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ABSTRACT 

         The article is devoted to the problem of improving FPGA (Field Programmable Gate Array) components developed for safety-

related systems. FPGA components are improved in the checkability of their circuits and the trustworthiness of the results calculated 

on them to support fault-tolerant solutions, which are basic in ensuring the functional safety of critical systems. Fault-tolerant solu-

tions need protection from sources of multiple failures, which include hidden faults. They can be accumulated in significant quanti-

ties during a long normal operation and disrupt the functionality of fault-tolerant circuits with the onset of the most responsible emer-

gency mode. Protection against hidden faults is ensured by the checkability of the circuits, which is aimed at the manifestation of 

faults and therefore must be supported in conjunction with the trustworthiness of the results, taking into account the decrease in 

trustworthiness in the event of the manifestation of faults. The problem of increasing the checkability of the FPGA component in 

normal operation and the trustworthiness of the results calculated in the emergency mode is solved by using the natural version re-

dundancy inherent in the LUT-oriented architecture (Look-Up Table). This redundancy is manifested in the existence of many ver-

sions of the program code that preserve the functionality of the FPGA component with the same hardware implementation. The 

checkability of the FPGA component and the trustworthiness of the calculated results are considered taking into account the typical 

failures of the LUT-oriented architecture. These malfunctions are investigated from the standpoint of the consistency of their mani-

festation and masking, respectively, in normal and emergency modes on versions of the program code. Malfunctions are identified 

with bit distortion in the memory of the LUT units. Bits that are only observed in emergency mode are potentially dangerous because 

they can hide faults in normal mode. Moving potentially dangerous bits to checkable positions, observed in normal mode, is per-

formed by choosing the appropriate versions of the program code and organizing the operation of the FPGA component on several 

versions. Experiments carried out with the FPGA component using the example of an iterative array multiplier of binary codes have 

shown the effectiveness of using the natural version redundancy of the LUT-oriented architecture to solve the problem of hidden faults. 
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INTRODUCTION 

FPGA-designing (Field Programmable Gate 

Array) has gained recognition in critical applica-

tions, where it is widely used in the development of 

safety-related systems.  

According to international standards, these sys-

tems are aimed at ensuring the functional safety of  
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high-risk facilities, which include power units of 

power plants and power grids, chemical production, 

transport infrastructures and much more [1, 2]. 

These objects have a twofold relationship to safety. 

On the one hand, they themselves ensure its various 

types of safety, including energy and food safety, as 

well as safety associated with the prompt delivery 

and distribution of produced and consumed re-

sources. 
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On the other hand, the operation of these facili-

ties is associated with an increased risk of accidents, 

which can lead to significant negative consequences. 

The potential cost of possible losses from accidents 

is constantly growing along with the increase in the 

number of facilities and their capacity.  

In these conditions, the only way to contain 

risks is based on the development of information 

technologies implemented in computer systems for 

their transformation into safety-related systems. 

A feature of these systems is their designing for 

operation in two modes: normal and emergency. The 

functional safety of the critical system is considered 

in conjunction with the safety of the high-risk object 

it controls.     

The programmability of FPGAs with LUT-

oriented architecture (Look-Up Table) creates the 

prerequisites for the development of multi-version 

technologies that are important for ensuring the 

functional safety of systems in critical domains. 

For safety-related systems, the main focus in 

improving their FPGA components is to improve 

functional safety, which is based on the use of fault-

tolerant solutions. 

 At the same time, the fault tolerance of the 

structures is ensured in relation to one or two fail-

ures, taking into account the balance between a sig-

nificant decrease in the probability of independent 

failures with an increase in their multiplicity and the 

complication of the solution, leading to its rise in 

cost and losses in reliability [3, 4]. 

However, the independence of failures, as a 

rule, is of a relative nature and at one level or anoth-

er show the common causes of their occurrence. In 

addition, the decisive factor is the manifestation of 

multiple failures, not their occurrence. Therefore, the 

greatest challenge to fault tolerance in ensuring the 

functional safety of safety-related systems is the 

sources of multiple failures. 

An important place among such sources is oc-

cupied by the limited checkability of digital circuits, 

which normally operate in a limited range of input 

data. Insufficient checkability leads to the problem 

of hidden faults, which is inherent in modern safety-

related systems at this stage of their development. 

Circuits can accumulate hidden faults during ex-

tended normal operation. In emergency mode, the 

manifestation of accumulated faults can significantly 

disrupt the fault tolerance of the circuits and reduce 

the trustworthiness of the calculated results.  

Thus, the main indicators important for the 

functional safety of critical systems are the checka-

bility of the schemes and the trustworthiness of the 

results calculated on these schemes. In fault-tolerant 

solutions, the functional safety of critical systems 

should be ensured by increasing the checkability of 

the circuits and the trustworthiness of the results, 

respectively, in the normal and emergency mode of 

FPGA components. 

The goal of this paper is to improve FPGA 

components in their checkability, maintained during 

normal operation, and the trustworthiness of results 

calculated in emergency mode. The improvement is 

achieved by using the natural version redundancy of 

the LUT-oriented architecture. 

Further presentation of the research carried out 

is organized as follows. Section 2 describes the pre-

requisites for the further development of FPGA de-

signing towards improving circuit checkability and 

trustworthiness of results in critical applications. 

Section 3 reveals the possibilities of version redun-

dancy of the LUT-oriented architecture to improve 

FPGA components in key indicators aimed at ensur-

ing the functional safety of critical systems. Section 

4 shows the results of experiments carried out with 

FPGAs to improve their basic performance. 

BACKGROUND FOR FPGA DEVELOPMENT 

IN CRITICAL APPLICATIONS 

The prerequisites for improving FPGA design-

ing consist of the necessity and possibility of such 

development in safety-related systems. 

For critical systems, the need to improve FPGA 

components is most clearly demonstrated by the lack 

of confidence in the applied fault-tolerant solutions. 

This mistrust is manifested in the use of simulation 

modes that recreate emergency conditions to in-

crease the checkability of circuits and detect hidden 

faults in them. 

However, simulation modes themselves pose a 

great danger to safety-related systems and objects of 

their control. The very existence of these modes car-

ries a certain threat, since it has repeatedly led to 

their unauthorized activation due to operator error 

and even one burned-out microcircuit. The planned 

use of simulation modes is associated with the shut-

down of emergency protection, which served as one 

of the causes of the Chernobyl accident [5, 6]. 

For safety-related systems, the development 

paths of components are determined in the resource-
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based approach, which proposes to develop models, 

methods and tools that form resources, analyzing the 

integration of the computer world, created by hu-

man, into the natural world. In resource develop-

ment, this approach identifies three levels: replica-

tion, diversification and self-sufficiency as a devel-

opment goal [7]. 

Replication is the lowest level of development, 

at which integration occurs at the expense of produc-

tivity in open resource niches, i.e., in the absence of 

rigid contact with the natural world. The computer 

world demonstrates all levels of development, but 

replication prevails. 

The hardware is represented by matrix circuits 

stamped out of the same operating elements: parallel 

adders, shifters, registers, iterative array multipliers 

and dividers. 

The software is compiled by replicating ready-

made modules, which can be functionally redundant 

to a large extent for a given application and, there-

fore, have unreasonably large sizes. However, this 

replication is supported by open resource niches in 

the throughput and memory size of modern comput-

ers. 

Mobile computer systems are limited by the re-

source niche of autonomous energy consumption 

and require the development of green technologies, 

which belong to the next level of diversification [8, 

9]. 

To understand the inferiority of the lower level 

of development, it is enough to consider a bright 

pattern of matrix structures using the example of an 

iterative array multiplier that performs an operation 

in one clock cycle. Its circuit consists of n2 opera-

tional elements, 2n – 2 of which are connected in 

series, where n is the size of the operands. There-

fore, each operational element is used only for a 

small part of 1 / (2n – 2) clock cycle, which is 0.8% 

for n = 64 [10]. 

The rest of the time is spent on parasitic switch-

ing caused by signal races. They determine the main 

part of the dynamic component of energy consump-

tion, as well as the static component is determined 

by the large size of the matrices [11, 12].  

However, the greatest disadvantage of matrix 

structures is their low checkability, which is due to 

the processing of data in parallel codes. For n = 64, 

the iterative array multiplier input word contains 128 

bits and can take 2128 different values, of which 

normal mode can only use a few values.  

The resource-based approach defines the prob-

lem of hidden faults as a growth challenge, when the 

safety-related system rises to the level of diversifica-

tion, which manifests itself in the operating mode by 

its division into normal and emergency, in the input 

data of the digital circuit and the checkability de-

pendent on them. They all become different in these 

modes. At the same time, the components of these 

systems continue to be stamped at the replication 

level in the form of matrix structures. 

It should be noted that the problem of hidden 

faults does not arise in conventional computers 

working in only one operating mode. Both the sys-

tem and its components are at the same level of de-

velopment, and retain the hidden nature of the mal-

function throughout the entire operating mode. 

This understanding of the problem opens the 

way for its solution: the components must be raised 

to the level of the system. It should be borne in mind 

that matrix structures have dominated for several 

decades and during this time they have created pow-

erful support resources, including CAD. FPGA de-

signing offers on-chip iterative array multiplier cir-

cuits, pre-built carry propagation paths for accelerat-

ed data addition in parallel codes, and a wide range 

of library solutions based on matrix structures. 

Therefore, today, raising components to the 

level of diversification should be done in matrix 

structures, including the LUT-oriented structure of 

FPGA components designed for critical applications. 

It should be noted that in conventional comput-

ers checkability and trustworthiness are in some op-

position. The higher the checkability of the circuit, 

the better the malfunctions will manifest, including 

the faults that are most likely to occur. In this case, 

erroneous results are calculated more often and their 

trustworthiness decreases. 

Developing resources towards self-sufficiency 

removes inconsistencies, including the performance 

of FPGA components. For safety-related systems, 

the requirements for improving the checkability of 

the schemes and the trustworthiness of the results 

are spread by their application to different modes: 

normal and emergency, respectively. 

Some experience in resisting multiple failures 

has already been accumulated in international stand-

ards in relation to common cause failures [13, 14]. 

This reason is seen in the copying of erroneous deci-

sions that can arise, for example, as a result of de-

sign errors. Installing the same software on duplicate 
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components can cause multiple failures in the event 

of an error in the program. 

The standards recommend limiting the common 

cause by using multi-version technologies [15], re-

flecting the level of diversification. Development of 

versions of the program by different teams of pro-

grammers significantly reduces the likelihood of 

identical errors. 

The LUT-oriented architecture of FPGA com-

ponents organizes the execution of computations by 

decomposing them into logical functions of several 

arguments. The generator of these functions is the 

LUT node, which, as part of the logical element LE, 

is supplemented with a programmable one-bit regis-

ter. The LUT node is a SRAM memory for storing a 

description of a function, which is written into this 

memory in the form of program code during the 

programming of the FPGA component. In the wide-

spread case of decomposition of computations into 

functions for no more than four arguments, the LUT 

node has 16 bits of memory, addressed by the dcba2 

code, which is fed to 4 inputs D, C, B, A [16]. 

Version redundancy of the LUT-oriented archi-

tecture consists in the presence of many versions of 

the program code for the same hardware implemen-

tation of the FPGA component. 

The forming element of version redundancy is a 

pair of LUT nodes connected in series, i.e., the out-

put of the first node is connected to any input of the 

second node of the pair. In this case, the original 

version of the program code can be supplemented 

with another version, which differs in the inversion 

of the bit transmitted from the first LUT node to the 

second node of the pair. Bit inversion at the output 

of the first LUT node can be provided by inverting 

the program code in bits related to the memory of 

this node. The bit inversion at the input of the sec-

ond node of the pair is compensated by renumbering 

the bits of its memory in the program code of the 

FPGA component [17]. 

The number of pairs is determined by the num-

ber of the first LUT nodes in the FPGA project. 

Branching the circuit at the output of the first LUT 

node does not increase the number of pairs that cre-

ate versions of the program code. All these versions 

are created independently of each other and there-

fore ensure their growth as a power function of the 

number of pairs.  

For example, one hardware implementation of 

an FPGA project will have over a million versions of 

the program code with only twenty pairs of LUT 

nodes. This number of pairs is formed in a pyramid 

scheme that contains 21 LUT nodes located in three 

tiers of 16, 4 and 1. Only a single LUT node in the 

third tier is not the first node in the pair. 

It should be emphasized the natural kind of the 

described version redundancy, which does not need 

to be introduced into the FPGA projects, since it is 

an integral part of the LUT-oriented architecture of 

this design. 

Thus, FPGA components have significant natu-

ral version redundancy even with insignificant com-

plexity determined by the number of LUT nodes. 

It should be noted that the indicators character-

izing the FPGA component can be divided in rela-

tion to versions into two groups: active and passive. 

Versions differ in active metrics and are equal in 

passive metrics. Version redundancy plays an im-

portant positive role for both groups of metrics be-

cause versions with the best active metrics can be 

selected without loss of passive metrics. 

In the studies carried out, the active indicators 

are the checkability of the digital circuit and the 

trustworthiness of the results calculated on it. The 

preservation of the hardware implementation of the 

FPGA component refers to the passive indicators of 

the complexity of the circuit design, its reliability 

characteristics and, possibly, many other indicators. 

For example, power consumption also cannot 

undergo any changes in its static and dynamic com-

ponents, taking into account the preservation of the 

circuit and the number of signal transition at the in-

puts / outputs of the LUT nodes, respectively. 

IMPROVING THE CHECKABILITY OF 

SCHEMES AND TRUSTWORTHINESS OF 

RESULTS 

Both checkability and trusyworthiness are asso-

ciated with circuit malfunctions and their manifesta-

tion in the form of a result error or masking of this 

manifestation. Therefore, both indicators must be 

considered in relation to the characteristic faults in-

herent in circuits with a LUT-oriented architecture. 

A fault of the LUT node can manifest itself in 

the form of erroneous bit values at its inputs or out-

puts as a result of short-circuiting adjacent inputs or 

reading from memory. 

The program code written to the nodes LUT 

memory from the configuration file is checked with 

a checksum. Therefore, the nodes' LUT memory is 
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checkable. The bits of this memory are read using a 

multiplexer consisting of switches that select a bit 

from two directions in one direction under the con-

trol of the address bits dcba2 [18].  

A malfunction of the switches at their infor-

mation inputs can cause an error if the correct bit 

value and its value determined by the malfunction 

do not match. A malfunction of the control input of 

the switch leads to an addressing error, which dis-

torts the result at the output of the LUT node, if the 

memory bits at the correct and erroneous address do 

not match in their values. Errors caused by faults in 

the switches are perceived at the output of the LUT 

node as a distortion of the corresponding memory 

bits, and therefore their checkability and the trust-

worthiness of the results are further considered with 

respect to these bits and their constant malfunction 

in the memory of the LUT node. 

The checkability of the circuit and the trustwor-

thiness of the results with respect to short circuit 

faults occurring between adjacent inputs of the LUT 

nodes should be considered taking into account the 

peculiarities of the manifestation and masking of 

these faults. 

A short circuit fault manifests itself as an error 

in the dcba2 address code if the inputs to be closed 

should have taken different values and is masked 

otherwise. At the same time, an error at the output of 

the LUT node appears if the bits read at the correct 

and erroneous addresses differ in the values they 

receive. Otherwise, this addressing error is masked. 

The manifestation of a short circuit fault at the 

output of the LUT node classifies it as checkable if 

this error is transmitted to the monitored result of 

calculations, i.e., if the node's LUT output is observ-

able. Otherwise, the error does not reach the result, 

and this result is considered reliable [19]. 

An important consideration is the diversifica-

tion of the data set at inputs of the LUT node into 

two non-overlapping subsets that manifest or mask a 

short circuit fault. Indeed, the values 012 and 102 at 

the adjacent inputs of the LUT node exhibit a short 

circuit fault, while the values 002 and 112, on the 

contrary, mask it.  

This diversification creates favorable conditions 

for finding versions of the program code with the 

diversity of the best checkability and trustworthiness 

in different modes of the critical system in accord-

ance with different input data of these modes. Inver-

sion at the input of the second LUT node of the pair 

allows to swap the indicated subsets in the manifes-

tation or masking of a short circuit fault. This capa-

bility provides the selection of a version with fault 

manifestation and masking, i.e., the best checkability 

and trustworthiness for the input data of the normal 

and emergency mode, respectively.  

Erroneous reading of bits from the node's LUT 

memory is best distributed with respect to the 

checkability and trustworthiness indicators with a 

dominant constant fault, i.e., the dominance of a 

constant of one value over the opposite. In this case, 

the memory bits, the value of which is inverse to the 

value of the dominant constant, belong to the check-

able at the output of the LUT node, since the action 

of the corresponding malfunction leads to bit corrup-

tion. This error will be detected if the node's LUT is 

monitored. Otherwise, the fault determines the cor-

rect value of the memory bit, and the action of the 

fault does not reduce the trustworthiness of the cal-

culated result. 

For safety-related systems, fault detection 

should be performed prior to failure by ensuring the 

necessary checkability of the LUT-oriented architec-

ture in normal operation. With the beginning of the 

emergency mode, the manifestation of malfunctions 

should be maximally excluded by masking them in 

order to calculate reliable results. This problem is 

solved by generating versions of the program code 

and choosing the versions with the best indicators of 

the checkability of the circuit and the trustworthiness 

of the results, respectively, in normal and emergency 

modes. 

 The best solution is provided by versions that 

completely eliminate the occurrence of faults in 

emergency mode and thus maintain the required 

trustworthiness of the results. In the absence of such 

versions, preference is given to versions with maxi-

mum fault masking in emergency mode, provided 

that the circuit is checkable for other faults. This 

case also includes the absence of masked faults if 

they all manifest in normal mode. 

All described versions of the program code 

completely solve the problem of hidden faults by 

leveling the checkability of the normal mode to the 

level of the emergency mode. In this case, the mal-

function hidden in the normal mode retains this state 

in the emergency mode, and the remaining malfunc-

tions lose their hidden character and therefore will 

be detected in the normal mode by means of on-line 

testing. 
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If none of the versions provides a complete so-

lution to the problem of hidden faults, then such a 

solution can be obtained by organizing the operation 

of the FPGA component on several versions of the 

program code, changing sequentially in time. Thus, 

it is possible to combine the use of versions that suc-

cessfully withstand several types of faults, including 

the dominance of opposite stuck-at faults in the 

memory of the LUT nodes. Fault resistance is car-

ried out by improving the checkability of the circuit 

in normal mode, since it is impossible to predict 

which version the emergency mode will start on. 

Trustworthiness must be ensured for the 

memory bits observed in emergency mode, since 

only these bits affect the computed results. Some of 

these bits can be observed in normal mode, i.e., be 

checkable. The rest of the bits, observed only in 

emergency mode, are potentially dangerous, since 

they create the problem of hidden faults. This prob-

lem can be solved by moving potentially dangerous 

bits to checkable positions. 

The numbering of the memory bits by the value 

of the dcba2 address, and the versions by a binary 

code, the bits of which take one value in the case of 

inversion of the corresponding input of the LUT 

node, allows to determine the version for moving a 

memory bit from one position to another according 

to the formula: VKL = NK  NL, where VKL, NK, NL – 

version numbers and moved bits, respectively [17]. 

It should also be noted the dependence of the 

checkability of the circuit and the trustworthiness of 

the results on the ranges of the input data in normal 

and emergency modes. As the range of inputs used 

in normal mode increases, the checkability of the 

schema increases, reducing the requirements to se-

lection of versions. Reducing the range of the emer-

gency mode helps masking faults and increasing the 

trustworthiness of the results calculated in this 

mode. This circumstance should be taken into ac-

count when it is possible to influence the ranges of 

the input data of normal and emergency modes, for 

example, in the process of forming specifications for 

the design of an FPGA component. 

EXPERIMENTAL STUDIES 

The experiments are aimed at demonstrating the 

described approaches to improving FPGA compo-

nents in terms of checkability and trustworthiness by 

using the natural version redundancy of the LUT-

oriented architecture. 

The FPGA component under study implements 

an iterative array multiplier of 8-bit binary codes 

taken from the library LPM_mult CAD Quartus 

[20]. The multiplier is implemented in Intel Cyclone 

10 LP FPGA chip: 10CL025YU256I7G [21] using 

CAD Quartus Prime 20.1 Lite Edition [22]. 

The FPGA component circuit contains 101 

LUT nodes and forms 85 pairs of them, creating 285 

versions of the program code. 

 The description of the FPGA component con-

tains the numbers of the LUT nodes with an indica-

tion of their program code and connection to other 

LUT nodes, as well as the inputs and outputs of the 

circuit. 

Versions of the program code were obtained us-

ing a program developed in the Delphi 10 Seattle 

demo version [23]. 

The program uses the description of the FPGA 

component to simulate the process of performing 

computations in accordance with the LUT-oriented 

iterative array multiplier circuit. For each LUT node, 

the simulation determines the observability of the 

memory bits in normal and emergency mode.  

The division of the input data into normal and 

emergency ranges is done using the threshold S. Fac-

tors less than S determine input data of the normal 

mode. When at least one factor reaches or exceeds 

the threshold, the input data refers to the emergency 

mode. 

The program performs 4 experiments for differ-

ent values of the threshold S. 

Code versions are generated independently for 

each pair of LUT nodes.  

Fig. 1 shows the main panel of the program for 

modeling the LUT-oriented circuit of the iterative 

array multiplier. 

The panel shows the control keys for starting 

the simulation and exiting the program, as well as 

setting the S threshold and the LUT number of the 

node, the memory of which is shown below for four 

S threshold values. The threshold is set in the range 

from 2 to 50 and changes in increments of 16. 

A node's LUT memory is shown as a matrix of 

bits. Its rows and columns are numbered from 002 to 

112 with the values of the bits arriving at the D, C 

and B, A inputs of the LUT node, respectively. Bits 

located at the intersection of rows and columns are 

numbered with the dcba2 address. For example, the 

upper right and lower left bits are addressed with 

codes 00112 and 11002, respectively. 
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Checkable bits, observed in normal mode, and 

potentially dangerous bits, observed only in emer-

gency mode, are colored blue and yellow, respec-

tively. The values of potentially dangerous bits are 

highlighted in blue if the versions of the program 

code for moving these bits are generated only when 

the circuit inputs are inverted. 

The number of versions required to move po-

tentially dangerous bits to checkable positions and 

the numbers of those versions starting from the orig-

inal zero version are shown below the memory ma-

trices. Version numbers are represented in hexadec-

imal digits. 

 

 
 

Fig. 1. The main panel of the iterative array  

         multiplier simulator 
          Source: compiled by the authors 

Memory and versions are shown using the ex-

ample of LUT node 43. In the case of S = 2, bits 

00002 and 10002 are checkable. The rest of the bits 

are potentially dangerous. 

Bits 01002 – 01112 and 11002 – 11112 can be 

moved to checkable positions by inverting the inputs 

of the schema. There are 4 versions used to move the 

bits. Version 116 swaps the bits of the first and sec-

ond and third and fourth columns of the matrix and 

adds bits 00012 and 10012 to the checkable bits. Ver-

sion 216 swaps the left and right halves of the matrix 

by attaching bits 00102, 00112, and 10102 10112 to 

the checkable bits. Version 416 swaps the bits of the 

first and second, as well as the third and fourth rows 

of the matrix, and thus moves the remaining poten-

tially dangerous bits to checkable positions.  

In the case of S = 18 and S = 34, all potentially 

dangerous bits are moved to checkable positions 

using one version 116. 

The threshold S = 50 turns out to be high 

enough to ensure checkability of the entire memory 

of LUT node 43 on the original version of the pro-

gram code. 

Raising the S threshold demonstrates a change 

in the color of the memory bits from the dominant 

yellow to blue. Potentially dangerous bits are trans-

formed into checkable bits. This trend can also be 

seen in the simulation results shown at the bottom of 

the main program panel. As the threshold increases, 

the number of checkable bits observed in normal 

mode increases from 122 (9.3 %) to 587 (44.9%). At 

the same time, the number of potentially dangerous 

bits decreases from 655 (50.1%) to 190 (14.5 %).   

CONCLUSION 

Ensuring the functional safety of critical sys-

tems is based on the use of fault-tolerant solutions, 

the effectiveness of which is significantly limited by 

sources of multiple failures, including hidden faults 

arising from insufficient checkability of digital cir-

cuits. Therefore, FPGA components of safety-related 

systems need to improve their checkability, which is 

maintained during normal operation in order to in-

crease the trustworthiness of the results calculated in 

emergency mode. 

The proposed improvement of FPGA compo-

nents is based on the use of the natural version re-

dundancy of the LUT-oriented architecture, which 

manifests itself in different versions of the program 
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code that exist for the same hardware implementa-

tion of the component. 

Analysis of typical failures of LUT nodes 

showed natural opportunities for their manifestation 

and, on the contrary, masking, respectively, in nor-

mal and emergency modes in order to combine high 

checkability of the circuit and the trustworthiness of 

the results achieved in versions of the program code. 

The experiments have shown the possibility of 

solving the problem of hidden faults by organizing 

the operation of the FPGA component on several 

versions of the program code, which ensure the 

movement of potentially dangerous bits of the LUT 

memory, observed only in emergency mode, to 

checkable positions that are observed during the 

normal operation of the safety-related system. 
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АНОТАЦІЯ 

Статтю присвячено проблемі вдосконалення FPGA-компонентів, що розробляються для систем критичного застосу-

вання. FPGA-компоненти поліпшуються в контролепридатності їх схем і достовірності обчислюваних на них результатів 
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для підтримки відмовостійких рішень, які є базовими в забезпеченні функціональної безпеки критичних систем. Відмовос-

тійкі рішення потребують захисту від джерел кратних відмов, до яких відносяться приховані несправності. Вони можуть 

накопичуватися в значній кількості на протязі тривалого нормального режиму і порушувати функціональність відмовостій-

ких схем з початком найбільш відповідального аварійного режиму. Захист від прихованих несправностей забезпечується 

контролепридатністю схем, яка націлена на прояв несправностей і тому повинна підтримуватися в комплексі з достовірніс-

тю результатів, беручи до уваги зниження достовірності при прояві несправностей. Завдання підвищення контролепридат-

ності FPGA-компонента в нормальному режимі і достовірності результатів, що обчислюються в аварійному режимі, вирі-

шується шляхом використання природної версійної надмірності, властивої LUT-орієнтованій архітектурі. Ця надмірність 

проявляється в існуванні множини версій програмного коду, що зберігають функціональність FPGA-компонента при одній і 

тій же його апаратної реалізації. Контролепридатність FPGA-компонента і достовірність обчислюваних результатів розгля-

даються з урахуванням характерних несправностей LUT-орієнтованої архітектури. Ці несправності досліджені з позиції 

несуперечності їх прояву і маскування відповідно в нормальному і аварійному режимі на версіях програмного коду. Не-

справності ототожнюються зі спотворенням бітів в пам'яті LUT вузлів. Біти, що спостерігаються тільки в аварійному режи-

мі, є потенційно небезпечними, оскільки можуть приховувати несправності в нормальному режимі. Переміщення потенцій-

но небезпечних бітів на контролепридатні позиції, які спостерігаються в нормальному режимі, виконується шляхом вибору 

відповідних версій програмного коду і організації роботи FPGA-компонента на декількох версіях. Експерименти, що прове-

дені з FPGA-компонентом на прикладі матричного помножувача двійкових кодів, показали ефективність використання при-

родної версійнної надмірності LUT-орієнтованої архітектури для вирішення проблеми прихованих несправностей. 

Ключові слова: Система критичного застосування; FPGA-компонент; LUT-орієнтована архітектура; функціональна 

безпека; відмовостійкість; контролепридатність; достовірність; кратні відмови; прихована несправність; природна версійна 

надмірність; версії програмного коду 
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