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ABSTRACT

This work is dedicated to the study of various discrete approximation methods for continuous links, which is the obligatory step
in the digital control systems synthesis for continuous dynamic objects and the guidelines development for performing these opera-
tions using the MATLAB programming system. The paper investigates such sampling methods as pulse-, step-, and linearly invariant
Z-transformations, substitution methods based on the usage of numerical integration various methods and the zero-pole correspond-
ence method. The paper presents examples of using numerical and symbolic instruments of the MATLAB to perform these opera-
tions, offers an m-function improved version for continuous systems discretization by the zero-pole correspondence method, which
allows this method to approach as step-invariant as linearly invariant Z-transformations; programs for continuous objects discrete
approximation in symbolic form have been developed, which allows to perform comparative analysis of sampling methods and sys-
tems synthesized with their help and to study quantization period influence on sampling accuracy by analytical methods. A compari-
son of discrete transfer functions obtained by different methods and the corresponding reactions in time to different signals is per-
formed. Using of the developed programs it is determined that the pulse-invariant Z-transformation can be used only when the input
of a continuous object receives pulse signals, and the linear-invariant transformation should be used for intermittent signals at the
input. The paper also presents an algorithm for applying the Tustin method, which corresponds to the replacement of analogue inte-
gration by numerical integration using trapezoidal method. It is shown that the Tustin method is the most suitable for sampling of
first-order regulators with output signal limitation. The article also considers the zero-pole correspondence method and shows that it
has the highest accuracy among the rough methods of discrete approximation. Based on the performed research, recommendations
for the use of these methods in the synthesis of control systems for continuous dynamic objects are given.
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INTRODUCTION o deS|gn continuous contro_l devices based on a

continuous controlled object, and then convert

Usually, in most electromechanical automatic them into a discrete form (the method of
control systems, the transients in the control object continuous models);

are - continuous. _However,_ due to the known o pyild discrete models of the controlled object

advantages of digital correction devices over analog and based on them design digital control

ones, digital controllers, filters, state observers, devices.
identification devices, etc. are often used to control Therefore, in both cases it is necessary to be
continuous objects. able to find discrete approximations of analog

Design of discrete control —devices for transfer functions, which determines the relevance of
continuous dynamic objects is performed in one of  tne research topic.

the following ways: The difference is that the first approach

involves the choice of quantization tact after the

© Tolochko O. 1., Palis Stefan, Burmelov O. O., synthesis, and the second — before the synthesis [1].

Kaluhin D. V., 2021 The problem can be solved in the following
ways:
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1) by means of Z-transformations [2, 3];

2) by replacing the analog integration operator
1/s with one of the digital integration operators
[4, 5];

3) by replacing the zeros and poles on the s-
plane with the corresponding zeros and poles on the
Z-plane [5, 6].

Generally, the problem has no exact solution,
due to the fact that during sampling of the input sig-
nal information about its value between the quanti-
zation nodes gets lost. Therefore, the output of the
discrete model cannot depend on these values, while
the response of the continuous system depends on all
values of the input signal.

But still there are situations in which a discrete
model can be accurate in understanding that the
meaning of the process u(t) on the discrete interval
(k-1)T <t<kT ) is uniquely determined by the se-
quence [u(0), u(T), ..., u((k—1T)], where T is Sam-
ple Time.

This is the case for pulse systems with ampli-
tude-pulse first type modulation and for digital con-
trol systems, if the input process is formed by a
computer. In the latter case, the discrete input pro-
cess is converted into a continuous one by means of
extrapolators. For such cases, an "exact" solution is
possible with Z-transformation methods usage.

Therefore, sampling methods using
Z-transformations can be called accurate meaning
that they ensure match of continuous and discrete
output signals at moments of the time, that are
multiple of the interruption period, at a certain type
of input signal.

In this regard, there are pulse-invariant, step-
invariant and linear-invariant Z-transformation,
which provides an exact match of the reactions of
the original continuous and discretized systems to
the Dirac delta function, the Heaviside unit function
and the linear function, respectively.

Methods of the second group sampling of are
called substitution. These methods are essentially
approximate (inaccurate), because they involve the
replacement of continuous integrators in detailed
structures with digital integrators, which are
designed using a priori approximate methods of
numerical integration.

Approximate methods include the method of
correspondence of zeros-poles. This is caused by the
fact that the transfer functions obtained with
Z-transformations methods include not only the so-

called “system zeros”, associated with unambiguous
dependencies with zeros of the analog object, but
also “sampling zeros”, which can only be
determined approximately.

The process of sampling by analytical methods
for continuous high-order objects requires a lot of
time and attention. For example, the exact methods
usage is associated with the representation of the
original analog transfer function as the sum of
elementary  transfer  functions  for  which
Z-transformations can be found from existing tables.

Therefore, it is appropriate to simplify the
conversion process by using modern software.

One of the most convenient packages for
solving this problem is the MATLAB package [7, 8]
with the distribution of Control Toolbox [9, 10],
designed to perform analysis and synthesis of linear
dynamical systems. Many of these operations can be
performed not only in numerical form, but also in
analytical form, using the application for symbolic
programming — Extended Symbolic Toolbox, which
covers the capabilities of one of the best symbolic
mathematics packages — Maple5 [11, 12].

Using the listed above software requires certain
experience and sometimes its improvement.

LITERATURE REVIEW

Discrete approximation issues of continuous
systems are considered in many textbooks on the
automatic control theory [14, 15]. These sources
provide tables of elementary analogue units
transformation and outline the method of obtaining
transformations for more complex systems.
Moreover,  Z-transformation  with  zero-order
extrapolation, i.e. step-invariant transformations, are
considered in the most detail. But quite often the
signal at the input of the sampled link is not
stepwise, but changes quite smoothly by any
arbitrary law, and when using DC converters or
frequency converters, the signals are pulsed. In this
case, the best results are given by linear-invariant
and pulse-invariant transformation, respectively [4].
Of the substitution methods, quite rightly the most
attention is paid to the Tustin method, which
corresponds to the replacement of analogue
integration by numerical integration using the
trapezoidal method. But sometimes there is a need to
use other substitution methods, in particular the
method of zeros-poles correspondence, which
ensures the discrete characteristic polynomial
identity with polynomials obtained by Z-transforms.
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This method in most sources is either not considered
at all or considered very superficially.

Sources [17, 18] are devoted to the MATLAB
package tools application to perform a discrete
approximation of the continuous  systems
mathematical description. In sources [19, 20]
described in detail the sampling process using
MATLAB with practical examples.

Quite often it is advisable to perform
transformations in analytical form, which can be
significantly accelerated by using software for
symbolic mathematics [10]. Insufficient attention
has also been paid to this issue.

It could be proposed many examples in various
fields of the usage of discrete models formation
methods: electric drive and automation [21, 22],
energetic [23, 24], robotics [25] and others.

THE PURPOSE OF THE ARTICLE

The aim of this work is to study different dis-
crete approximation methods and their relationship
and guidelines development for the use of sampling
MATLAB tools.

MAIN PART. PROBLEM FORMULATION
Suppose we have a continuous dynamic system

with an input signal u(t) and the output signal y(t),

described in the region of the Laplace variable s by
transfer function (TF) in polynomial form (Transfer
Function Polynomial):

Hm(s):Bmsm+[3mflsm’1+...+Bls+[30 1)
G,(s) s"+a, S+ tos+a,
In this TF denominator G, (s) is rationed by the

coefficient at the highest degree of the Laplace oper-
ator.

W (s) =

Using the polynomials expansion in the numer-
ator and denominator of the transfer function (1) into

factors, we obtain the transfer function in
Zero-Pole-Cain form:
W (s) —K 8ZBE72)-(572,) @

(s=p)(s=p,)--(s=p,)
where: Z=[z,,z,,...,z,,] — vector of zeros (Zeros);
P=[p,, p,,..., p,] — vector of poles (Poles); K=p, .

In state space such an object is described by
matrix equations:
sX(s)=AX(s)+Bu(s), (3)
y(s)=CX(s)+Du(s) (4)

where: X=[x, X,, ..., x,]' — state variables vector;
A — state matrix of size nxn; B — input vector-
column of size nx1; C — output line vector of size
1xn; D — bypass coefficient.

The problem is to determine equivalent discrete
transfer function (DFT) for a given sample time pe-
riodT :

(z-z,,)(z2-124,)..(z-2,,) _
(2= Py )(Z=Pyz) (2~ Pgy)

. . 4 .
H, (2) B, 2™ 4By 42T Bz B,

W (z)=K,

= = ] 5
G,(2) 2"+o 2" gzt o ©)

or equivalent equations in the state space:
2X(2)=A,X(2)+B,u[z], (6)
y(z)=C,X(z)+Dyu(z), (7)

that is, in the construction of a continuous object
discrete model. Equivalence in this case means the
reactions equality of a continuous system and its
discrete model to some input action. Most often, the

equality of reactions means that y[k]=y(t, ),
when: u[k]=u(t, ), where t =kT, k — quantiza-
tion step number.

The relationship between equations in the state

space and transfer functions is determined by the
expressions:

W(s):C(sI—A)’lB+D:CwB+D, (8)
det(sl-A)

W (z)=C,(z1-A,) "B, +D,, 9)

where: | — single diagonal matrix in size nxn;

Adj(X) — union matrix (matrix composed of algebra-
ic additions to the matrix-argument); det(X) — is the
determinant of the matrix.

The aim of the study is to determine the corre-
spondences between the parameters of continuous
objects mathematical description and their discrete
approximations using different methods and to de-
velop recommendations for their application.

Z-TRANSFORMATION RESEARCH

It is known that the pulse-invariant transfor-
mation is carried out by the formula:

W, (2)=T Z{W (s)}, (10)
step-invariant — by the formula
Wzoh(z):Z__l'Z{W (S)} ' (11)
z S

and linear-invariant — by the formula
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(12)

W (2) = (ZT_'Zl) -Z {WS(QS)} .

Also are known equations that relate parameters
of the corresponding equations in the state space [4],
[15]. For example, for a step-invariant transfor-
mation are valid next equations:

.
A, =e", Bd:(IeA‘dr]BzAl(Ad—l)B,
0

C,=C, D,=D. (13)

These formulas are used by the m-function c2d
(continues to discrete), which is accessed in the for-
mat:

SysD = c2d (SysC, T, method),

where SysC — is the original continuous object cre-
ated, for example, by using the functions tf (Transfer
Function Polynomial), zpk (Zero-Pole-Gain) a6o ss
(State Space); SysD - is a discrete object obtained
from a given continuous by using one of the meth-
ods determined by the method parameter,
Z-transformation at a given quantization period T.
To perform pulse-invariant transformation, the last
string parameter must be ‘imp’ (Impulse), for step-
invariant — ‘zoh’ (Zero Order Hold), and for linear-
invariant — ‘foh’ (First Order Hold).

As a continuous object, lets select the object
with the TF:

4s(2s+1) 3
245°+10s>+65+1

s(s+0,5)

(s+0,2)(s*+0,225+0,21) '
with three poles and two zeros:

P=[-0,11+0,44i, —-0,20], Z=[0,-0,5]. (15)

Discrete transfer functions obtained from TF
(14) by the method considered Z-transformation at
T =2, have the form:

0,67z°-0,662°+0,06
W, (2)=— z . "+ z _

z°-1,69z2°+1,332-0,43

2(z-0,89)(z-0,11)

=0,67- > ; (16)
(z-0,67)(z°-1,02z+0,65)

0,612°-0,82z+0,21
z°-1,69z°+1,332-0,43
(z-1)(z-0,34)

=0,61 > ; 17)
(z-0,67)(z°-1,022+0,65)

0,322°-0,11z°-0,342+0,12 _
2°-1,69z°+1,332-0,43

W (s)=

(14)
=0,3333

Wzoh (Z):

Wfoh(z):

032 (z—l)(z—(i,37)(z+1,03) ' (18)
(z-0,67)(z° -1,022+0,65)

The quantization period is purposely chosen to
be large in order to more clearly observe the
behaviour of discrete signals.

Impulse response w(t) of the original continu-

ous system with the transfer function (14) and dis-
crete systems with the transfer functions (16)-(18)
are shown in Fig. 1.

Fig. 2 shows transients h(t) of the same objects

in Fig. 3 — their response to a signal that increases
linearly from 0 to 1, and then fixed at the achieved
level.

Graphs analysis shows that the digital model
impulse response value, synthesized by the pulse-
invariant Z-transform, as expected, at each discrete
interval matches with continuous object impulse re-
sponse values at the beginning of the interval. But
the step response of this model differs significantly
from the discretized continuous link step response at
any time, including the initial and steady values.

Accordingly, its response to a linear input sig-
nal has an error that increases with time. Therefore,
this type of discrete approximation can be used only
when there is confidence that the signal at the input
will always have a form close to ideal pulses.

Of course, the reactions deviation of the dis-
crete and continuous links to the same input signal
decreases with decreasing quantization period. This
applies to all studies performed in this paper.

When using a Z-transformation with zero-order
extrapolation, the best result is achieved by gradual-
ly changing the input signal. The reaction of such a
discrete model to other types of input signals is
characterized by a one quantization period delay.

When using Z-transformation with first-order
extrapolation, the best result is achieved by linearly
changing the input signal, but quite satisfactory re-
sults are obtained with other types of input signals:
the response to the pulse is distorted only in the first
two quantization steps, and the jump response
matches with the continuous object transition func-
tion approximately at the quantization periods mid-
points.

Similar studies performed for a sinusoidal input
signal also confirm the advantages and universalism
of continuous objects discrete approximation by the
Z-transformation method with first-order extrapola-
tion.
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Fig. 1. Impulse response of a continuous object

and its “accurate” digital models

a — pulse-invariant transformation; b — step-
invariant transformation; ¢ — linear-invariant

transformation

Source: Compiled by the authors
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Fig. 2. Step response of a continuous object
and its “accurate” digital models using
different transformation methods
a — pulse-invariant transformation; b — step-
invariant transformation; c — linear-

invariant transformation
Source: Compiled by the authors
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Fig. 3. Reactions of a continuous object and its
“accurate” digital models to a linear input
signal using different transformation methods
a — pulse-invariant transformation; b — step

invariant transformation; c — linear-

invariant transformation
Source: Compiled by the authors

Comparing the transfer functions of discrete
models, it is seen that they all have the same denom-
inators and different numerators.

To analyze the features of the obtained discrete
approximations (16) - (18) for a continuous object
(14) lets determine the discrete poles and the so-
called discrete system zeros for the selected quanti-
zation period, corresponding to the zeros and poles
of the continuous object (15):

P, =exp(TP)=[0,51+0,62i; 0,67], (19)
Z,=exp(TZ)=[1; 0,37]. (20)

It can be shown that all transfer functions ob-
tained by Z-transform methods have discrete poles
associated with the corresponding continuous poles
by relations (19), i.e. they all have the same charac-
teristic polynomials:

Gimp(z):Gzoh(z):Gfoh(z):H(Z_pdi)' (21)

i=1
Their order matches with the order of the con-
tinuous object:
n,=n. (22)
The situation with zeros of discrete models is
different. Most books on the theory of automatic
control do not provide any information on their defi-
nition. From the references given in this work this
question is considered only in [26], where it is noted
that discrete transfer functions with FOH extrapola-
tion always have a numerator order equal to the de-
nominator order, regardless of the converted contin-
uous object numerator order:

m (23)

and discrete models with ZOH extrapolation have a
numerator order of one less, except when in a con-
tinuous object m=n, i.e.

fon =M=y,

{nd npu
mzoh =

n,—1 mnpu
From the considered example it is seen that the

relation (7.30) is characteristic also for impulse-
invariant approximation:

m=n
’ 24
m<n-1. (24)

imp (25)

The zeros number excess in a continuous object

and its discrete approximations is due to the fact that

the digital models zeros of continuous links consist

of system zeros and quantization zeros [1]. The dif-

ference between them is that when T —0 the first

approaches to the discrete transformation of contin-
uous object zeros:

=n=n,.
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ITirrg z,,=exp(Tz,), i=12,..,m, (26)
and the second - to —1:
limz,, =-1, j=m+l m+2, .., m,. (27)

T-0

The quantization zeros in general case can even
be non-minimal-phase, i.e. have an amplitude great-
er than 1.

The zeros analysis of the above discrete models
shows the following:

1) step- and linear-invariant digital models have

close to each other system zerosZ,,.,,=[L 0,34],

ds zoh
Z . n=I1; 0,37], and the system zeros of the linear-

invariant model are almost not differ from the zeros
obtained by formula (7.27);
2) the linear-invariant digital model has zero

quantization in its transfer function Z, ,=-1,04,

close to -1, which increases the order of the numera-
tor and provides forcing of transients;
3) when using pulse-invariant sampling system

zeros  Zg;,,=[0,88;0,11] significantly different
from zeros (7.27), and zero quantization has zero
value: Z, »=0, which causes a significant differ-

ence between this model and the other two, includ-
ing the difference in state values of the transition
functions.

To analyze the DFT parameters change during
changing the quantization tact and the continuous
system parameters, it is desirable to perform the
transformation analytically. To solve this problem,
we can use the MATLAB Extended Symbolic
Toolbox, which includes functions that perform di-
rect (laplace) and inverse (ilaplace) Laplace trans-
form, as well as direct (ztrans) and inverse (iztrans)
Z-transformation. With these and some auxiliary
symbolic functions, you can find analytical expres-
sions for continuous systems discrete models and on
the contrary. For example, a program that finds a
discrete model of an aperiodic link:

1
W(S)_Ts+1'
with first-order extrapolation and quantization peri-
od Ts, may look like this:

(28)

symsts z T Ts n% Description of symbolic variables
w=1/(T*s+1) % Continuous TF

h=ilaplace(w/s"2) % Incont. step response
hd=subs(h,t,n*Ts) % Discrete transition function
wd=(z-1)"2/(Ts*z)*ztrans(hd); % Discrete TF
wd1=subs(wd,exp(-Ts/T),pd); % Substitution

% Simplification of the obtained analytical expres-
sion:
[num,den]=numden(wd1l); % Decomposition of DTF
on
%numerator and denominator
wdl=num/den; % DTF formation
disp('Wd foh(z)="), pretty(wd1).

When executing this program we get:

W =

1/(T*s + 1)

h =

t-T + T*exp(-t/T)

hd =

Ts*n - T + T*exp(-(Ts*n)/T)
Wd foh (2)=

T-Tpd-Tspd-Tz+Tsz+Tpdz

Ts (pd - 2)

RESEARCH OF SUBSTITUTIONAL
METHODS OF DISCRETIZATION

Substitution methods are identical to replacing
the analog integration operator 1/s with one of the
digital integration operators.

Most of the methods of digital integration is to
divide a figure, the area of which should be divided
into several simple figures, calculate their areas and
sum them up. Most often, the integration interval is
divided into several equal parts. Tach of them per-
forms local interpolation of the subintegral function
by power polynomials. Depending on the power of
the polynomial n various methods of numerical inte-
gration are created: at n=0 — the method of rectan-
gles, at n=1 — trapezoidal method, at n=2- the
method of parabolic trapezoids, which is usually
called the Simpson method. This series can be con-
tinued, but by discretizing continuous dynamic links
with substitution methods, it is limited to replacing
analog integrators on digital, synthesized methods of
rectangles and trapezoids.

The Simulink application of the MATLAB
package uses 3 types of discrete integrators that per-
form numerical integration via Forward Euler
method, Backward Euler method and Trapeziodal
method and have the following TF:

CVee(2) T
WFE(Z)_—U(Z) = (29)
w,, 2)=Y=@ w2, (30)
u(z)
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Yo (2) T 241 Wi (2)+Wee (2)
u(z) 2 z-1 2 '

The following substitution formulas are re-
ceived from formulas (29) - (31):

W, (z)=

(31)

z-1
=, 32
- (32)

z-1
S=——, 33
Tz (33)

2 z2-1
S=—-——, 34
T z+1 ( )

The substitution usage (32) is often called the
Euler method, substitutions (33) — the modified
Euler method, and substitutions (34) — the biline-
ar transformation or the Tustin method.

From the idea behind these methods, it follows
that the substitution (32) matches the
Z-transformation using a zero-order hold (ZOH),
and the substitution (34) matches the
Z-transformation using a first-order hold (FOH) at
the discrete approximation of the integrator. Unfor-
tunately, due to the increasing complexity of the ob-
ject structure, the matching and even the desire for it
are practically lost.

It should be noted that the Euler transfor-
mation does not guarantee the stability of the dig-
ital controller with a stable continuous [4, 15].

Only one of the substitution transformations,
namely the Tustin transformation can be performed
with the m-function c2d:

SysD = c2d (SysC, T, 'tustin"),

But one can create his own m-function to per-
form any of the substitution transformations using
both symbolic mathematics and numerical opera-
tions:

function SysD = c2d_podst (SysC, Ts, method)
[numC, denC] = tfdata (SysC);

numC = numC {1}, denC = denC {1};

symstszT

if length (humC) == 1, Ha = numC;

else Ha = poly2sym (numC, s); end

w = poly2sym (numC, s) / poly2sym (denC, s);
switch method

case 'Euler', wd = subs (w, s, (z-1) / T);

case 'EulerM’, wd = subs (w, s, (z-1) / T / 2);

case "Tust', wd =subs (w, s,2/T *(z-1) / (z + 1));
end

wd = expand (wd); wd = collect (wd, z); wd = simpli-
fy (wd);

[num, den] = numden (wd);

num = collect (num, z); den = collect (den, z);

T=Ts;
numc = eval (hum); denc = eval (den);
if findstr (char (numc), 'z") == [], H = numc;

else H = sym2poly (numc); end
G = sym2poly (denc); % H = sym2poly (numc);
H=H/G(1);,G=G/G (1)
SysD =tf (H, G, T);

When discretizing the aperiodic link (28) at
T =0,1s with a quantization period T_=0,02s we get
the following digital objects:

0,2 | Vvlr(z)zo,ogl(zﬂ) .

z-0,8 z-0,82

Comparison of them with discrete transfer func-
tions of the same link, obtained by methods of
Z-transformations

0,18

W (2)=

Wmh(z)=—z_o782 : Wfoh(z)=—0'0924_(;;g’94) .
shows that the Euler transformation tends to ap-
proach a step-invariant Z-transformation, and the
Tustin transformation tends to approach a linear-
invariant Z-transformation.

More detailed studies give the following re-
sults:

1) zeros and poles of all substitution transfor-
mations  differ from zeros and poles of
Z-transformations;

2) only the Tustin transformation complements
the transfer function with approximate values of dis-
cretization zeros z,=-1; both of Euler's transfor-

mations add zero to the discrete transfer function
instead of zero discretization: z, =0 ;

3) euler transformation forms a discrete system,
which can become unstable at large periods of quan-
tization, despite the stability of the corresponding
continuous object; therefore, it can be used only for
continuous systems described by low-order differen-
tial equations, and for small periods of interruption
(compared to the object's own time constants);

4) the modified Euler transformation is charac-
terized by much lower discretization accuracy than
the Tustin transformation.

From the above formulations it follows that the
best of the permutation transformations is the Tustin
transformation, which in its parameters and proper-
ties is close to the Z-transformation with first-order
extrapolation. This conclusion matched with the
generally accepted method of approximate discrete
approximation of continuous objects, which pro-
vides a compromise between simplicity and accura-
cy of discretization.
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INVESTIGATION OF DISCRETISATION
BY THE METHOD OF CONFORMITY OF
ZERO-POLES

This method displays continuous poles p, and
zeros z, in discrete, based on the relationship be-
tween the Laplace operator and the discrete operator:

py=e", z,=€". (35)

Let us show that these relations (35) usage is
not sufficient for qualitative discretization in under-
standing the similarity of the dynamic and static
properties of a continuous object and its digital
model.

Let us assume that a continuous object has 3
valid poles: P = [a;a,a3] and no zeros:

W (s)= i . @)
(S—Otl)(S—OLZ)(S—(X3)

Then its discrete model synthesized using for-

mulas (37) will be as follows:
Bo
sz(z)_(Z_ea1T)(Z_ea2T)(Z_ea3T) : (37)

Let us assume that the output signal y(t) of
continuous object (36) is a reaction to a single
stepped effect. The following initial conditions are
valid for the output signal:

y(0)=0, y(0)=0, y"(0)=0.
Let y(kT)— the reaction of the digital model

(36) to a single step function. As W, (z) have a

number of poles that exceeds the number of zeros
by 3, the signal at the output of the digital object will
appear only on the third tact.

Taking everything into consideration, we for-
mulate the following conclusion: if the number of
poles of the discrete link exceeds the number of
zeros by r, the reaction of this object to the input
signal will start with r -th quantization tact.

In addition, the transfer functions (36) and (37)
provide different fixed values of the transition func-
tions.

In order to eliminate these shortcomings, sever-
al zeros should be added to the transfer function of
the discrete model and adjust its gain.

But the method of determining additional zeros
and coefficients K, transfer function (37) is practi-

cally not mentioned in the literature.

For adequate discrete approximation of the
studied method, we will use the experience of trans-
formation methods analysis described above and the
known provisions of the automatic control theory.

From the above considerations comes the fol-
lowing method of a continuous dynamic object dis-
cretization by the method of correspondence of zeros
and poles:

1) find the poles p, (i=1,2, ..., n) of a contin-
uous system by solving the characteristic equation

G,(s)=s"+a, " +.+a,5+0,=0, (38)
or by searching for eigenvalues of the state matrix
P=eig(sl-A); (39)

2) find the zeros z; (i=1,2,..., m) of a continu-

ous system by solving the equation
H, (s)=B,s" +B, s" " +...+B,s+B,=0; (40)

3) calculate the corresponding discrete poles

and discrete system zeros according to formula (35):
Py =exp(Tp,), i=12,..., n, (41)
z,,=exp(Tz;), i=1,2, ..., m; (42)

4) complement the discrete transfer function

with quantization zeros
Zg5="1, (43)

so that the order of the numerator adjusted in this

way m, was one less than the order of the denomi-

nator:

m,=n-1, j=m+1, m+2, .., n-1, (44)
or equal to it:
m,=n, j=m+1 m+2, ..., n-1 n; (45)

5) select from the vectors of analog zeros and
poles the neutral ones (those that are 0 for a continu-
ous system, and for a discrete — 1) and count their
number p and v accordingly);

6) calculate the transmission ratio in the steady
state of the continuous link according to the formula

szH(_pli)/H(_Zli)’
i=1 j=1
where K=pB,, m=m-—p, n=n—v — number of
non-zero analog zeros and poles, respectively;

7) calculate the coefficient K, discrete object
by the formula

(46)

Ng1 My

Ky=kT" " T py) [ T] @=24) . (47)

i=1
where  Pyy;, Zgpj0 Mgy, Ny, =N, — non-single discrete
zeros and poles and their quantity, respectively.
The transfer functions obtained by discretiza-
tion of a continuous object (14) according to the

above method have the form: at Ma=n-1
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0,662°-0,92+0,24
2°-1,69z*+1,33z-0,43
0,66(z-1)(z-0,37)

W, (2)=

= > , (48)
(z-0.67)(z°-1,02z+0,65)
and at m, =n
0,33z°-0,122°-0,342+0,12
szl(z): 3Z 2Z Z+ _
2°-1,69z2°+1,332-0,43
0,3291(z-1)(z-0,3679)(z +1
a (z-1)( )(z+1) (49)

" (z2-0,6681)(z2-1,0242+0,6505)

They are very similar to the transfer functions
obtained by Z-transformation methods with extrapo-
lation of zero (24) and first (25) orders:

szO(Z)szoh(z) and szl(Z)szoh(Z) '
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Fig. 4. Step response of a continuous system and
its discrete analogues, determined by the method
of zero of poles matching at m,=n-1 (a)
and m,=n (b)
Source: Compiled by the authors
In order to demonstrate the results of the two

proposed above methods of matching zeros and
poles of continuous and discrete systems the step

response of the studied continuous system and its
discrete approximations found by the above method
is shown in Fig. 4, and reactions of the same links to
the linear input signal with restriction are shown in
Fig. 5. The graphs confirm that even with such an
inflated quantization period, the obtained step re-
sponse approach the step responses shown in Fig. 2b
and Fig. 2c.

It is necessary to emphasize the fact that dis-
crete approximation by a method of zeros of poles
matching at m,=n for this example has a signifi-

cantly smaller deviation from the approximation of
the method of Z-transformation with first-order ex-
trapolation than using the Tustin method, which is
often recommended for use as an approximate dis-
cretization method.
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Fig. 5. The response of a continuous system and
its discrete analogues, determined by the method
of zero of poles matching atm, =n-1 (a) and

m,=n (b) on the linear input signal
Source: Compiled by the authors

This is confirmed by the graphs of the corre-
sponding deviations shown in Fig. 6.
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Fig. 6. Deviation of step response of discrete
systems created by Tustin methods and matching
of zero-poles from the step response of the system

formed by the method of Z-transformation

with FOH
Source: Compiled by the authors

The obtained results give grounds for revision
of the generally accepted recommendation on ap-
proximate discrete approximation of continuous sys-
tems. Another advantage of the matching method is
that discrete systems obtained in this way do not
need to be tested for stability.

Testing of the c2d function showed that it per-
forms approximation via matched method with the
number of zeros, identical to the step-invariant dis-
cretization.

Approximation of the matched method to the
FOH method by increasing the order of the numera-
tor of the transfer function to the order of the de-
nominator by introducing another zero discretiza-
tion, as proposed above, is not provided in this func-
tion.

For software implementation of the continuous
object discretization method via the matching meth-
od proposed in this work, we can recommend a
function, an abbreviated version of which (without
diagnosing the input parameters) has the form:
function sysd = c2d_matched (sys, Ts, method)
[Zero, Pole, Gain, ts] = zpkdata (sys);

z = Zero {1}; p = Pole {1};

zd=exp (z*Ts)

pd=exp (p*Ts)

if method == "zoh’,

zd = [zd; -ones (length (pd) -length (zd) -1,1)];
else zd = [zd; -ones (length (pd) -length (zd), 1)];
end

pl=p;z1l=z

iz =find (p == 0); p1 (from) =J;

izz =find (z == 0); z1 (izz) = [];

pdl = pd; zd1 = zd; pd1 (from) =[]; zd1 (izz) = ];

k = Gain (1) * real (prod (-z1) / prod (-p1))

if isempty (izz), izz = 0; end

if isempty (from), from = 0; end

Kd =k * real (prod (1-pdl1) / prod (1-zd1)) *...
Ts ” (iz-izz);

sysd = zpk (zd, pd, Kd, Ts);

CONCLUSIONS

The paper investigates exact (in a sense) and
approximate methods of continuous objects discrete
approximation, gives examples of using MATLAB
numerical and symbolic tools to perform these oper-
ations, offers an improved m-function version for
continuous systems discretization method of zero-
pole correspondence, developed programs for dis-
crete approximation of continuous objects in sym-
bolic form, which allows to perform a comparative
analysis of sampling methods and systems synthe-
sized with their help by analytical methods.

On the basis of the performed researches it is
possible to reach the following conclusions:

1) pulse-invariant Z-transform can be used only
when the input of a continuous object receives pulse
signals, for example, from valve converters, for ex-
ample, from DC converters or from frequency con-
verters); in other cases, the usage of such a trans-
formation may lead to unacceptable errors;

2) if the signals at the input of the continuous
link change to a greater extent abruptly, i.e. have
gaps of the first kind, then you should use a step-
invariant Z-transformation, but the use of linear-
invariant transformation is also possible;

3) if the signals at the input of the continuous
link have an arbitrary continuous character, then the
best sampling method is linear-invariant Z-
transformation, but with sufficiently small quantiza-
tion periods it can and even should be replaced by
step-invariant transformation, which is simpler at the
stage of synthesis and at the stage of implementa-
tion;

4) of the approximate methods in the last two
cases, the Tustin method and the zero-pole corre-
spondence method can be used;

5) the method of zero-pole correspondence has
the greatest accuracy among approximate methods,
which, depending on the number of zero-poles, is
almost equal to step- or linear-invariant Z-
transforms, but for high-order objects it is easier be-
cause it does not involve previously continuous
transfer function decomposition for the elementary
functions sum; it is sensible to use it for discrete ap-
proximation of the regulation objects mathematical
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description, for example, electric motors, multimass 6) tustin's method is the most suitable for first-
electromechanical systems, etc .; order regulators sampling with output signal limita-
tion.
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AHOTAIIA

Jlana po6oTa MpuCBAYCHA AOCTIKCHHIO PI3HUX METOJIB AUCKPETHOI alpOKCHMAIlil HEMIePEPBHUX JIAHOK, M0 € 000B I3KOBUM
€TaroM CHHTE3Yy HU(POBUX CHCTEM KEpyBaHHS HENEPEepBHUMHU IUHAMIYHUMH 00°‘€KTaMM Ta po3poOIi METOANYHHX PEKOMEHMIAIH
I[0JI0 BUKOHAHHS LIMX OIepalliif 3a T0MOMOroro iHCTpyMeHTiB cucteMu mporpamyBanas MATLAB. B po6orti gociimkeHi Taki MeTo-
TN TUCKPETH3AIII] SIK IMITyJIbCHO-, CTYMIHYACTO- Ta JIIHIHHO iHBapiaHTHI Z-TIepeTBOPEHHS, IiICTAHOBYI METOAN OCHOBaHI Ha 3aCTOCY-
BaHHI Pi3HUX METOMIB YHCJIOBOTO iHTEIPYBAaHHS Ta METOJ BiJMOBIJHOCTI HYJiB-TOJIOCIB. Y pOOOTI HaBEICHO MPUKIJIAIN BUKOPHC-
TaHHS JJIS 3MIHCHEHHS IIUX OTepalliii YMCIOBUX Ta CHMBOJIBHUX iHCTpyMeHTiB akeTy MATLAB, 3anponoHOBaHO yIOCKOHAICHUMH
BapiaHT m-QyHKIUIi 111 AUCKPETH3aLlil HEepepBHUX CUCTEM METOJIOM BiIMOBIIHOCTI HyJIiB MOJMIOCIB, II0 T03BOJISIE JAHOMY METOLY
HaOMKyBaTHCS SK IO CTYMIHYAaCTO-iHBApiaHTHOTO, TaK i JO JiHIHHO-IHBapiaHTHOTO Z-MEepeTBOPEHb; PO3pOOICHO MpOrpaMu s
JIICKPETHO] alpoKCHMallil HeTIepepBHHUX 00 €KTIB Y CHMBOJILHOMY BUIJISIAI, IO JO3BOJISIE BHUKOHYBATH ITOPIBHIBHUH aHAII3 METOMIB
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JUCKPeTH3allii 1 CHHTe30BaHHX 3a 1X J0MOMOTOI0 CHCTEM Ta JOCIIKYBaTH BIUIUB MEPioy KBAaHTYBaHHS Ha TOYHICTh JUCKPETH3ALil
AQHATITHIHAMH METOJlaMH. BUKOHAHO MOPIBHSHHS MiXK CO00I0 IUCKPETHUX INepeaBalbHUX (YHKIIH, OTPUMAHHX Pi3HUMH METOMA-
MH, Ta BIANOBIIHHUX peakiii y 4aci Ha pi3Hi CHrHAIK. 3a JOMOMOT00 PO3pOOICHHUX MpOrpaM BU3HAUCHO, 1[0 IMITYJIbCHO-iHBapiaHTHE
Z-niepeTBOPEHHS MOKHA BUKOPHUCTOBYBATH TUIBKH y TOMY BHIIAJIKY, KOJIH Ha BXiJl HEIIEPEPBHOTO 00 €KTY HAXOAATh IMITYJIbCHI CHUT-
HaJY, a JIiHiI{HO-1HBapiaHTHE MEePETBOPEHHS JOLIJIHPHO BUKOPUCTOBYBATH IPH CTPUOKOMOIIOHMX CUTHANAX Ha BXodl. Takox B poOOTi
HaBeJCHO aJTOPHTM 3aCTOCYBaHHS MeToAy TacTiHa, IO BiANOBiZa€ 3aMiHi aHAIOTOBOTO IHTETPYBAaHHS YHCEIbHUM IHTETPYBAaHHIM
MetoqoM Tpareniii. [lokazano, mo meron TacriHa € HaWOIIBII NMPUAATHUM JUI JUCKPETH3alii PeryasaTopiB HEepUIOTo MOPSIKY 3
0OMEKEHHSAM BUXIJHOTO CHTHATY. B cTaTTi TakoX pO3IJsTHYTO METOJ BiIOBIAHOCTI HYNIB-TIOJIOCIB Ta MOKAa3aHO, IO BiH Ma€ Hal-
OLIBITY TOYHICTD Cepes MPUOIN3HUX METOMAIB AUCKPETHOI anpokcuManii. Ha ocHOBI BUKOHaHHX JOCITIPKEHb HaBEACHO PEKOMEHa-
ii 11010 BUKOPUCTAHHS LIUX METOJIIB P CHHTE31 CUCTEM KepyBaHH: HENEPEPBHUMHU TUHAMIYHUMHU 00 ‘€KTaMU.
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MepioJl KBaHTYBaHHS; MIEPEXiHI IPOLECH
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