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MULTIDIMENSIONAL LAPLACE APPROXIMATION VIA TROTTER OPERATOR

Abstract. The classical distribution of Laplace, along with the normal one, became one of the most actively used symmetric
probabilistic models. A separate task of mathematics is the Laplace approximation, i.e. method of estimating the parameters of the
normal distribution in the approximation of a given probability density. In this article the problem of Laplace approximation in d-
dimensional space has been investigated. In particular, the rates of convergence in problems of the multidimensional Laplace
approximation are studied. The mathematical tool used in this article is the operator method developed by Trotter. It is very
elementary and elegant. Two theorems are proved for the evaluation of convergence rate. The convergence rates, proved in the
theorems, are expressed using two different types of results, namely: estimates of the convergence rate of the approximation are
obtained in terms of “large-O” and “small-o”. The received results in this paper are extensions and generalizations of known
results. The results obtained can be used when using the Laplace approximation in machine learning problems. The results in this
note present a new approach to the Laplace approximation problems for the d-dimensional independent random variables.
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1. Introduction

The Laplace distribution was introduced by P.
S. Laplace in 1774. It is also said to be the first law
of errors. The Laplace distribution appears in a
number of applications in the sciences, in business
and in branches of engineering. Recently, the
Laplace approximation problem has been used in
information technology, in particular, in machine
learning [1]. In recent years, the Laplace
approximation problems have been interested by
many mathematicians. However, the results only
focus on 1-dimensional space. In this paper, we will
solve the Laplace approximation problems on d-
dimension space. Laplace distribution on d-
dimensional space is defined as the following.

notation L,(m,a,X) to denote the distribution of
Z , and write Z ~ L,(m,a,X). The distribution is

also called to be multivariate asymmetric Laplace.
Suppose that v is a geometrically distributed

random variable with parameter p (0< p<1), in

short,v ~Geo(p), and independent of the

sequence { X,,n>1}. It is well known that under
desired conditions,

Ly
pEZ(Xﬁbj)—d—)Z as p—0, (1)
-1

where: — is meaning the convergence in

Let R ={X=(X,%,...X;)| X €R,i=12,...d}
be a d-dimensional Euclidean space with norm

1
N
X :(21: ijz . Let {X,,n>1} be a sequence of

d-dimensional random vectors and F, be a the

distribution function of X . Let Z be a d-

dimensional  Laplace random vector with
characteristic function

im't

e
()=
1-ia't+ Et'Zt

where: a,meR? and £ isa dxd symmetric
and positive definite matrix and m’,a’;t" are the
transposes of m,a,t, respectively. We use the
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distribution. If b :a[pz —1], Z~1,004az%),

where: a,% are mean and covariance matrix of X i

respectively (see [2], for more details). Furthermore,
1

ifbj = pEaj , then Z ~ L,(0,a,X), where:

n—>+o N

.1 —
a=lim-a; and E:nILrPOOZVar[Xj] (see [3],
j=L

for more details).

In 2014, the authors of Hung and Giang used
the Trotter-Renyi method to solve the Poisson
approximation problems (see [4], for more details).
The Trotter-Renyi method is a special case of the
Trotter method and is only used for discrete random
variables. However, to solve the Laplace
approximation problems we must use the Trotter
method. We will learn about this method in the next
section.
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This paper is organized as follows. We start in
Section 2 by reviewing of Trotter operator and their
properties. The class of continuous modulus and
Lipschitz functions is utilized in the paper. In section
3, we give main results of this paper. Conclusions of
this study are presented in the last section.

2. Materials and Methods

Definition 1. T, :C,(R") —>C,(RY) is
defined by

T () = [ f(x+y)dFy, (),

where: f e C,(R") , C,(R?) is the set of all real—
valued, bounded, uniformly continuous functions

defined onthe R® and X is a random vector.

The properties of Trotter operator can be seen
in [5], [6], [7] and [8]. Before starting the main
results of this paper we review the properties of
Trotter operator.

1. Every f eC4(R"), we have

mcel<lel

with || f]|=sup{|f (y)]:y e R*}

2. T, isalinear operator.

3. If X, X, are identically distributed,
T, f=T,f, VfeCy(R).

4. Suppose that X,, X, are independent random
vectors with distribution functions i, F, , then
Tex, F =M 0T, ) F=(Ty 0T, )f, VfeCy(RY)

5. Now assuming that X, X,,..., X, are
independent random vectors with distribution
functions K, F,, ..., F, . Then, we get

TX1+X2+...+Xn f = (TX1 oTX2 O"'OTXn)f’ v ECB(Rd).

6. If X, X,,...X
independent random
each f € C,(R"), we have

and W,,\W,,.... W, are
vectors, then for

n

T_ixi f _Tiwi fll< ZlHTX f-T, fH

7. Assuming that there are sequences of
random vectors X, X,,..., X, and W,W,,...,.\W,
independent and independent with positive-valued
random variables N . Then for each f € C,(R"),
we get

60

T, f-T, f|<>P(N=n)|T, f-T, f|.
in ZWi =1 in ZWi
8. A sufficient condition for

X, =X as n—o>wis
HTxnf—TXfH—w, as n-— oo,

foreach f eC:(R?),s>1.
We need to recall the definition of the modulus

of continuity and Lipchitz classes.
Definition 2. If f e C,(R%),x,heR?,5 >0 ,
then function
o( f;8)=sup|f(x+h)-f(x),

Ihl<s

is called the modulus of continuity of function f .

The basic properties of this function mentioned
following:
1) It grows monotonically with respect to ¢ ;

2) o(f;6)>0as 5§ >0";
3) w(f;28)<(1+ 1) f;5),
where: A eR.
We say that the function f eCB(Rd) satisfies

a Lipchitz condition with exponent o (0<a <1) |,
we write f € Lip(«) , if

a)( f ;5) =0(5).
any feC:(R"),6>0,
w(s; f;6)=sup{w(g9;56):9 is any
derivative of order j(0< j<s) of f}.
It is easy to see that, for any 4 >0 , we have

w(s; f;18) <A+ Na(s; f;0).

For define

partial

Lemmal. If f eC:(R"),x,yeR", then
s (xV)

f(x+y)=2"—
=0 J:
1 s
Ly Ten)- ()]
where: 77 is such that [l — y|| <]
d
and (x.V) = xk.i .
k=1 K

Proof of this Lemma can be found in ([9],
p. 277).
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3. Results
Lemma 2. Assuming Z ~L;(0,a,%), then

d Lo
Z=p*>Z,
izl

1
where: Z, ~ L, (0; p? a;zj,u ~Geo(p) and

independent of {Z,,i >1}.
Proof. Eachte R", we get

1
¢., O=y,°0, (p*1)
pZZZi
1

p.p, (P2 1)

1
1-@A-p)e, (p*Y)
1
=———=¢,(1).
l-ia't+=t'xt
2
The proof of this lemma is completed.
Lemma 3. If f eCi(RY),x,y,7€R% seN,
then the following inequalities are held
) [(0) [ £ o= F )] < a2 [ o(s: T:6),
where: |[7—y|<é.

i)Y [F o= f ()] <207 ¥
where H f©|=sup{|g|. g is any partial derivative
of order s of f}.

iii) V&>0,36>0 such as |7—y|<&, then

() [ £ - F ()] < sd? |x["

Proof
i) On
ofw(s—1; f;0),

) [ -]

f (s)

account of the  properties

s! Kok ke
2 |<]_n<2!...kd!xlxz"'Xd [A]

Ky K kg

<o(s; f;9) <d?||x[[ o(s; f;9),

d
D%
i=1

ISSN 2617-4316 (Print)

o f(n)
OXOX5? ...OX s

o f(y)

where: A= - —.
0%, OXy? ...0X "

i) Since Hf‘s) =sup{|lg]:g is any partial
derivative of order s of f}, itis easy to get

0y [ - ()]

Z S—!Xiklxgzmxgd [A]
L

Ky Ky pes Ky kl!k2| k |
< |f® d S % S| £ (s)
< [roflxx] <a i e
i=1

o f(n)
OXOXg? ...OX

o f(y)

where: A= - —.
0%, OX5? ...0X "

iii) Since f e C3(R?), V&>0,36>0 such
as|p—y||< S, then

CUOBIY]

S! kl k2 kd
2 k1!k2!...kd!X1 e (A

Ky Ky kg
d

2%
i=1

S

S
<e[>x| <ed?|x[.

o f(m)
OXOXSE . OX s

o f(y)

where: A= - —.
OX;*OX,? ...0X "

Theorem 1. Assuming that {X,,n>1} is a

sequence of d-dimensional independent random
variables for which

()=

10y iy oo <d

=0, )

[B

Rd

S+Sy+. 48 =]

where: B =X d [ Fy ()~ F, (0]

and
Go= M d[F 0+ F, () <+e 3
Rd
where: 5>3 is a fixed
integer, 1< j<s,i=12,...,n. Then, for
any f eC(RY),
61
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1T, £ =T, F ] T f(y)= j(piijda(x)
d%l st R ERY
<25 pIWE, . j 5)
(s-1)! [ (x9)" £ (y)dF, ()

1 v i=0 J RY
where: WE:a{s—l; f; pzlE[Z(th}’S)} j

1, j RRICARRICHICISNEY
SU = pzz Xi . . R
i=1

In addition, if f ¢ e Lip(«) , then

IT, £-T, 1 ||=o{ps_12+(15{i(1+19i,3)}}.

i=1

1
where: |7, —y| < p?|x]|. On account of (2), (3),
combining (7), (8) we have

@{cm},

Furthermore, if X,  are independent and (s-1)!

identically  distributed  d-dimensional  random C:H(XV)H[f(m)—f(v)]‘de,(X),
variables, then R

s-3ta D = [|(xV)"[f (z,) - f (y)]|dF;, ().
|Tsvf_Tzf:O(p ? } R ‘

T, f(y)-T. f(y)‘s

n2X n2z;

On account of the properties of w(s—1; f;0)
and lemma 3, we have

(v [f o) - £ )]

Proof. Since f eCS*(R?) , by virtue of
lemma 1, we have

! “(sz _ s . ERN
[px+yj:z ) () <a (M +Ix] )a{s_l;f;pz]
[ 1)51 the similar arguments give us
i (x0) [ £~ F(9)]
ATy (V)L (m) =T (y)] ‘ . 2 ‘ .
1 <0 (B o1 o s 97|

=yl < p2|x].
where: 17— y| < p? |x|. Hence Therefore,

T, f(y)= J[p2x+ deFXi(x)

1
p2X; R

J [ )" £ (y)dFy, (%)

(
i=0 RY . ”
e o
s1 = d?o s-1f sz Fsatds
e ORI (s-D)! (e +5)
1 s-1
(pzj s-1 1
1 2 —
where: |7, —y||< p?|x|. On the other hand, the <2 (s—1)! d a)(s Lt ](1+19 )
similar arguments give us
where: FF =d [in (X)+F, (X):I )

Thus,
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s-1
FRE!

s—1)! p = WE,

WE = a)(s—l; f; p;] E{ZU‘,(1+ 12,5)}

i=1

Iy f-T, fH<2 d

If f P e Lip(a) , then

|7, f-T. | =O{pHZWE{ZU:(1+ 3 )}}
i=1
Furthermore, if X

identically  distributed
variables, then

s—3+a
I, | _Tzfu=o(p z ]

The proof of the theorem is completed.
Theorem 2. Let {X,,n>1} be a sequence of

d-dimensional independent random variables for
which

are independent and
d-dimensional  random

n

$(j)= jx% Xz X FF|=
1<iy, |2 Sj<d (6)
S5y 48 =] !
FF=d[F, (0-F, (9]
and
9. = [ | [FF| <=0,
R )
FF=d|F, () +F,(x) .
where:
s>2 is a fixed integer,1< j<s,i=12,...,n

Further, the following condition is held

S o

lim p*2_P(

v=n) Z [ % dFy, () =0. (8)

-t
HXH>5 p?

Then, for any f € C3(R"),

ot ntf-ofie($a. )| = 90
i=1

Further, if X are independent and identically
distributed d-dimensional random variables, then

HTSUf—TZfH=o(pS_22j(p—>O).

ISSN 2617-4316 (Print)

Proof. For f e C3(R?) , in view of the lemma

1, there is
i
S 2
T, f(y)- Ij (xv) f(y)dF, (x)
p2X; ol L

(9)

N o

g—_[

where: ||, — y| < pE ||X|| and

[ ) - T )]|dR, (0

L1 (y)dF, (X)
, (10)

S

2
< V[

F R

(V) [ 0r.) = f ()] dF, (9

1

where: |17, — | < p? |[x]|. On account of (4), (5) and

lemma 3, combining (9), (10) and by an easy
computation it follows that

<DPS{&VF +2H f©

j IX dF, (%)},

IX=p? s

N
N | »

DPS =d

st
=(9+2] 1

)

Therefore,

<=DPSY PVF +2| ¢
n=1

Dpsi PF
n=1

)Jralr

oS ipe Sla 2l

f t

where:
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;s
DPS =d— p?,
sl

n

PVF=P(v=n))(9,+2f"

i=1

)

PE=P(v=n)> [ | dF, (o)

IX=p? s
Thus,
T, f -7, |
S v

-ofve[$(a. 2] |

i=1
as p-—0.

Moreover, if X,  are independent and
identically  distributed  d-dimensional random
variables, then

s=2
HTSUf—TZfH:o(p : J(p—)O).

The proof is complete finished.

The results of this paper are extensions and
generalizations of studies published in [10], [11]
and [12].

Conclusions

Thus, the main results of the paper are
presented by theorem 1 and theorem 2. The rate of
convergence of geometric random sums to
Laplace random variable on d-dimensional space
is established. In particular, the first theorem gives
us the convergence rate type of large-O. The
convergence rate type of small-o is given in the
second theorem. The results of the research can be
useful in assessing the rate of convergence of
approximations in such information technology as
machine learning. These results will be more
interesting and valuable if we discuss a rate of
convergence of geometric random sums in the
case of dependent random variables. The authors
shall continue studying this matter in our future
research.
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BATATOBUMIPHA AITPOKCUMAIISA JIAIIJIACA 13 3BACTOCYBAHHAM
OIIEPATOPA TPOTTEPA

Anomauia. Knacuune posnooinenns Jlaniaca nopsao 3 HOpMAanbHuM, CIAL0 OOHICIO 3 HAUOIIbLW AKMUBHO UKOPUCHIOBYBAHUX
cumempuyHux imogipHichux moodenei. Okpemoro 3adauero mamemamuxu € anpoxcumayis Jlanaaca, mobmo cnocib6 oyiHku
napamempie HOPpMaIbHO20 PO3NOOLIEHHS NPU AnpoKcUMayii 3a0anoi winbHocmi UmMogipHocmi. B daniti cmammi docniosceno 3aoauy
anpoxcumayii Jlanaaca 6 d-eumipnomy npocmopi. 3oxpema, eugueni weuokocmi 30ixcHocmi 6 3a0auax 0azamosuMipHOT
anpoxcumayii Jlannaca. Mamemamuunum 3acoboM, BUKOPUCTMAHUM 6 OAHill cmammi, € onepayitiHuil Memoo, po3pobneHull
Tpommepom.  Joeedeno 0s6i meopemu 0nsi oyinku weuokocmi 36ixcnocmi. [lleuoxkocmi 36idcHocmi, 006edeHi 6 meopemax,
BUPACAIOMBCS 3d OONOMO20I0 080X PI3HUX MUNIE Pe3YIbmMAamis, a came: OMPUMAaHi OYiHKU WeuoKocmi 30ixcHocmi anpokcumayii 6
mepminax «O genuxe» i «o maney. Ompumani pe3yromamu MON’CYMb 3dCMOCOBYBAMUCI NPU BUKOpUCmanHi anpoxcumayii Jlannaca
6 3a0a4ax MauunHo20 HaguanHs. Pezynomamu cmammi npedcmasnsioms coboro noguil nioxio 00 3adau anpokcumayii Jlannaca ons
d-MipHux He3aeHCHUX BUNAOKOBUX GEIUYUH.

Knrouogi cnosa: anpoxcumayis Jlannaca; ceomempuyni cymu;, unaoxogi cymu; onepamop Tpommepa; weuokicms 30ixcHocmi
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MHOI'OMEPHASA AIIITIPOKCUMALIUA JIAIIVIACA C IPUMEHEHUEM
OIIEPATOPA TPOTTEPA

Annomayun. Knaccuueckoe pacnpedenenue Jlannaca Hapsaoy ¢ HOPMATbHGIM, CMANO OOHOU U3 Haubonee aKMUGHO
UCNONLIYEMBIX CUMMEMPUUHBIX 8ePOAMHOCMHbBIX MoOeneud. OmoenbHoll 3a0aueti Mamemamuxu agnaemcsa annpoxkcumayus Jlannaca,
m.e. cnocob OYeHKU Napamempos HOPMANbHO2O DACHPeOeNeHUs NpU AnnpOKCUMAYUU 3A0AHHOU NIOMHOCIU 8epOAMHOCIU. B
Ooannoll cmamove uccnedogana 3adaua annpoxcumayuu Jlannaca ¢ d-pasmeprnom npocmparncmee. B uacmuocmu, uzyueHsi CKOpocmu
CXO0UMOCIU 8 3a0ayax MHO2OMepHOU annpokcumayuu Jlannaca. Mamemamuueckum cpeocmeom, UCHONb30BAHHLIM 6 OAHHOU
cmamoe, AGNAEMCA  ONepaAmopHvlil Memoo, paspabomannviii  Tpommepom. [Joxkazamvl 08e meopemvl O OYEHKU CXOPOCHU
cxooumocmu. CKopocmu cxoOuMocmu, OOKA3aHHbIE 6 MEOPEMAX, BbIPANHCAIOMCA ¢ NOMOWBIO O8YX PASHLIX MUNOE PE3VIbINANOs, d
UMEHHO. NOMYYEeHbl OYEHKU CKOPOCMU CXOOUMOCHU annpoxkcumayuu 6 mepmunax «O  bonvwoey u «o manoey. Ilonyuennvie
pe3yivmanvl MO2ym NPUMEHAMbCA NPU UCNOIB308AHUY annpokcumayuy Jlaniaca 6 3a0auax MawunHozo odyuenus. Pesynomamuot
cmamvu nPeocmagnaiom coboi Hoewlil nooxod K 3adavam annpoxcumayuu Jlaniaca Onst O-MepHbIX HE3A6UCUMBIX CTYHATHBIX
BENUUUH.

Knrouesvie cnosa: annpoxcumayus Jlanaaca, eeomempudeckie cymmpl; ciydatinvie cymmul; onepamop Tpommepa, ckopocms
cxooumocmu
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