
Applied Aspects of Information Technology 2019; Vol.2 No.1:20–28

20 ISSN 2617-4316 (Print)

 ISSN 2663-7723(Online)

DOI: https://doi.org/10.15276/aait.02.2019.2

UDC 004.42: 004.8: 004.93

PRODUCTIVITY ESTIMATION OF SERVERLESS COMPUTING

 Dmitry V. Kalnauz1)

ORCID: https://orcid.org/0000-0002-8042-1790, dmitrysavchyk@gmail.com

 Viktor A. Speranskiy1)

ORCID: https://orcid.org/0000-0002-8042-1790, speranskiyva@ukr.net
1) Odessa National Polytechnic University, 1, Shevchenko Avenue. Odesa, 65044, Ukraine

ABSTRACT

Cloud computing has enabled organizations to focus less on their IT infrastructure and more on their core products and ser-

vices. In fact, Cloud is no longer viewed as an alternative to hosting infrastructure. Serverless computing is a technology, also known

as function-as-a-service, that gives the cloud provider complete management over the container function run on as necessary to serve

requests. As a result, the architectures remove the need for continuously running systems and serve as event driven computing. Serv-

erless computing presents new opportunities to architects and developers of Cloud-oriented solutions. Primarily, it provides a simpli-

fied programming model for distributed Cloud-based systems development, with the infrastructure abstracted away. It is no longer

the concern of the developer to manage load balancers, provisioning and resource allocation (although system implementers need to

be aware of such things). This reduced focus on operational concerns should allow greater attention to be paid to delivering value,

functionality and an ability to adapt rapidly to changes. Such issues as deployment, monitoring, quality of service and fault tolerance

are moved into the hands of the Cloud provider and still need to be actively considered and managed. Serverless computing is still in

its infancy and while the model matures further, tools will be created to allow developers and architects to create patterns and pro-

cesses to fully exploit the advantages of the Serverless model. This paper explores the performance profile of a Serverless ecosystem

under low latency and high availability. The results of application and performance tests for image recognition by using neural net-

works are presented. The proposed implementation uses open source libraries and tools: TensorFlow for the study of machine learn-

ing and LabelImg for data preparation. A correlation between the amount of experimental training data and recognition accuracy is

studied and shown. For experiments, the software package was developed using the Python scripting programming language and .Net

technology. The developed software showed excellent accuracy of recognition using regular computer with low-cost hardware. Inter-

action of the client side with the “server” is carried out using HTTP-requests in any browser with low-speed network connection.

Keywords: Serverless; Cloud Computing; FaaS; Amazon Web Services Lambda; Microsoft Azure Cloud Function; Google

Cloud Platform Functions

For citation: Kalnauz D. V., Speranskiy V. A. Productivity Estimation of Serverless Computing. Applied Aspects of Information Technology.

2019; Vol.2 No.1:20–28. DOI: https://doi.org/10.15276/aait.02.2019.2

INTRODUCTION

Serverless is a leading technology, since it

working physically on a server, but it does not need

to configure infrastructure. Serverless can be distin-

guished among such an event-oriented architecture

and function as a service (Function-as-a-Service)

[1]. We can see that the Serverless architecture of-

fers application computing for the microservices in

which the event is caused by other systems and re-

sources, and the micro-services are described as

formal syntax written in program functions. A new

entry in the database, repository allocation, or Inter-

net notifications is a variety of examples of events

that may simply be messages or will be processed.

Sometimes an event is created with a certain amount

of time with a subscription, but in many cases, a sig-

nificant amount of event messages must be pro-

cessed immediately. Horizontal scaling for pro-

cessing simultaneous queries is one for the charac-

teristics of cloud computing [2]. New event message

handled in an instance of the isolation function and

few examiners are needed when several event mes-

sages are created simultaneously.

© Kalnauz D., Speranskiy V., 2019

The event created by mobile application, pro-

cessed with light weights, but the amount of incom-

ing traffic is usually unpredictable, so such programs

must be deployed on a specific platform, build with

using dynamic redundancy and resource manage-

ment, such as Serverless computing [3].

On the one hand, it provides developers with a

simplified programming model for creating cloud

applications, which eliminates most, if not all, op-

erational problems; it reduces the cost of deploying

cloud code by charging for execution time, rather

than for resource allocation; and this is a platform

for rapid deployment of small pieces of cloudy code.
Serverless model provides new capabilities that

make writing more scalable microservices easier and

cost effective as the next step in evolution of cloud

computing architectures that can be used for differ-

ent technology tasks. There is a series of tasks de-

voted to development of easy and effective solutions

with use of modern cloud functions. However, most

of them cannot be tested using regular low-cost

equipment.
The aim of the work is to estimate the produc-

tivity of Serverless computing for image recognition

tasks. To attain the aim, it is needed to solve the next

tasks: perform a review of the modern cloud compu-

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

Systems analysis, applied information
systems and technologies

Applied Aspects of Information Technology 2019; Vol.2 No.1:20–28

ISSN 2617-4316 (Print) 21

ISSN 2663-7723(Online)

ting technologies and develop corresponding soft-

ware tools, that can be used both on regular PC and

cloud platform.

1. TECHNOLOGY INTRODUCTION

1.1. State of art of Serverless Computing

Someone thinks that servers are not needed for

Serverless computing [4]. This is actually not true.

Serverless functions still use physical servers. To

explain this, we use an example of a traditional n-

tier application with server logic and show how it

will differ using Serverless architecture (Fig. 1).

 In a Serverless architecture, several things can

change including the server and the database. An

example of this change would be creating a cloud-

provisioned API and mapping specific method re-

quests to different functions.

Fig. 1. Traditional architecture in which server

 provide and managed by developer
Source: compiled by the authors

 Instead of having one server, our application

now has functions for each piece of functionality

and cloud-provisioned servers that are created based

on demand. We could have a function for searching

for a book, and a function for purchasing a book. We

also might choose to split our database into two sep-

arate databases that correspond to the two functions

(Fig. 2).

Fig. 2. Serverless architecture where servers are

 scale up and down based on demand
Source: compiled by the authors

 There are a couple of differences between the

two architecture diagrams. One is that in the on-

premises example, you have one server that needs to

be load-balanced and auto-scaled by the developer.

In the cloud solution, the application is run in state-

less compute containers that are brought up and

down by triggered functions. Another difference is

the separation of services in the Serverless example

[5].
 Triggers are simply events. They are services
and HTTP requests that create events to start up
functions for response. Triggers are usually set with-
in the function console or the command-line inter-

face and are typically created within the same cloud
provider’s environment. A function must have exact-
ly one trigger. There are three types of triggers:
HTTP trigger, Database trigger and Object Storage
trigger.
 1) HTTP Trigger is a simple but provide rich
format for call function with various content type,
such as a files, text, JSON, and PUT, POST and
DELETE HTTP methods.

2) Database Trigger call function when there is an
insertion, modification or deletion of any record in a
table, which behaves like a stack collection. Google
provide pub/sub trigger in Serverless platform and it
would be exchangeable by database trigger because
Google Function does not have database trigger.

3) Storage Object Trigger.
 In AWS, a trigger can be an HTTP request or a
call to another AWS service. Azure functions also
use service triggers, but they also capture the idea of
bindings. Input and output bindings offer a declara-
tive way to connect to the data of your code. Bind-
ings are not similar to triggers, as you, as a develop-
er, specify connection strings and other properties in
your configuration functions. Unlike launching,
bindings are optional, and a function can have mul-
tiple bindings.
 An example of a program with a trigger is the
record in the API Query Tab. We have a table in
Azure storing information about employees and
whenever a POST request comes with new infor-
mation about employee and we want add another
row in the table. We can do this by running the
HTTP Trigger, the Azure function, and the Tabbed
output bindings.
 By using the trigger and bindings, we can write
more general code, which does not make the func-
tion of relying on the details of the services with
which it interacts. Information about incoming
events from services is introduced into our function.
Data output to another service, for example, adding
a row to a table in the Azure tables’ repository, may
be the execution of using the value that returns to
our Function. The Trigger and HTTP bindings have
the name of the authority, Please Act as an Identifier
that will be used in the Functions Code to access the
trigger and accessory. The trigger and bindings can
be configured on the Azure Functions portal integra-
tion tab. This configuration is displayed in the func-
tion JSON file in the function directory. This file can
also be manually configured in Extension Editor.
 Serverless computing calls can support distribut-
ed data processing with bandwidth, latency, and dis-
tributed computing performance. There are certain
limitations that we need to know before using the
function, for example, there are several event han-
dlers:
1) HTTP, Object Storage and Database;

2) Not large amount of memory – from 512 MB to 3

GB of memory per container;

systems and technologies
Systems analysis, applied information

Applied Aspects of Information Technology 2019; Vol. 2 No.1:20–28

22 ISSN 2617-4316 (Print)

 ISSN 2663-7723 (Online)

3) Maximum time allowed for the function is al-

lowed from 5 minutes to 10 minutes;

4) 500 MB cache.

 Platforms comparison could be helpful for

new users of Serverless and may to understand the

base information of the Serverless platform

(Table 1) [6].

 Amazon Lambda was the first Serverless plat-

form that was presented in 2014 [7]. It defined few

key aspects like a cost, programming model, deploy,

security and monitoring. That supports many lan-

guages, e.g., Node.JS, Python, Java, GoLang, .NET.

Platform use advantage of AWS’s ecosystem [8].

 Microsoft Azure Functions provide HTTP web-

hooks and integration with Microsoft Azure web

services. The platform supports C#, F#, Node.JS,

TypeScript, Batch, Bash, PowerShell and Java. The

runtime code is open-sourced and available on

GitHub repository under MIT license [9], [14].

 Google Cloud Functions provides basic func-

tions to run Serverless functions that wat written in

Node.JS for HTTP calls or events from another

Google Cloud services. The functionality currently

is limited but expected grow in future [10].

Table 1. Platform comparison
 AWS Lambda Google Functions Azure Functions

Programming

language

Node.js, Python,

Java, NET, Go-

lang

Node.js C#, F#, Node.js,

PHP, Type-

Script, Batch,

Bash, Pow-

erShell, Java

Triggers 18 triggers (with

S3, DynamoDB)

3 triggers 6 triggers (with

Blob, Cosmos

DB)

Memory price $0.0000166/GB-s $0.00000165/GB-s $0.000016/GB-s

Execution

price

$0.2 per 1M $0.4 per 1M $0.2 per 1M

Free Tier First 1М First 2М First 1М

Maximum

memory

3008MB 2048MB 1536MB

Operation

system(OS)

Linux Debian

GNU/Linux 8

(jessie)

Windows NT

CPU per con-

tainer

2900 MHz,1 core 1.4GHZ 2200 MHz, 2

Processors

Maximum

code size

50/250MB

(compressed/

uncompressed)

100/500MB

(compressed/

uncompressed)

100/500MB

(compressed/

uncompressed)

Source: compiled by the authors

According to the table, AWS Lambda offers a

widest range of programming language [11]. We

also could see that cost price based on metrics, first

– the number of invocations by function. Second, the

time that is taken by a function to execute. Invoca-

tion to the Serverless function is cost-effective in all

Serverless providers. All providers have similar

price policy.

 Each Serverless platform provides different

programming language support, which developers

can use for creating function with their own a lan-

guage preference [12]. As interpreted language, we

can find Node.js for JavaScript and Python runtime

environment, as most supported. Compiled lan-

guages such as Java and .NET are also supported,

although there is no built-in web editor for their lan-

guages. The Table 2 shows the languages supported

by each platform.

Table 2. Language support comparison

Programming

Language

AWS Google Azure

Python 2.7, 3.6 2.7 -

Java 8 - 8

NodeJs 4.3, 6.10,

8.10

6.11,

5

6

NET Core 1, 2 - 1, 2

Other Golang

1.x

- F# 4.6, Experi-

mental(Python, PHP,

Batch, Bash, Pow-

erShell)
Source: compiled by the authors

1.2. Evaluation of Serverless v.s.Virtual

Machine

 Serverless does not offer high performance

computing or a cheap pricing model compared to

Amazon EC2. Virtual machines in cloud computing

offers several options for scaling computing re-

sources, through network bandwidth and perfor-

mance, which requires optimal planning, and man-

agement. Serverless provide resource processing for

lightweight functions without management objec-

tives and offer cost-effective solutions.

 Amazon, for example, offer a wide range of

EC2 machines optimized for various task and reach-

es 128 CPU and 3.8TB of memory. AWS Lambda

provide to launch function thousandth time with

small amount of memory (up to 3008MB or 2.8GB),

which can reach to 2.8TB.

 Serverless is powered by containers, which have

near zero start-up and run without latency during a

function life cycle.

 For this comparison we should use function that

requested allocate CPU resources to an instance of a

function with simultaneous calls [13]. Multiplying

for two-dimension array (matrix) is suitable for this.

Fig. 1 shows the function execution time with multi-

plying 50; 100; 250; 500 and 1000 elements in each

array.

 For each case, several dozens of launches were

carried out to avoid different nature delays and other

actions that could lead to errors in the results. The

Fig. 3 shows the averaged results. It can be noticed

that the AWS lambda has a slight performance ad-

systems and technologies
Systems analysis, applied information

Applied Aspects of Information Technology 2019; Vol.2 No.1:20–28

ISSN 2617-4316 (Print) 23

ISSN 2663-7723(Online)

vantage in compare to Google Cloud and Microsoft

Azure Functions.

Fig. 3. Dependency of execution time on array

 length for different cloud computing

providers:

 1 – Amazon; 2 – Microsoft; 3 – Google
Source: compiled by the authors

 Multiplication of multidimensional arrays re-

quires considerable resources. The performance re-

sult of multiplying of two 500 elements arrays fol-

lowed by function calls is presented in Fig. 4.

Fig. 4. Function bandwidth with concurrent calls:

1 – Amazon; 2 – Microsoft; 3 – Google
Source: compiled by the authors

 The measurements were carried out with differ-

ent numbers of simultaneous calls, from 25 to 500.

AWS showed an almost linear relationship during

the call and the worst result with scalability from all

platforms. Measurements were carried out from all

platforms. The performance of Azure features is

very different on other platforms with fewer calls.

Interestingly, it persists throughout the iterations of

the test. At the same time, it showed almost lazy de-

pendence with such calls and better results with

small numbers of calls.

2. PRACTICAL USE OF TECHNOLOGY

There are several areas where Serverless can

play an important role as in research as well as in a

commercial using. Image or document processing

for CDN is applicable for Serverless. Internet of

Things (IoT) is also one of the use cases for Server-

less, because IoT devices typically have a small

computing power to process information and they

need to user remote processing resources. For exam-

ple, there is cooling and another similar process that

requires constant temperature control. When cooling

is not working or there are problems with work,

function can execute live migration of workload

and/or send signal about problem.

Advantages:

 1) Cost: Serverless can be more cost-effective

than renting or purchasing a fixed quantity of servers

which generally involves significant periods of un-

derutilization or idle time. It can even be more cost-

efficient than provision.

 2) Elasticity: in addition, a Serverless means

that developers and operator do not need to spend

time for setting up auto scaling or systems. The

cloud provider is responsible for seamlessly scaling

the capacity to the demand.

 3) Small teams of developers are able to run

code themselves without the dependence upon teams

of infrastructure and support engineers; more devel-

opers are becoming DevOps skilled and distinctions

between being a software developer or hardware

engineer are blurring.

 4) Productivity: one of the greater benefits in

implementing a Serverless solution in its ease of use.

There is little ramp-up time need to begin program-

ming for a Serverless application. Most of this sim-

plicity is thanks to services, provided by cloud pro-

viders that make it easier to implement solutions.

The programmer does not need to implement or

work with multithreading or handling HTTP re-

quests in their code.

Disadvantages:

 1) Performance: Serverless may suffer greater

response latency than code that is continuously run-

ning on a dedicated server, virtual machine. This is

because cloud providers typically “pull down” the

Serverless code completely when not in use. This

means that if the runtime (such as Java and .Net

runtimes) requires amount of time to start up – it

create additional latency.

 2) Resource limits: Serverless computing is not

suited to some computing workloads, such as high-

performance computing, because of the resource

limits imposed by cloud providers, and because it

would likely be cheaper to bulk-provision the num-

ber of servers believed to be required at any given

point in time.
 3) Monitoring and debugging: diagnosing per-
formance or excessive resource usage problems with
Serverless code may be more difficult than with tra-
ditional server code, because although entire func-
tions can be timed, there is typically no ability to dig

systems and technologies
Systems analysis, applied information

Applied Aspects of Information Technology 2019; Vol. 2 No.1:20–28

24 ISSN 2617-4316 (Print)

 ISSN 2663-7723 (Online)

into more detail by attaching profilers, debuggers or
APM tools. Furthermore, the environment in which
the code runs is typically not open source, so its per-
formance characteristics cannot be precisely repli-
cated in a local environment.
 4) Standards: Serverless computing is very new
and not currently bounded by standards so that port-
ability can be an issue when moving business logic
from one public cloud to another. Cloud Native
Computing Foundation (CNCF) is working on de-
veloping a specification with Oracle.

2.1. Optimization

 Circuit Breaker Pattern allows a call to an unre-
sponsive system component to be aborted without
needlessly consuming resources trying to repeatedly
connect and retry. There will be occasions when
components are unresponsive and the system should
be able to handle this without cascading failure. It is
in situations like this that retry is not beneficial and
may well have harmful effects if it ends up spinning
up many cold Lambdas. A circuit breaker is required
that will identify when a system is in stress and will
back off. If this is linked with the front-end it would
become possible for the server to issue a 503 HTTP
response and the front-end to silently retry after a
predetermined back-off.
 Bulkhead pattern effectively isolate components
of the system that display inconsistent latency.
These may be Lambdas, which take a variable
amount of time to complete based on the workload
or which interact with external systems with an in-
consistent performance profile.
 As an example, the case study project initially
had a single function, which handled customer user
data. The architecture was such, that customer data
was refreshed and cached from an external system
during the initial authentication process. However,
other functions, which needed access to the custom-
er data frequently, would call the customer request-
ing the cached data. The asymmetrical nature of the
performance profile between the refresh and request
calls, with the refresh operation suffering signifi-
cantly higher latency than the request call, could
cause refresh calls to unnecessarily divert requests to
cold Lambdas.
 Implementing bulkheads separating high laten-
cy operations from low latency application request
flows significantly reduced the probability of a given
request being impacted by cold functions. In real
terms this required separating the request and refresh
functionality into separate functions to prevent high
latency in one part of the system adversely affecting
another.
 Appropriate language to Serverless develop-
ment significantly improves latency within some
parts of the system.
 Teams responsible for Lambda development
should use the language best suited to the particular

service. Whilst this may reduce code reusability, it
allows for a reduction in latency in system compo-
nents that are highly sensitive to AWS Lambda ini-
tialization timings. Using either Node.js or Python
Lambdas on front-end facing Lambdas reduces la-
tencies since these languages are less susceptible to
problems with cold starts and can then offload to
Lambdas implemented in other languages in a man-
ner, which would not negatively affect the user ex-
perience.
 As stated as part of the AWS Lambda best prac-
tice documentation “the compiled languages (Java
and .NET) incur the largest initial start-up cost for a
container’s first invocation, but show the best per-
formance for subsequent invocations [14]. The in-
terpreted languages (Node.js and Python) have very
fast initial invocation times compared to the com-
piled languages, but can’t reach the same level of
maximum performance”. The implication is that la-
tency sensitive applications or those expecting spiky
traffic should use interpreted runtimes where possi-
ble. It can be further extrapolated that Lambdas
forming part of the same application can use differ-
ent runtimes depending on the predicted workload
for a specific component.
 The warming strategy using functions – is a fi-
nal way to increase productivity that can be used
with the approaches outlined above. It is used to en-
sure that the appropriate amount of function is al-
ways warm. This approach protects a scheduled
function implementation that makes bogus calls to
other function s in the system so that they are forced
to keep warm. This approach imposes some optimi-
zation requirements, since it must be predetermined,
which and how much function should be kept warm.
Although this approach somewhat weakens the goal
of the system, which should dynamically scale in
response to demand, it is nevertheless a viable strat-
egy to mitigate the effects of cold function on over-
all latency. It should be noted, that this approach will
not lead to a significant increase in deployment
costs, since calls to test communication with the cor-
responding functions should be rarely performed,
but at some point, it is difficult to predict the re-
quirements for using functions. In this regard, there
may be a problem associated with large bursts of
demand, but it can reduce problems when used in
combination with other methods described in this
section.

2.2. Experimental steps

 TensorFlow is an open library for machine

learning research and product development, built by

Google for learning neural networks [15]. Tensor-

Flow offers an API for development for personal

computers, mobile devices, the web and cloud com-

puting. TensorFlow neural networks are expressed

as a state of data flow graphs. Each node in the

systems and technologies
Systems analysis, applied information

Applied Aspects of Information Technology 2019; Vol.2 No.1:20–28

ISSN 2617-4316 (Print) 25

ISSN 2663-7723(Online)

graph represents operations performed using neural

networks on multidimensional arrays. TensorFlow

architecture allows deploying at multiple processors

or graphics processors within the desktop, server or

mobile device.

 Before sending data for network training, they

are pre-processed using “training with a teacher”

[16]. This process consists of labeling images. This

is one of the most time-consuming tasks in data

preparation. For this, the freely distributed Labelimg

tool (graphical image annotation tool) was used [17],

which automatically creates an XML file with the

coordinates of the marked objects in the photo

(Fig. 5).

Fig. 5. Objects markup – light rectangles with

bold points in the corners showing

selected Images
Source: compiled by the authors

 After completing the marking of images, we

proceed to the next task, which separates the test

data. It is common practice to divide the indicated

data into a training and test set.

 The model is trained in the training set, and its

performance is checked for how well it summarizes

the data that have never been seen before in the test

set. The performance of the model on the test suite

gives an idea of how the model works, and allows

you to solve problems such as compromises of lead

and deviations. The general rule is to deploy 90% of

the data on the training set, and the remaining 10%

on testing randomly.

 The TensorFlow Object Detection API was

used. To continue, it is needed to select the model to

be trained. The ssdlite_movilenet_v2_coco was cho-

sen for high performance required for work with

streaming video.

 The training procedure lasted about 6 hours on a

regular computer. For more convenience, the data

were divided into two categories: photos and videos.

At some point, the process was stopped to check the

results with TensorBoard.

 The most important and most valuable is the

metric of total spending: the smaller the loss, the

better the module is executed. Losses are calculated

both on the training kit and on the test kit (Fig. 6), as

well as on the interpretation of how well the model

performs on the two sets.

Fig. 6. Total losses:

1 – errors in training over training steps;

2 – after some smoothing
Source: compiled by the authors

 Losses are estimated not in percentages (unlike

precision), but as the sum of errors made for each

example in sets for training or testing. When data is

smoothed (regularization), there is an increase in

losses depending on the number of training steps

(Fig. 7).

 In the case of neural networks, the loss is usual-

ly negative likelihood (mainly cross-entropy) or re-

sidual sum of squares (or the sum of squares of pre-

diction errors) for classification and regression, re-

spectively. Then, the main goal in the training model

is to reduce (minimize) the values of the loss func-

tion with respect to the model parameters by chang-

ing the values of the weight vectors using various

optimization methods.

Fig. 7. Losses after data regularization

 Source: compiled by the authors

 For example, back distribution in neural net-

works. The loss value means how well or poorly

defined a model behaves after each iteration of the

1
2

Systems analysis, applied information
systems and technologies

Applied Aspects of Information Technology 2019; Vol. 2 No.1:20–28

26 ISSN 2617-4316 (Print)

 ISSN 2663-7723 (Online)

optimization. Ideally, one would expect a decrease

in losses after each or several iterations.

 The accuracy of the model, as a rule, is deter-

mined after studying and fixing the parameters of

the model and the absence of training. Then, test

cases are served on the model and the number of

errors (zero loss) that the model allows is fixed after

comparing with the real goals (Fig. 8). Then the per-

centage of misclassification is calculated.

Fig. 8. The identification accuracy of

 developed software tools
 Source: compiled by the authors

 For the equipment of our experiment (without

using a graphics processor), 1000 training events

took about 3 hours, and 2000 training stages took

about 6 hours. Most of the training procedure ends

after 3 hours, and in the last hour of the experiment,

there was no real improvement, so it was decided to

stop the learning process.

3. CONCLUSIONS

 Function based on Serverless computing can

process distributed data applications and provide

quick access to additional compute resources. Serv-

erless computing is an event-driven FaaS technology

that utilizes third-party technology and servers to

remove the problem of having to build and maintain

infrastructure to create an application.

 Overall, Serverless computing can be used for

distributed date computing, if divided task is small

to perform with 1.5-3 GB memory restriction and

execution time up to 15 minutes. From this we can

conclude that Serverless computing is more cost-

effective than processing with traditional virtual ma-

chines because almost zero delay on boot up new

instances and a charging model only for the execu-

tion time of function instead of paying for an idle

time of machines.

 Nowadays, Serverless computing uses contain-

ers with small amount of computing resources. We

can conclude that in the future there will be more

functional features with fewer configurations. They

will be used for solving complex and resource-

intensive computing.

 The developed software toolkit showed very

high accuracy of recognition (0.9686) after continu-

ous 3 hour training using regular PC based on low-

cost hardware equipment.

 Current experiments showed that growing of

data quantity and time needed for experiment does

not leads the increasing of recognition accuracy us-

ing TensorFlow library in Serverless implementa-

tion.

 Experimenting with training of other network

models to reduce the time and improve the accuracy

of recognition is the subject of further research.

REFERENCES

1. Wang, L., Li, M., Zhang, Y., Ristenpart, T. & Swift, M. “Peeking behind the curtains of Serverless

platforms”. Proceedings of USENIX Annual Technical Conference (USENIX ATC’18). June 2018. p. 133–

146.

2. Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V. & Suter, P “Serverless computing:

Current trends and open problems.” In Research Advances in Cloud Computing. Publ. Springer. Singapore:

2017. p.1–20.

3. Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C. C., Khandelwal, A., Pu, Q. & Gonzalez, J. E.

“Cloud Programming Simplified: A Berkeley View on Serverless Computing”. arXiv preprint

arXiv:1902.03383. 2019.

4. Frazer Jamieson, Losing the server? – Available from: –

https://www.bcs.org/content/conWebDoc/58491. Retrieved – March 1. 2019.

5. McGrath, G. & Brenner, P. R. “Serverless computing: Design, implementation, and performance”. In

2017 IEEE 37-th International Conference on Distributed Computing Systems Workshops (ICDCSW). June

2017. p. 405–410. IEEE.

H. Lee, K. Satyam & G. Fox. “Evaluation of Production Serverless Computing Environments”. In 2018

IEEE 11th International Conference on Cloud Computing (CLOUD). San Francisco: CA, USA. 2018. p.

442–450. DOI: https://doi.org/ 10.1109/CLOUD.2018.00062.

6. “Introducing AWS Lambda”. Available from: https://aws.amazon.com/ru/about-aws/whats-

new/2014/11/13/introducing-aws-lambda. – Retrieved March 1. 2019.

systems and technologies
Systems analysis, applied information

https://doi.org/

Applied Aspects of Information Technology 2019; Vol.2 No.1:20–28

ISSN 2617-4316 (Print) 27

ISSN 2663-7723(Online)

7. Hegde, M., Petrenko, M., Smit, C., Zhang, H., Pilone, P., Zasorin, A. A., & Pham, L. “Giovanni in

the Cloud: Earth Science Data Exploration in Amazon Web Services”. In AGU Fall Meeting Abstracts. De-

cember 2017. p.17–24,

8. “Ron Miller, Microsoft answers AWS Lambda’s event-triggered Serverless apps with Azure Func-

tions. – Available from: https://techcrunch.com/2016/03/31/microsoft-answers-aws-lambdas-event-triggered-

serverless-apps-with-azure-functions/. – Retrieved March 1. 2019.

 Malawski, M., Gajek, A., Zima, A., Balis, B., & Figiela, K. (2017). “Serverless execution of scientific work-

flows: Experiments with HyperFlow”, AWS lambda and Google cloud functions. Future Generation Com-

puter Systems. p.1–15. DOI: https://doi.org/10.1016/j.future. 2017.10.029.

9. Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau, A. C. & Arpaci-

Dusseau, R. H. “Serverless computation with openlambda”. In 8-th USENIX Workshop on Hot Topics in

Cloud Computing (HotCloud 16). 2016. p.1–7.

10. Ghodsi, A., Shankar, S., Paranjpye, S., Xin, S. & Zaharia, M. “Serverless execution of code using

cluster resources”. U.S. Patent Application. 2018; No. 15/581: 987.

11. Geng, X., Ma, O., Pei, Y., Xu, Z., Zeng, W. & Zou, J. “Research on Early Warning System of Pow-

er Network Overloading Under Serverless Architecture”. In 2018 2-nd IEEE Conference on Energy Internet

and Energy System Integration (EI2). October 2018. p. 1–6. IEEE.

12. Rosenbaum, S. “Serverless computing in Azure with. NET”. Packt Publishing. 2017. 468 p.

13. Géron, Aurélien. “Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools,

and techniques to build intelligent systems”. O'Reilly Media, Inc.

14. Ao, L., Izhikevich, L., Voelker, G. M. & Porter, G. “Sprocket: A Serverless Video Processing

Framework”. In Proceedings of the ACM Symposium on Cloud Computing. October 2018. p. 263–274.

ACM.

15. Prentice, C., & Karakonstantis, G. “Smart Office System with Face Detection at the Edge”. In 2018

IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Com-

puting & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDC om/IOP/SCI). October 2018. p. 88–93. IEEE.

Conflicts of Interest: the authors declare no conflict of interest

Received 20.12.2018

Received after revision 14.02.2019

Accepted 20.02.2019

DOI: https://doi.org/10.15276/aait.02.2019.2

УДК 004.42: 004.8: 004.93

ОЦІНКА ПРОДУКТИВНОСТІ БЕЗСЕРВЕРНІХ ОБЧИСЛЕНЬ

 Дмитро Валерійович Калнауз1

 ORCID: https://orcid.org/0000-0002-9970-6833, dmitrysavchyk@gmail.com

Віктор Олександрович Сперанський1)

 ORCID: https://orcid.org/ 0000-0002-8042-1790, speranskiyva@ukr.net
1) Oдеський національный політехнічний університет, пр-т Шевченка, 1. Одеса, 65044, Україна

АНОТАЦІЯ

 Хмарні обчислення дозволили організаціям менше зосередитися на своїй ІТ-інфраструктурі і більше на своїх основ-

них продуктах і послугах. Serverless – це технологія, також відома як функція-як-послуга, яка за необхідності надає поста-

чальнику послуг хмарних обчислень повний контроль над контейнером для обслуговування запитів, на якому виконується

функція. Як наслідок, архітектури виключають необхідність постійно працюючих систем і слугують обчислювальним про-

цесом, керованим подіями. Serverless-обчислення відкривають нові можливості для архітекторів та розробників, орієнтова-

них на хмарні обчислення. Вона забезпечує спрощену модель програмування для розробки розподілених Cloud-систем, з

відстороненою інфраструктурою. Serverless обчислення все ще перебувають у зародковому стані та з подальшим розвитком

моделі будуть створені інструменти, що дозволять розробникам і архітекторам створювати моделі та процеси, щоб більш

повно використовувати переваги моделі Serverless. У даній роботі розглянуто профіль продуктивності Serverless екосистеми

в умовах низьких затримок і високої доступності. Представлено результати застосування і тести продуктивності для розпі-

знавання образів з використанням нейронних мереж. У реалізації використовуються відкриті бібліотеки та інструменти:

TensorFlow для вивчення машинного навчання і LabelImg для підготовки даних. Показана кореляція між кількістю експери-

ментальних навчальних даних і точністю розпізнавання. Для експериментів був розроблений програмний пакет з викорис-

танням скриптової мови програмування Python і технології .Net. Розроблене програмне забезпечення показало відмінну

systems and technologies
Systems analysis, applied information

https://doi.org/

Applied Aspects of Information Technology 2019; Vol. 2 No.1:20–28

28 ISSN 2617-4316 (Print)

 ISSN 2663-7723 (Online)

точність розпізнавання використовуючи звичайний комп'ютер з недорогим обладнанням. Взаємодія клієнтської сторони з

«сервером» здійснюється за допомогою HTTP-запитів.

Ключові слова: Serverless; хмарні обчислення; функція-як-послуга; Amazon Web Services Lambda; Microsoft Azure

Cloud Function; Google Cloud Platform Functions

DOI: https://doi.org/10.15276/aait.02.2019.2

УДК 004.42: 004.8: 004.93

ОЦЕНКА ПРОДУКТИВНОСТИ БЕССЕРВЕРНЫХ ВЫЧИСЛЕНИЙ

 Дмитрий Валерьевич Калнауз1)

 ORCID: https://orcid.org/ 0000-0002-9970-6833, dmitrysavchyk@gmail.com

 Виктор Александрович Сперанский1)

 ORCID: https://orcid.org/0000-0002-8042-1790, speranskiyva@ukr.net
1) Одесский национальний политехнический университет, пр-т Шевченко, 1. Одесса, 65044, Украина

АННОТАЦИЯ

Облачные вычисления позволили организациям меньше сосредоточиться на своей ИТ-инфраструктуре и более на сво-

их основных продуктах и услугах. Serverless -– это технология, также известная как функция-как услуга, при необходимости

предоставляет поставщику услуг облачных вычислений полный контроль над контейнером для обслуживания запросов, на

котором выполняется функция. Как следствие, архитектуры исключают необходимость постоянно работающих систем и

служат вычислительным процессом, управляемым событиями. Serverless-вычисления открывают новые возможности для

архитекторов и разработчиков, ориентированных на облачные вычисления. Она обеспечивает упрощенную модель про-

граммирования для разработки распределенных Cloud-систем, с отстраненной инфраструктурой. Serverless вычисления все

еще находятся в зачаточном состоянии и с дальнейшим развитием модели будут созданы инструменты, которые позволят

разработчикам и архитекторам создавать модели и процессы, более полно использовать преимущества модели Serverless. В

данной работе рассмотрен профиль производительности Serverless экосистемы в условиях низких задержек и высокой до-

ступности. Представлены результаты применения и тесты производительности для распознавания изображений с использо-

ванием нейронных сетей. В реализации используются открытые библиотеки и инструменты: TensorFlow для изучения ма-

шинного обучения и LabelImg для подготовки данных. Показана корреляция между количеством экспериментальных обу-

чающих данных и точностью распознавания. Для экспериментов был разработан программный пакет с использованием

скриптового языка программирования Python и технологии. Net. Разработанное программное обеспечение показало отлич-

ную точность распознавания, используя обычный компьютер с недорогим оборудованием. Взаимодействие клиентской

стороны с «сервером» осуществляется с помощью HTTP-запросов.

Ключевые слова: Serverless; облачные вычисления; функция как услуга; Amazon Web Services Lambda; Microsoft Az-

ure Cloud Function; Google Cloud Platform Functions

ABOUT THE AUTHORS

Dmitry V. Kalnauz, Department of Computerized Control Systems, Odessa National Polytechnic University, 1, Shevchenko Avenue. Odesa, 65044,
Ukraine

dmitrysavchyk@gmail.com. ORCID: https://orcid.org/ 0000-0002-8042-1790

Калнауз, Дмитро Валерійович, каф. Комп’ютеризованих систем управління.. Oдеський національный політехнічний університет, пр-т

Шевченка, 1. Одеса, 65044, Україна

Viktor A. Speranskiy, PhD (Eng), Associate Professor, Associate Professor at the Department of Computerized Control Systems, Odessa National

Polytechnic University, 1, Shevchenko Avenue. Odesa, 65044, Ukraine

speranskiyva@ukr.net.ORCID: https://orcid.org/0000-0002-8042-1790.

Віктор Олександрович Сперанський, кандидат техніч. наук, доцент каф. Комп’ютеризованих систем управління.Oдеський національний
політехнічний університет, пр-т Шевченка, 1. Одеса, 65044, Україна

Systems analysis, applied information
systems and technologies

