
Applied Aspects of Information Technology 2021; Vol. 4 No.2: 168177

168 DOI: https://doi.org/10.15276/aait.02.2021.4

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

DOI: https://doi.org/10.15276/aait.02.2021.4

UDC 004.315

IMPROVING FPGA COMPONENTS OF CRITICAL SYSTEMS

BASED ON NATURAL VERSION REDUNDANCY

Oleksandr V. Drozd1)
ORCID: https://orcid.org/0000-0003-2191-6758; drozd@ukr.net

Andrzej Rucinski2)
ORCID: https://orcid.org/0000-0002-0988-7376; andrzej.rucinski@unh.edu

Kostiantyn V. Zashcholkin1)

ORCID: https://orcid.org/0000-0003-0427-9005; const-z@te.net.ua

Myroslav O. Drozd1)

ORCID: https://orcid.org/0000-0003-0770-6295; myroslav.drozd@opu.ua

Yulian Yu. Sulima3)
ORCID: https://orcid.org/0000-0003-3986-7296; mr_lemur@ukr.net

1) Odessa National Polytechnic University, 1, Shevchenko Avenue. Odesa, 65044, Ukraine
2)University of New Hampshire, Durham, New Hampshire 03824. Boston, USA

3)Odessa Technical Professional College of the Odessa National Academy of Food Technology, 54, Balkivska St. Odesa, 65006, Ukraine

ABSTRACT

 The article is devoted to the problem of improving FPGA (Field Programmable Gate Array) components developed for safety-

related systems. FPGA components are improved in the checkability of their circuits and the trustworthiness of the results calculated

on them to support fault-tolerant solutions, which are basic in ensuring the functional safety of critical systems. Fault-tolerant solu-

tions need protection from sources of multiple failures, which include hidden faults. They can be accumulated in significant quanti-

ties during a long normal operation and disrupt the functionality of fault-tolerant circuits with the onset of the most responsible emer-

gency mode. Protection against hidden faults is ensured by the checkability of the circuits, which is aimed at the manifestation of

faults and therefore must be supported in conjunction with the trustworthiness of the results, taking into account the decrease in

trustworthiness in the event of the manifestation of faults. The problem of increasing the checkability of the FPGA component in

normal operation and the trustworthiness of the results calculated in the emergency mode is solved by using the natural version re-

dundancy inherent in the LUT-oriented architecture (Look-Up Table). This redundancy is manifested in the existence of many ver-

sions of the program code that preserve the functionality of the FPGA component with the same hardware implementation. The

checkability of the FPGA component and the trustworthiness of the calculated results are considered taking into account the typical

failures of the LUT-oriented architecture. These malfunctions are investigated from the standpoint of the consistency of their mani-

festation and masking, respectively, in normal and emergency modes on versions of the program code. Malfunctions are identified

with bit distortion in the memory of the LUT units. Bits that are only observed in emergency mode are potentially dangerous because

they can hide faults in normal mode. Moving potentially dangerous bits to checkable positions, observed in normal mode, is per-

formed by choosing the appropriate versions of the program code and organizing the operation of the FPGA component on several

versions. Experiments carried out with the FPGA component using the example of an iterative array multiplier of binary codes have

shown the effectiveness of using the natural version redundancy of the LUT-oriented architecture to solve the problem of hidden faults.

Keywords: Safety-Related System; FPGA Component; LUT-Oriented Architecture; Functional Safety; Fault Tolerance;

Checkability; Trustworthiness; Multiple Failures; Hidden Fault; Natural Version Redundancy; Versions of the Program Code

For citation: Drozd O. V., Rucinski Andrzej, Zashcholkin K. V., Drozd M. O., Sulima Yu. Yu. Improving FPGA Components of Critical

Systems Based on Natural Version Redundancy. Applied Aspects of Information Technology. 2021; Vol. 4 No. 2: 168–177. DOI:

https://doi.org/10.15276/aait.02.2021.4

INTRODUCTION

FPGA-designing (Field Programmable Gate

Array) has gained recognition in critical applica-

tions, where it is widely used in the development of

safety-related systems.

According to international standards, these sys-

tems are aimed at ensuring the functional safety of

© Drozd O., Rucinski A., Zashcholkin K., Drozd M.,

 Sulima Yu., 2021

high-risk facilities, which include power units of

power plants and power grids, chemical production,

transport infrastructures and much more [1, 2].

These objects have a twofold relationship to safety.

On the one hand, they themselves ensure its various

types of safety, including energy and food safety, as

well as safety associated with the prompt delivery

and distribution of produced and consumed re-

sources.

https://doi.org/
https://doi.org/

Applied Aspects of Information Technology 2021; Vol. 4 No.2: 168177

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 169

On the other hand, the operation of these facili-

ties is associated with an increased risk of accidents,

which can lead to significant negative consequences.

The potential cost of possible losses from accidents

is constantly growing along with the increase in the

number of facilities and their capacity.

In these conditions, the only way to contain

risks is based on the development of information

technologies implemented in computer systems for

their transformation into safety-related systems.

A feature of these systems is their designing for

operation in two modes: normal and emergency. The

functional safety of the critical system is considered

in conjunction with the safety of the high-risk object

it controls.

The programmability of FPGAs with LUT-

oriented architecture (Look-Up Table) creates the

prerequisites for the development of multi-version

technologies that are important for ensuring the

functional safety of systems in critical domains.

For safety-related systems, the main focus in

improving their FPGA components is to improve

functional safety, which is based on the use of fault-

tolerant solutions.

 At the same time, the fault tolerance of the

structures is ensured in relation to one or two fail-

ures, taking into account the balance between a sig-

nificant decrease in the probability of independent

failures with an increase in their multiplicity and the

complication of the solution, leading to its rise in

cost and losses in reliability [3, 4].

However, the independence of failures, as a

rule, is of a relative nature and at one level or anoth-

er show the common causes of their occurrence. In

addition, the decisive factor is the manifestation of

multiple failures, not their occurrence. Therefore, the

greatest challenge to fault tolerance in ensuring the

functional safety of safety-related systems is the

sources of multiple failures.

An important place among such sources is oc-

cupied by the limited checkability of digital circuits,

which normally operate in a limited range of input

data. Insufficient checkability leads to the problem

of hidden faults, which is inherent in modern safety-

related systems at this stage of their development.

Circuits can accumulate hidden faults during ex-

tended normal operation. In emergency mode, the

manifestation of accumulated faults can significantly

disrupt the fault tolerance of the circuits and reduce

the trustworthiness of the calculated results.

Thus, the main indicators important for the

functional safety of critical systems are the checka-

bility of the schemes and the trustworthiness of the

results calculated on these schemes. In fault-tolerant

solutions, the functional safety of critical systems

should be ensured by increasing the checkability of

the circuits and the trustworthiness of the results,

respectively, in the normal and emergency mode of

FPGA components.

The goal of this paper is to improve FPGA

components in their checkability, maintained during

normal operation, and the trustworthiness of results

calculated in emergency mode. The improvement is

achieved by using the natural version redundancy of

the LUT-oriented architecture.

Further presentation of the research carried out

is organized as follows. Section 2 describes the pre-

requisites for the further development of FPGA de-

signing towards improving circuit checkability and

trustworthiness of results in critical applications.

Section 3 reveals the possibilities of version redun-

dancy of the LUT-oriented architecture to improve

FPGA components in key indicators aimed at ensur-

ing the functional safety of critical systems. Section

4 shows the results of experiments carried out with

FPGAs to improve their basic performance.

BACKGROUND FOR FPGA DEVELOPMENT

IN CRITICAL APPLICATIONS

The prerequisites for improving FPGA design-

ing consist of the necessity and possibility of such

development in safety-related systems.

For critical systems, the need to improve FPGA

components is most clearly demonstrated by the lack

of confidence in the applied fault-tolerant solutions.

This mistrust is manifested in the use of simulation

modes that recreate emergency conditions to in-

crease the checkability of circuits and detect hidden

faults in them.

However, simulation modes themselves pose a

great danger to safety-related systems and objects of

their control. The very existence of these modes car-

ries a certain threat, since it has repeatedly led to

their unauthorized activation due to operator error

and even one burned-out microcircuit. The planned

use of simulation modes is associated with the shut-

down of emergency protection, which served as one

of the causes of the Chernobyl accident [5, 6].

For safety-related systems, the development

paths of components are determined in the resource-

Applied Aspects of Information Technology 2021; Vol. 4 No.2: 168177

170 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

based approach, which proposes to develop models,

methods and tools that form resources, analyzing the

integration of the computer world, created by hu-

man, into the natural world. In resource develop-

ment, this approach identifies three levels: replica-

tion, diversification and self-sufficiency as a devel-

opment goal [7].

Replication is the lowest level of development,

at which integration occurs at the expense of produc-

tivity in open resource niches, i.e., in the absence of

rigid contact with the natural world. The computer

world demonstrates all levels of development, but

replication prevails.

The hardware is represented by matrix circuits

stamped out of the same operating elements: parallel

adders, shifters, registers, iterative array multipliers

and dividers.

The software is compiled by replicating ready-

made modules, which can be functionally redundant

to a large extent for a given application and, there-

fore, have unreasonably large sizes. However, this

replication is supported by open resource niches in

the throughput and memory size of modern comput-

ers.

Mobile computer systems are limited by the re-

source niche of autonomous energy consumption

and require the development of green technologies,

which belong to the next level of diversification [8,

9].

To understand the inferiority of the lower level

of development, it is enough to consider a bright

pattern of matrix structures using the example of an

iterative array multiplier that performs an operation

in one clock cycle. Its circuit consists of n2 opera-

tional elements, 2n – 2 of which are connected in

series, where n is the size of the operands. There-

fore, each operational element is used only for a

small part of 1 / (2n – 2) clock cycle, which is 0.8%

for n = 64 [10].

The rest of the time is spent on parasitic switch-

ing caused by signal races. They determine the main

part of the dynamic component of energy consump-

tion, as well as the static component is determined

by the large size of the matrices [11, 12].

However, the greatest disadvantage of matrix

structures is their low checkability, which is due to

the processing of data in parallel codes. For n = 64,

the iterative array multiplier input word contains 128

bits and can take 2128 different values, of which

normal mode can only use a few values.

The resource-based approach defines the prob-

lem of hidden faults as a growth challenge, when the

safety-related system rises to the level of diversifica-

tion, which manifests itself in the operating mode by

its division into normal and emergency, in the input

data of the digital circuit and the checkability de-

pendent on them. They all become different in these

modes. At the same time, the components of these

systems continue to be stamped at the replication

level in the form of matrix structures.

It should be noted that the problem of hidden

faults does not arise in conventional computers

working in only one operating mode. Both the sys-

tem and its components are at the same level of de-

velopment, and retain the hidden nature of the mal-

function throughout the entire operating mode.

This understanding of the problem opens the

way for its solution: the components must be raised

to the level of the system. It should be borne in mind

that matrix structures have dominated for several

decades and during this time they have created pow-

erful support resources, including CAD. FPGA de-

signing offers on-chip iterative array multiplier cir-

cuits, pre-built carry propagation paths for accelerat-

ed data addition in parallel codes, and a wide range

of library solutions based on matrix structures.

Therefore, today, raising components to the

level of diversification should be done in matrix

structures, including the LUT-oriented structure of

FPGA components designed for critical applications.

It should be noted that in conventional comput-

ers checkability and trustworthiness are in some op-

position. The higher the checkability of the circuit,

the better the malfunctions will manifest, including

the faults that are most likely to occur. In this case,

erroneous results are calculated more often and their

trustworthiness decreases.

Developing resources towards self-sufficiency

removes inconsistencies, including the performance

of FPGA components. For safety-related systems,

the requirements for improving the checkability of

the schemes and the trustworthiness of the results

are spread by their application to different modes:

normal and emergency, respectively.

Some experience in resisting multiple failures

has already been accumulated in international stand-

ards in relation to common cause failures [13, 14].

This reason is seen in the copying of erroneous deci-

sions that can arise, for example, as a result of de-

sign errors. Installing the same software on duplicate

Applied Aspects of Information Technology 2021; Vol. 4 No.2: 168177

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 171

components can cause multiple failures in the event

of an error in the program.

The standards recommend limiting the common

cause by using multi-version technologies [15], re-

flecting the level of diversification. Development of

versions of the program by different teams of pro-

grammers significantly reduces the likelihood of

identical errors.

The LUT-oriented architecture of FPGA com-

ponents organizes the execution of computations by

decomposing them into logical functions of several

arguments. The generator of these functions is the

LUT node, which, as part of the logical element LE,

is supplemented with a programmable one-bit regis-

ter. The LUT node is a SRAM memory for storing a

description of a function, which is written into this

memory in the form of program code during the

programming of the FPGA component. In the wide-

spread case of decomposition of computations into

functions for no more than four arguments, the LUT

node has 16 bits of memory, addressed by the dcba2

code, which is fed to 4 inputs D, C, B, A [16].

Version redundancy of the LUT-oriented archi-

tecture consists in the presence of many versions of

the program code for the same hardware implemen-

tation of the FPGA component.

The forming element of version redundancy is a

pair of LUT nodes connected in series, i.e., the out-

put of the first node is connected to any input of the

second node of the pair. In this case, the original

version of the program code can be supplemented

with another version, which differs in the inversion

of the bit transmitted from the first LUT node to the

second node of the pair. Bit inversion at the output

of the first LUT node can be provided by inverting

the program code in bits related to the memory of

this node. The bit inversion at the input of the sec-

ond node of the pair is compensated by renumbering

the bits of its memory in the program code of the

FPGA component [17].

The number of pairs is determined by the num-

ber of the first LUT nodes in the FPGA project.

Branching the circuit at the output of the first LUT

node does not increase the number of pairs that cre-

ate versions of the program code. All these versions

are created independently of each other and there-

fore ensure their growth as a power function of the

number of pairs.

For example, one hardware implementation of

an FPGA project will have over a million versions of

the program code with only twenty pairs of LUT

nodes. This number of pairs is formed in a pyramid

scheme that contains 21 LUT nodes located in three

tiers of 16, 4 and 1. Only a single LUT node in the

third tier is not the first node in the pair.

It should be emphasized the natural kind of the

described version redundancy, which does not need

to be introduced into the FPGA projects, since it is

an integral part of the LUT-oriented architecture of

this design.

Thus, FPGA components have significant natu-

ral version redundancy even with insignificant com-

plexity determined by the number of LUT nodes.

It should be noted that the indicators character-

izing the FPGA component can be divided in rela-

tion to versions into two groups: active and passive.

Versions differ in active metrics and are equal in

passive metrics. Version redundancy plays an im-

portant positive role for both groups of metrics be-

cause versions with the best active metrics can be

selected without loss of passive metrics.

In the studies carried out, the active indicators

are the checkability of the digital circuit and the

trustworthiness of the results calculated on it. The

preservation of the hardware implementation of the

FPGA component refers to the passive indicators of

the complexity of the circuit design, its reliability

characteristics and, possibly, many other indicators.

For example, power consumption also cannot

undergo any changes in its static and dynamic com-

ponents, taking into account the preservation of the

circuit and the number of signal transition at the in-

puts / outputs of the LUT nodes, respectively.

IMPROVING THE CHECKABILITY OF

SCHEMES AND TRUSTWORTHINESS OF

RESULTS

Both checkability and trusyworthiness are asso-

ciated with circuit malfunctions and their manifesta-

tion in the form of a result error or masking of this

manifestation. Therefore, both indicators must be

considered in relation to the characteristic faults in-

herent in circuits with a LUT-oriented architecture.

A fault of the LUT node can manifest itself in

the form of erroneous bit values at its inputs or out-

puts as a result of short-circuiting adjacent inputs or

reading from memory.

The program code written to the nodes LUT

memory from the configuration file is checked with

a checksum. Therefore, the nodes' LUT memory is

Applied Aspects of Information Technology 2021; Vol. 4 No.2: 168177

172 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

checkable. The bits of this memory are read using a

multiplexer consisting of switches that select a bit

from two directions in one direction under the con-

trol of the address bits dcba2 [18].

A malfunction of the switches at their infor-

mation inputs can cause an error if the correct bit

value and its value determined by the malfunction

do not match. A malfunction of the control input of

the switch leads to an addressing error, which dis-

torts the result at the output of the LUT node, if the

memory bits at the correct and erroneous address do

not match in their values. Errors caused by faults in

the switches are perceived at the output of the LUT

node as a distortion of the corresponding memory

bits, and therefore their checkability and the trust-

worthiness of the results are further considered with

respect to these bits and their constant malfunction

in the memory of the LUT node.

The checkability of the circuit and the trustwor-

thiness of the results with respect to short circuit

faults occurring between adjacent inputs of the LUT

nodes should be considered taking into account the

peculiarities of the manifestation and masking of

these faults.

A short circuit fault manifests itself as an error

in the dcba2 address code if the inputs to be closed

should have taken different values and is masked

otherwise. At the same time, an error at the output of

the LUT node appears if the bits read at the correct

and erroneous addresses differ in the values they

receive. Otherwise, this addressing error is masked.

The manifestation of a short circuit fault at the

output of the LUT node classifies it as checkable if

this error is transmitted to the monitored result of

calculations, i.e., if the node's LUT output is observ-

able. Otherwise, the error does not reach the result,

and this result is considered reliable [19].

An important consideration is the diversifica-

tion of the data set at inputs of the LUT node into

two non-overlapping subsets that manifest or mask a

short circuit fault. Indeed, the values 012 and 102 at

the adjacent inputs of the LUT node exhibit a short

circuit fault, while the values 002 and 112, on the

contrary, mask it.

This diversification creates favorable conditions

for finding versions of the program code with the

diversity of the best checkability and trustworthiness

in different modes of the critical system in accord-

ance with different input data of these modes. Inver-

sion at the input of the second LUT node of the pair

allows to swap the indicated subsets in the manifes-

tation or masking of a short circuit fault. This capa-

bility provides the selection of a version with fault

manifestation and masking, i.e., the best checkability

and trustworthiness for the input data of the normal

and emergency mode, respectively.

Erroneous reading of bits from the node's LUT

memory is best distributed with respect to the

checkability and trustworthiness indicators with a

dominant constant fault, i.e., the dominance of a

constant of one value over the opposite. In this case,

the memory bits, the value of which is inverse to the

value of the dominant constant, belong to the check-

able at the output of the LUT node, since the action

of the corresponding malfunction leads to bit corrup-

tion. This error will be detected if the node's LUT is

monitored. Otherwise, the fault determines the cor-

rect value of the memory bit, and the action of the

fault does not reduce the trustworthiness of the cal-

culated result.

For safety-related systems, fault detection

should be performed prior to failure by ensuring the

necessary checkability of the LUT-oriented architec-

ture in normal operation. With the beginning of the

emergency mode, the manifestation of malfunctions

should be maximally excluded by masking them in

order to calculate reliable results. This problem is

solved by generating versions of the program code

and choosing the versions with the best indicators of

the checkability of the circuit and the trustworthiness

of the results, respectively, in normal and emergency

modes.

 The best solution is provided by versions that

completely eliminate the occurrence of faults in

emergency mode and thus maintain the required

trustworthiness of the results. In the absence of such

versions, preference is given to versions with maxi-

mum fault masking in emergency mode, provided

that the circuit is checkable for other faults. This

case also includes the absence of masked faults if

they all manifest in normal mode.

All described versions of the program code

completely solve the problem of hidden faults by

leveling the checkability of the normal mode to the

level of the emergency mode. In this case, the mal-

function hidden in the normal mode retains this state

in the emergency mode, and the remaining malfunc-

tions lose their hidden character and therefore will

be detected in the normal mode by means of on-line

testing.

Applied Aspects of Information Technology 2021; Vol. 4 No.2: 168177

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 173

If none of the versions provides a complete so-

lution to the problem of hidden faults, then such a

solution can be obtained by organizing the operation

of the FPGA component on several versions of the

program code, changing sequentially in time. Thus,

it is possible to combine the use of versions that suc-

cessfully withstand several types of faults, including

the dominance of opposite stuck-at faults in the

memory of the LUT nodes. Fault resistance is car-

ried out by improving the checkability of the circuit

in normal mode, since it is impossible to predict

which version the emergency mode will start on.

Trustworthiness must be ensured for the

memory bits observed in emergency mode, since

only these bits affect the computed results. Some of

these bits can be observed in normal mode, i.e., be

checkable. The rest of the bits, observed only in

emergency mode, are potentially dangerous, since

they create the problem of hidden faults. This prob-

lem can be solved by moving potentially dangerous

bits to checkable positions.

The numbering of the memory bits by the value

of the dcba2 address, and the versions by a binary

code, the bits of which take one value in the case of

inversion of the corresponding input of the LUT

node, allows to determine the version for moving a

memory bit from one position to another according

to the formula: VKL = NK  NL, where VKL, NK, NL –

version numbers and moved bits, respectively [17].

It should also be noted the dependence of the

checkability of the circuit and the trustworthiness of

the results on the ranges of the input data in normal

and emergency modes. As the range of inputs used

in normal mode increases, the checkability of the

schema increases, reducing the requirements to se-

lection of versions. Reducing the range of the emer-

gency mode helps masking faults and increasing the

trustworthiness of the results calculated in this

mode. This circumstance should be taken into ac-

count when it is possible to influence the ranges of

the input data of normal and emergency modes, for

example, in the process of forming specifications for

the design of an FPGA component.

EXPERIMENTAL STUDIES

The experiments are aimed at demonstrating the

described approaches to improving FPGA compo-

nents in terms of checkability and trustworthiness by

using the natural version redundancy of the LUT-

oriented architecture.

The FPGA component under study implements

an iterative array multiplier of 8-bit binary codes

taken from the library LPM_mult CAD Quartus

[20]. The multiplier is implemented in Intel Cyclone

10 LP FPGA chip: 10CL025YU256I7G [21] using

CAD Quartus Prime 20.1 Lite Edition [22].

The FPGA component circuit contains 101

LUT nodes and forms 85 pairs of them, creating 285

versions of the program code.

 The description of the FPGA component con-

tains the numbers of the LUT nodes with an indica-

tion of their program code and connection to other

LUT nodes, as well as the inputs and outputs of the

circuit.

Versions of the program code were obtained us-

ing a program developed in the Delphi 10 Seattle

demo version [23].

The program uses the description of the FPGA

component to simulate the process of performing

computations in accordance with the LUT-oriented

iterative array multiplier circuit. For each LUT node,

the simulation determines the observability of the

memory bits in normal and emergency mode.

The division of the input data into normal and

emergency ranges is done using the threshold S. Fac-

tors less than S determine input data of the normal

mode. When at least one factor reaches or exceeds

the threshold, the input data refers to the emergency

mode.

The program performs 4 experiments for differ-

ent values of the threshold S.

Code versions are generated independently for

each pair of LUT nodes.

Fig. 1 shows the main panel of the program for

modeling the LUT-oriented circuit of the iterative

array multiplier.

The panel shows the control keys for starting

the simulation and exiting the program, as well as

setting the S threshold and the LUT number of the

node, the memory of which is shown below for four

S threshold values. The threshold is set in the range

from 2 to 50 and changes in increments of 16.

A node's LUT memory is shown as a matrix of

bits. Its rows and columns are numbered from 002 to

112 with the values of the bits arriving at the D, C

and B, A inputs of the LUT node, respectively. Bits

located at the intersection of rows and columns are

numbered with the dcba2 address. For example, the

upper right and lower left bits are addressed with

codes 00112 and 11002, respectively.

Applied Aspects of Information Technology 2021; Vol. 4 No.2: 168177

174 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Checkable bits, observed in normal mode, and

potentially dangerous bits, observed only in emer-

gency mode, are colored blue and yellow, respec-

tively. The values of potentially dangerous bits are

highlighted in blue if the versions of the program

code for moving these bits are generated only when

the circuit inputs are inverted.

The number of versions required to move po-

tentially dangerous bits to checkable positions and

the numbers of those versions starting from the orig-

inal zero version are shown below the memory ma-

trices. Version numbers are represented in hexadec-

imal digits.

Fig. 1. The main panel of the iterative array

 multiplier simulator
 Source: compiled by the authors

Memory and versions are shown using the ex-

ample of LUT node 43. In the case of S = 2, bits

00002 and 10002 are checkable. The rest of the bits

are potentially dangerous.

Bits 01002 – 01112 and 11002 – 11112 can be

moved to checkable positions by inverting the inputs

of the schema. There are 4 versions used to move the

bits. Version 116 swaps the bits of the first and sec-

ond and third and fourth columns of the matrix and

adds bits 00012 and 10012 to the checkable bits. Ver-

sion 216 swaps the left and right halves of the matrix

by attaching bits 00102, 00112, and 10102 10112 to

the checkable bits. Version 416 swaps the bits of the

first and second, as well as the third and fourth rows

of the matrix, and thus moves the remaining poten-

tially dangerous bits to checkable positions.

In the case of S = 18 and S = 34, all potentially

dangerous bits are moved to checkable positions

using one version 116.

The threshold S = 50 turns out to be high

enough to ensure checkability of the entire memory

of LUT node 43 on the original version of the pro-

gram code.

Raising the S threshold demonstrates a change

in the color of the memory bits from the dominant

yellow to blue. Potentially dangerous bits are trans-

formed into checkable bits. This trend can also be

seen in the simulation results shown at the bottom of

the main program panel. As the threshold increases,

the number of checkable bits observed in normal

mode increases from 122 (9.3 %) to 587 (44.9%). At

the same time, the number of potentially dangerous

bits decreases from 655 (50.1%) to 190 (14.5 %).

CONCLUSION

Ensuring the functional safety of critical sys-

tems is based on the use of fault-tolerant solutions,

the effectiveness of which is significantly limited by

sources of multiple failures, including hidden faults

arising from insufficient checkability of digital cir-

cuits. Therefore, FPGA components of safety-related

systems need to improve their checkability, which is

maintained during normal operation in order to in-

crease the trustworthiness of the results calculated in

emergency mode.

The proposed improvement of FPGA compo-

nents is based on the use of the natural version re-

dundancy of the LUT-oriented architecture, which

manifests itself in different versions of the program

Applied Aspects of Information Technology 2021; Vol. 4 No.2: 168177

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 175

code that exist for the same hardware implementa-

tion of the component.

Analysis of typical failures of LUT nodes

showed natural opportunities for their manifestation

and, on the contrary, masking, respectively, in nor-

mal and emergency modes in order to combine high

checkability of the circuit and the trustworthiness of

the results achieved in versions of the program code.

The experiments have shown the possibility of

solving the problem of hidden faults by organizing

the operation of the FPGA component on several

versions of the program code, which ensure the

movement of potentially dangerous bits of the LUT

memory, observed only in emergency mode, to

checkable positions that are observed during the

normal operation of the safety-related system.

REFERENCES

1. Smith, D. & Simpson, K. “The Safety Critical Systems Handbook”. [5th ed.]. Butterworth-

Heinemann: 2019. DOI: https://doi.org/10.1016/C2019-0-00966-1.

2. Otradskaya, T. V., Rudnichenko, N. M., Shibaev, D. S., Shibaeva, N. O. & Vychuzhanin, V. V. “Da-

ta Control in the Diagnostics and Forecasting the State of Complex Technical Systems”. Herald of Advanced

Information Technology. Publ. Nauka i Tekhnika. Odesa: Ukraine. 2019; Vol. 2 No. 3: 183–196.

DOI: https://doi.org/10.15276/hait.03.2019.2.

3. Tyurin, S. F. “Investigation of a Hybrid Redundancy in the Fault-Tolerant Systems”. Radio Electron-

ics, Computer Science, Control. 2019; Vol. 2: 23–33. DOI: https://doi.org/10.15588/1607-3274-2019-2-3.

4. Arya, N. & Singh, A. P. “Fault Tolerant System for Embedded System Architecture”. International

Journal of Engineering and Technology (IJET). 2017; Vol.9 No.3: 93–97. DOI: https://doi.org/10.21817/

ijet/2017/v9i3/170903S016.

5. Gillis, D. “The Apocalypses that Might Have Been”. – Available from:

https://www.damninteresting.com/the-apocalypses-that-might-have-been/. 2007. – [Accessed 20th Mar.

2019].

6. Hussain, Y., Rehalia, A. & Dhyan, A. “Case Study: Chernobyl Disaster”. International Journal of

Advanced Research in Computer Science and Software Engineering. 2018; Vol.8 No.2: 76–78.

7. Kovalev, I. S., Drozd, O. V., Rucinski, A., Drozd, M. O., Antoniuk, V. V. & Sulima, Y. Y. “Devel-

opment of Computer System Components in Critical Applications: Problems, Their Origins and Solutions”.

Herald of Advanced Information Technology. Publ. Nauka i Tekhnika. Odesa: Ukraine. 2020; Vol.3 No.4:

252–262. DOI: https://doi.org/10.15276/hait.04.2020.4.

8. Murugesan, S. & Gangadharan, G. “Harnessing Green IT”. Principles and Practices; Wiley and Sons

Ltd.: Hoboken. NJ: USA. 2012.

9. Kharchenko, V., Gorbenko, A., Sklyar, V. & Phillips, C. “Green Computing and Communications in

Critical Application Domains: Challenges and Solutions”. In: IX International Conference of Digital Tech-

nology. Zhilina: Slovak Republic. 2013. DOI: https://doi.org/10.1109/DT.2013.6566310.

10. Drozd, J., Drozd, A., Antoshchuk, S., Kushnerov, A. & Nikul, V. “Effectiveness of Matrix and Pipe-

line FPGA-Based Arithmetic Components of Safety-Related Systems”. The 8th IEEE International Confer-

ence IDAACS. Warsaw: Poland. 2015. p. 785–789. DOI: https://doi.org/10.1109/IDAACS.2015.7341410.

11. Warren, S. & Anderson, J. “FPGA Glitch Power Analysis and Reduction”. In: International Sympo-

sium on Low Power Electronics and Design. Fukuoka: Japan. 2011. p. 27–32.

DOI: https://doi.org/10.1109/ISLPED.2011.5993599.

12. Velegalati, R. & Kaps, J.-P. “Glitch Detection in Hardware Implementations on FPGAs Using Delay

Based Sampling Techniques”. In: Euromicro Conference on Digital System. Design Los Alamitos. CA:

USA. 2013. DOI: https://doi.org/10.1109/DSD.2013.107.

13. Alizadeh, S. & Sriramula, S. “Impact of Common Cause Failure on Reliability Performance of Re-

dundant Safety Related Systems Subject to Process Demand”. Reliability Engineering & System Safety.

2018; Vol. 172: 129–150. DOI: https://doi.org/10.1016/j.ress.2017.12.011.

14. Kumar, M., Kabra, A., Karmakar, G. & Marathe, P. P. “A Review of Defences against Common

Cause Failures in Reactor Protection Systems”. In: 4th International Conference on Reliability, Infocom

https://doi.org/10.1016/C2019-0-00966-1
https://doi.org/10.15276/hait.03.2019.2
https://doi.org/10.15588/1607-3274-2019-2-3
https://doi.org/10.15276/hait.04.2020.4
https://doi.org/10.1109/DT.2013.6566310
https://doi.org/10.1109/ISLPED.2011.5993599
https://doi.org/10.1109/DSD.2013.107
https://doi.org/10.1016/j.ress.2017.12.011

Applied Aspects of Information Technology 2021; Vol. 4 No.2: 168177

176 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Technology and Optimization (ICRITO). Noida: India. 2015. p. 1–5. DOI: https://doi.org/10.1109/

ICRITO.2015.7359232.

15. Kharchenko, V., Bakhmach, E., Siora, A., Sklyar, V. & Tokarev, V. “Diversity-Oriented FPGA-

Based NPP I&C Systems: Safety Assessment, Development and Implementation”. 18th International Con-

ference on Nuclear Engineering. Xi’an: China. 2010. p. 755–764. DOI: https://doi.org/10.1115/ICONE18-

29754.

16. Ebrahimi, M., Sadeghi, R. & Navabi, Z. “LUT Input Reordering to Reduce Aging Impact on FPGA

LUTs”. IEEE Transactions on Computers. 2020; Vol.69 No.10: 1500–1506. DOI: https://doi.org/10.1109/

TC.2020.2974955.

17. Drozd, O., Zashcholkin, K., Martynyuk, O., Ivanova, O. & Drozd J. “Development of Checkability

in FPGA Components of Safety-Related Systems”. CEUR Workshop Proceedings. 2020; Vol. 2762: 30–42.

Available from: http://ceur-ws.org/Vol-2762/paper1.pdf.

18. Amano, H. “Principles and Structures of FPGAs”. Publ. Springer. Singapore: 2018.

DOI: https://doi.org/10.1007/978-981-13-0824-6.

19. Shah, T., Matrosova, A., Fujita, M. et. al. “Multiple Stuck-at Fault Testability Analysis of ROBDD

Based Combinational Circuit Design”. Journal of Electronic Testing. 2018; Vol.34 No.1: 53–65.

DOI: https://doi.org/10.1007/s10836-018-5703-3.

20. “Intel FPGA Integer Arithmetic IP Cores User Guide”. 2020. – Available from:

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_lpm_alt_mfug.pdf.

21. “Intel Cyclone 10 LP Core Fabric and General Purpose I/Os Handbook”. 2020. – Available from:

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-10/c10lp-51003.pdf.

22. “Intel Quartus Prime Standard Edition User Guide”. 2020. – Available from:

https://www.intel.com/content/dam/ altera-www/global/en_US/pdfs/literature/ug/ug-qps-getting-started.pdf.

23. “Delphi 10 Seattle: Embarcadero”. – Available from: https://www.embarcadero.com/docs/

datasheet.pdf.

Conflicts of Interest: the authors declare no conflict of interest

Received 23.12.2020

Received after revision 11.03.2021

Accepted 17.03.2021

DOI: https://doi.org/10.15276/aait.02.2021.4

УДК 004.315

ПОКРАЩЕННЯ FPGA-КОМПОНЕНТІВ КРИТИЧНИХ СИСТЕМ НА ОСНОВІ

ПРИРОДНОЇ ВЕРСІЙНОЇ НАДМІРНОСТІ

Олександр Валентинович Дрозд1)
ORCID: https://orcid.org/0000-0003-2191-6758; drozd@ukr.net

Анджей Русінський2)
ORCID: https://orcid.org/0000-0002-0988-7376; andrzej.rucinski@unh.edu

Костянтин Вячеславович Защолкін1)

ORCID: https://orcid.org/0000-0003-0427-9005; const-z@te.net.ua

Мирослав Олександрович Дрозд 1)

ORCID: https://orcid.org/0000-0003-0770-6295; myroslav.drozd@opu.ua

Юліан Юрійович Суліма3)
ORCID: https://orcid.org/0000-0003-3986-7296; mr_lemur@ukr.net

1) Одеський національний політехнічний університет, проспект Шевченка, 1. Одеса, 65044, Україна
2) Університет Нью-Гэмпшира, Дарем, Нью-Гэмпшир 03824. Бостон, США

3)Одеський технічний фаховий коледж Одеської національної академії харчових технологій, Балківська вул., 54. Одеса, 65006, Україна

АНОТАЦІЯ

Статтю присвячено проблемі вдосконалення FPGA-компонентів, що розробляються для систем критичного застосу-

вання. FPGA-компоненти поліпшуються в контролепридатності їх схем і достовірності обчислюваних на них результатів

https://doi.org/10.1115/ICONE18-29754
https://doi.org/10.1115/ICONE18-29754
http://ceur-ws.org/Vol-2762/paper1.pdf
https://doi.org/10.1007/978-981-13-0824-6
https://doi.org/10.1007/s10836-018-5703-3
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://www.intel.com/content/%20dam/www/programmable/us/en/pdfs/literature/hb/cyclone%20-10/c10lp-51003.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug-qps-getting-started.pdf
https://doi.org/
mailto:myroslav.drozd@opu.ua

Applied Aspects of Information Technology 2021; Vol. 4 No.2: 168177

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 177

для підтримки відмовостійких рішень, які є базовими в забезпеченні функціональної безпеки критичних систем. Відмовос-

тійкі рішення потребують захисту від джерел кратних відмов, до яких відносяться приховані несправності. Вони можуть

накопичуватися в значній кількості на протязі тривалого нормального режиму і порушувати функціональність відмовостій-

ких схем з початком найбільш відповідального аварійного режиму. Захист від прихованих несправностей забезпечується

контролепридатністю схем, яка націлена на прояв несправностей і тому повинна підтримуватися в комплексі з достовірніс-

тю результатів, беручи до уваги зниження достовірності при прояві несправностей. Завдання підвищення контролепридат-

ності FPGA-компонента в нормальному режимі і достовірності результатів, що обчислюються в аварійному режимі, вирі-

шується шляхом використання природної версійної надмірності, властивої LUT-орієнтованій архітектурі. Ця надмірність

проявляється в існуванні множини версій програмного коду, що зберігають функціональність FPGA-компонента при одній і

тій же його апаратної реалізації. Контролепридатність FPGA-компонента і достовірність обчислюваних результатів розгля-

даються з урахуванням характерних несправностей LUT-орієнтованої архітектури. Ці несправності досліджені з позиції

несуперечності їх прояву і маскування відповідно в нормальному і аварійному режимі на версіях програмного коду. Не-

справності ототожнюються зі спотворенням бітів в пам'яті LUT вузлів. Біти, що спостерігаються тільки в аварійному режи-

мі, є потенційно небезпечними, оскільки можуть приховувати несправності в нормальному режимі. Переміщення потенцій-

но небезпечних бітів на контролепридатні позиції, які спостерігаються в нормальному режимі, виконується шляхом вибору

відповідних версій програмного коду і організації роботи FPGA-компонента на декількох версіях. Експерименти, що прове-

дені з FPGA-компонентом на прикладі матричного помножувача двійкових кодів, показали ефективність використання при-

родної версійнної надмірності LUT-орієнтованої архітектури для вирішення проблеми прихованих несправностей.

Ключові слова: Система критичного застосування; FPGA-компонент; LUT-орієнтована архітектура; функціональна

безпека; відмовостійкість; контролепридатність; достовірність; кратні відмови; прихована несправність; природна версійна

надмірність; версії програмного коду

ABOUT THE AUTHORS

Oleksandr V. Drozd – Dr. Sci. (Eng.) (2003), Prof. of Computer Intellectual Systems and Networks Department.

Odessa National Polytechnic University, 1, Shevchenko Avenue. Odesa, 65044, Ukraine

ORCID: https://orcid.org/0000-0003-2191-6758; drozd@ukr.net

Research field: On-Line Testing; Green Technologies and Circuit Checkability in the Digital Component of Safety-Related

Systems; LUT-Oriented Architecture of FPGA-Based Systems

Олександр Валентинович Дрозд – доктор технічних наук (2003), професор кафедри Комп’ютерних інтелектуаль-

них систем та мереж. Одеський національний політехнічний університет, пр. Шевченка, 1. Одеса, 65044, Україна

Andrzej Rucinski – PhD Professor Emeritus, Department of Electrical and Computer Engineering, University of New

Hampshire, a member of the Executive Committee (Innovation Chair) of the IEEE Computer Society’s Design Automation

Technical Committee. USA Ambassador of International Society of Service Innovation Professionals. University of New

Hampshire, Durham, New Hampshire 03824. Boston, USA

ORCID: https://orcid.org/0000-0002-0988-7376; andrzej.rucinski@unh.edu

Research field: Ecosystem Grand Challenges Associated with Ehealth/Mhealth; Eeducation/Elearning;

Esecurity/Identity Protection; Smart City/Region/State and Information Infrastructure Technology Involving a Digital

Ecosystem Using Internet of Things

Анджей Русінський – почесний доктор філософії кафедра Електротехніки та обчислювальної техніки.

Університет Нью-Гэмпшира, член Виконавчого комітету (голова з інновацій) Технічного комітету з автоматизації

проєктування IEEE Комп’ютерного товариства, посол Міжнародного товариства професіоналів у області сервіс-

інновацій. Університет Нью-Гэмпшира, Дарем, Нью-Гэмпшир 03824. Бостон, США.

Kostiantyn V. Zashcholkin – Dr. Sci. (Eng) (2020), Associate Professor of the Department of Computer Intelligent Systems

and Networks. Odessa National Polytechnic University, 1, Shevchenko Avenue. Odessa, 65044, Ukraine

ORCID: https://orcid.org/0000-0003-0427-9005; const-z@te.net.ua

Research field: FPGA-Based Systems; Digital Watermarking; Digital Steganography

Костянтин Вячеславович Защолкін – доктор технічних наук (2020), доцент кафедри Комп’ютерних інтелектуаль-

них систем та мереж. Одеський національний політехнічний університет, проспект Шевченка, 1. Одеса, 65044, Україна

 Myroslav O. Drozd – PhD (2014), Associated Prof. of Information Systems Department. Odessa National Polytechnic

University, 1, Shevchenko Avenue. Odessa, 65044, Ukraine

ORCID: https://orcid.org/0000-0003-0770-6295; myroslav.drozd@opu.ua

Research field: On-Line Testing and Circuit Checkability in the Digital Component of Safety-Related Systems

Мирослав Олександрович Дрозд – кандидат технічних наук (2014), доцент кафедри Інформаційних систем.

Одеський національний політехнічний університет, проспект Шевченка, 1. Одеса, 65044, Україна

Yulian Yu. Sulima – PhD (2014), Head of the Computer Systems Department, SSU “Odessa Technical Professional College

of the Odessa National Academy of Food Technology”, 54, Balkivska St. Odessa, 65006, Ukraine

ORCID: https://orcid.org/0000-0003-3986-7296; mr_lemur@ukr.net

Research field: Technology of Designing Computer Systems on FPGA; Computer Systems for Critical

Application; Checkability and Detection of Hidden Faults of Integrated Circuits

Юліан Юрійович Суліма – кандидат технічних наук (2014), завідувач відділення Комп’ютерних систем

ВСП «Одеський технічний фаховий коледж Одеської національної академії харчових технологій», Одеса, Україна.

