the system should 
be able to handle this without cascading failure. It is 
in situations like this that retry is not beneficial and 
may well have harmful effects if it ends up spinning 
up many cold Lambdas. A circuit breaker is required 
that will identify when a system is in stress and will 
back off. If this is linked with the front-end it would 
become possible for the server to issue a 503 HTTP 
response and the front-end to silently retry after a 
predetermined back-off.  
       Bulkhead pattern effectively isolate components 
of the system that display inconsistent latency. 
These may be Lambdas, which take a variable 
amount of time to complete based on the workload 
or which interact with external systems with an in-
consistent performance profile. 
       As an example, the case study project initially 
had a single function, which handled customer user 
data. The architecture was such, that customer data 
was refreshed and cached from an external system 
during the initial authentication process. However, 
other functions, which needed access to the custom-
er data frequently, would call the customer request-
ing the cached data. The asymmetrical nature of the 
performance profile between the refresh and request 
calls, with the refresh operation suffering signifi-
cantly higher latency than the request call, could 
cause refresh calls to unnecessarily divert requests to 
cold Lambdas.  
        Implementing bulkheads separating high laten-
cy operations from low latency application request 
flows significantly reduced the probability of a given 
request being impacted by cold functions. In real 
terms this required separating the request and refresh 
functionality into separate functions to prevent high 
latency in one part of the system adversely affecting 
another.  
       Appropriate language to Serverless develop-
ment significantly improves latency within some 
parts of the system.  
       Teams responsible for Lambda development 
should use the language best suited to the particular 

service. Whilst this may reduce code reusability, it 
allows for a reduction in latency in system compo-
nents that are highly sensitive to AWS Lambda ini-
tialization timings. Using either Node.js or Python 
Lambdas on front-end facing Lambdas reduces la-
tencies since these languages are less susceptible to 
problems with cold starts and can then offload to 
Lambdas implemented in other languages in a man-
ner, which would not negatively affect the user ex-
perience.  
       As stated as part of the AWS Lambda best prac-
tice documentation “the compiled languages (Java 
and .NET) incur the largest initial start-up cost for a 
container’s first invocation, but show the best per-
formance for subsequent invocations [14]. The in-
terpreted languages (Node.js and Python) have very 
fast initial invocation times compared to the com-
piled languages, but can’t reach the same level of 
maximum performance”. The implication is that la-
tency sensitive applications or those expecting spiky 
traffic should use interpreted runtimes where possi-
ble. It can be further extrapolated that Lambdas 
forming part of the same application can use differ-
ent runtimes depending on the predicted workload 
for a specific component.  
       The warming strategy using functions – is a fi-
nal way to increase productivity that can be used 
with the approaches outlined above. It is used to en-
sure that the appropriate amount of function is al-
ways warm. This approach protects a scheduled 
function implementation that makes bogus calls to 
other function s in the system so that they are forced 
to keep warm. This approach imposes some optimi-
zation requirements, since it must be predetermined, 
which and how much function should be kept warm. 
Although this approach somewhat weakens the goal 
of the system, which should dynamically scale in 
response to demand, it is nevertheless a viable strat-
egy to mitigate the effects of cold function on over-
all latency. It should be noted, that this approach will 
not lead to a significant increase in deployment 
costs, since calls to test communication with the cor-
responding functions should be rarely performed, 
but at some point, it is difficult to predict the re-
quirements for using functions. In this regard, there 
may be a problem associated with large bursts of 
demand, but it can reduce problems when used in 
combination with other methods described in this 
section. 

2.2. Experimental steps 

       TensorFlow is an open library for machine 

learning research and product development, built by 

Google for learning neural networks [15]. Tensor-

Flow offers an API for development for personal 

computers, mobile devices, the web and cloud com-

puting. TensorFlow neural networks are expressed 

as a state of data flow graphs. Each node in the 
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graph represents operations performed using neural 

networks on multidimensional arrays. TensorFlow 

architecture allows deploying at multiple processors 

or graphics processors within the desktop, server or 

mobile device. 

       Before sending data for network training, they 

are pre-processed using “training with a teacher” 

[16]. This process consists of labeling images. This 

is one of the most time-consuming tasks in data 

preparation. For this, the freely distributed Labelimg 

tool (graphical image annotation tool) was used [17], 

which automatically creates an XML file with the 

coordinates of the marked objects in the photo 

(Fig. 5).  

 

Fig. 5. Objects markup – light rectangles with 

bold points in the corners showing  

selected Images 
Source: compiled by the authors 

        After completing the marking of images, we 

proceed to the next task, which separates the test 

data. It is common practice to divide the indicated 

data into a training and test set. 

        The model is trained in the training set, and its 

performance is checked for how well it summarizes 

the data that have never been seen before in the test 

set. The performance of the model on the test suite 

gives an idea of how the model works, and allows 

you to solve problems such as compromises of lead 

and deviations. The general rule is to deploy 90% of 

the data on the training set, and the remaining 10% 

on testing randomly. 

        The TensorFlow Object Detection API was 

used. To continue, it is needed to select the model to 

be trained. The ssdlite_movilenet_v2_coco was cho-

sen for high performance required for work with 

streaming video. 

       The training procedure lasted about 6 hours on a 

regular computer. For more convenience, the data 

were divided into two categories: photos and videos. 

At some point, the process was stopped to check the 

results with TensorBoard. 

       The most important and most valuable is the 

metric of total spending: the smaller the loss, the 

better the module is executed. Losses are calculated 

both on the training kit and on the test kit (Fig. 6), as 

well as on the interpretation of how well the model 

performs on the two sets.  

 

Fig. 6. Total losses:  

1 – errors in training over training steps;  

2 – after some smoothing 
Source: compiled by the authors 

        Losses are estimated not in percentages (unlike 

precision), but as the sum of errors made for each 

example in sets for training or testing. When data is 

smoothed (regularization), there is an increase in 

losses depending on the number of training steps 

(Fig. 7). 

        In the case of neural networks, the loss is usual-

ly negative likelihood (mainly cross-entropy) or re-

sidual sum of squares (or the sum of squares of pre-

diction errors) for classification and regression, re-

spectively. Then, the main goal in the training model 

is to reduce (minimize) the values of the loss func-

tion with respect to the model parameters by chang-

ing the values of the weight vectors using various 

optimization methods. 
 

 
Fig. 7. Losses after data regularization 

           Source: compiled by the authors 

       For example, back distribution in neural net-

works. The loss value means how well or poorly 

defined a model behaves after each iteration of the 

1 
2 
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optimization. Ideally, one would expect a decrease 

in losses after each or several iterations. 

       The accuracy of the model, as a rule, is deter-

mined after studying and fixing the parameters of 

the model and the absence of training. Then, test 

cases are served on the model and the number of 

errors (zero loss) that the model allows is fixed after 

comparing with the real goals (Fig. 8). Then the per-

centage of misclassification is calculated. 

Fig. 8. The identification accuracy of 

        developed software tools 
    Source: compiled by the authors 

       For the equipment of our experiment (without 

using a graphics processor), 1000 training events 

took about 3 hours, and 2000 training stages took 

about 6 hours. Most of the training procedure ends 

after 3 hours, and in the last hour of the experiment, 

there was no real improvement, so it was decided to 

stop the learning process. 

3. CONCLUSIONS

       Function based on Serverless computing can 

process distributed data applications and provide 

quick access to additional compute resources. Serv-

erless computing is an event-driven FaaS technology 

that utilizes third-party technology and servers to 

remove the problem of having to build and maintain 

infrastructure to create an application. 

       Overall, Serverless computing can be used for 

distributed date computing, if divided task is small 

to perform with 1.5-3 GB memory restriction and 

execution time up to 15 minutes.  From this we can 

conclude that Serverless computing is more cost-

effective than processing with traditional virtual ma-

chines because almost zero delay on boot up new 

instances and a charging model only for the execu-

tion time of function instead of paying for an idle 

time of machines. 

       Nowadays, Serverless computing uses contain-

ers with small amount of computing resources. We 

can conclude that in the future there will be more 

functional features with fewer configurations. They 

will be used for solving complex and resource-

intensive computing. 

       The developed software toolkit showed very 

high accuracy of recognition (0.9686) after continu-

ous 3 hour training using regular PC based on low-

cost hardware equipment. 

       Current experiments showed that growing of 

data quantity and time needed for experiment does 

not leads the increasing of recognition accuracy us-

ing TensorFlow library in Serverless implementa-

tion. 

        Experimenting with training of other network 

models to reduce the time and improve the accuracy 

of recognition is the subject of further research. 
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АНОТАЦІЯ   

 Хмарні обчислення дозволили організаціям менше зосередитися на своїй ІТ-інфраструктурі і більше на своїх основ-

них продуктах і послугах. Serverless – це технологія, також відома як функція-як-послуга, яка за необхідності надає поста-

чальнику послуг хмарних обчислень повний контроль над контейнером для обслуговування запитів, на якому виконується 

функція. Як наслідок, архітектури виключають необхідність постійно працюючих систем і слугують обчислювальним про-

цесом, керованим подіями. Serverless-обчислення відкривають нові можливості для архітекторів та розробників, орієнтова-

них на хмарні обчислення. Вона забезпечує спрощену модель програмування для розробки розподілених Cloud-систем, з 

відстороненою інфраструктурою. Serverless обчислення все ще перебувають у зародковому стані та з подальшим розвитком 

моделі будуть створені інструменти, що дозволять розробникам і архітекторам створювати моделі та процеси, щоб більш 

повно використовувати переваги моделі Serverless. У даній роботі розглянуто профіль продуктивності Serverless екосистеми 

в умовах низьких затримок і високої доступності. Представлено результати застосування і тести продуктивності для розпі-

знавання образів з використанням нейронних мереж. У реалізації використовуються відкриті бібліотеки та інструменти: 

TensorFlow для вивчення машинного навчання і LabelImg для підготовки даних. Показана кореляція між кількістю експери-

ментальних навчальних даних і точністю розпізнавання. Для експериментів був розроблений програмний пакет з викорис-

танням скриптової мови програмування Python і технології .Net. Розроблене програмне забезпечення показало відмінну 
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точність розпізнавання використовуючи звичайний комп'ютер з недорогим обладнанням. Взаємодія клієнтської сторони з 

«сервером» здійснюється за допомогою HTTP-запитів. 

Ключові слова: Serverless; хмарні обчислення; функція-як-послуга; Amazon Web Services Lambda; Microsoft Azure 

Cloud Function; Google Cloud Platform Functions 
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АННОТАЦИЯ 

Облачные вычисления позволили организациям меньше сосредоточиться на своей ИТ-инфраструктуре и более на сво-

их основных продуктах и услугах. Serverless -– это технология, также известная как функция-как услуга, при необходимости 

предоставляет поставщику услуг облачных вычислений полный контроль над контейнером для обслуживания запросов, на 

котором выполняется функция. Как следствие, архитектуры исключают необходимость постоянно работающих систем и 

служат вычислительным процессом, управляемым событиями. Serverless-вычисления открывают новые возможности для 

архитекторов и разработчиков, ориентированных на облачные вычисления. Она обеспечивает упрощенную модель про-

граммирования для разработки распределенных Cloud-систем, с отстраненной инфраструктурой. Serverless вычисления все 

еще находятся в зачаточном состоянии и с дальнейшим развитием модели будут созданы инструменты, которые позволят 

разработчикам и архитекторам создавать модели и процессы, более полно использовать преимущества модели Serverless. В 

данной работе рассмотрен профиль производительности Serverless экосистемы в условиях низких задержек и высокой до-

ступности. Представлены результаты применения и тесты производительности для распознавания изображений с использо-

ванием нейронных сетей. В реализации используются открытые библиотеки и инструменты: TensorFlow для изучения ма-

шинного обучения и LabelImg для подготовки данных. Показана корреляция между количеством экспериментальных обу-

чающих данных и точностью распознавания. Для экспериментов был разработан программный пакет с использованием 

скриптового языка программирования Python и технологии. Net. Разработанное программное обеспечение показало отлич-

ную точность распознавания, используя обычный компьютер с недорогим оборудованием. Взаимодействие клиентской 

стороны с «сервером» осуществляется с помощью HTTP-запросов. 

Ключевые слова: Serverless; облачные вычисления; функция как услуга; Amazon Web Services Lambda; Microsoft Az-

ure Cloud Function; Google Cloud Platform Functions 
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