Applied Aspects of Information Technology 2020; Vol. 3 No.1: 393-404

DOI: https://doi.org/10.15276/aait.01.2020.2
UDC 004.912
CHANGING AND TRACING OF SOFTWARE REQUIREMENTS
AT LEVEL OF CONCEPTUAL CLASSES

Nataliia O. Novikova

ORCID: 0000 — 0002 — 6257 — 9703, nataliya.novikova.31@gmail.com
Odessa National Maritime University, 34, Mechnikov, Str. Odesa, 65029, Ukraine

ABSTRACT

The article explores the problem of automating the description of Use Cases at the stage of forming requirements in the design
of software products. Methods for correcting the model of conceptual classes in connection with changes in the formulation of
various items of scenarios for Use Cases are proposed and tracing of each item of the Use Case scenario in conceptual classes and
their methods and attributes. Changing requirements at the level of use cases description means deleting previously compiled items
of the scenario and/or adding new ones. Deleting a Use Case is considered to be a consecutive deletion of all of its items, and editing
a scenario item as a deletion followed by a new edition. The methods of removing all types of scenario items of the proposed
classification in various possible situations are considered: the class created earlier was not used in other items of this or other use
cases; the class created earlier was not used in other items of this or other use cases, but the function contained in the class has
references to other functions; the class created earlier was used in other items of this or other use cases and the function contained in
the class has no reference to other functions; the class created earlier was used in other items of this or other use cases and the
function contained in the class has references to other functions. Methods have been developed for determining the relationships of
Use Case and its item with classes, their methods and attributes that implement this item (direct tracing), and determining the
relationship of any data element or class method with various Use Case and their items (reverse tracing). The proposed method for
conceptual classes correcting allows automatic deleting various items in scenarios while maintaining the correct presentation of
conceptual classes. It is shown that there is a significant reduction in time for correcting classes in an automated mode compared to
the traditional manual mode. The tracing method also significantly reduces the time it takes to find the connections between the Use
Case.

Keywords: Use Cases; Scenarios; Models; Conceptual Classes; Tracing

For citation: Nataliia O. Novikova. Changing and Tracing of Software Requirements at Level of Conceptual Classes. Applied Aspects of
Information Technology. 2020; Vol. 3 No.1: 393-404. DOI: https://doi.org/10.15276/aait.01.2020.2

INTRODUCTION

Use Cases (UC) is a widespread method for
detailed recording of functional requirements for a
software product being designed [1,2]. UCs forms
the basis of an object-oriented approach to software
development [3, 4] and is supported by the UML
language [5, 6], [7]. The whole process of
identifying and formulating requirements is long,
very responsible, and time-consuming [8, 9], and
this especially applies to the description of UC [10].
Such work is usually carried out by a system analyst
[11], who should not only have in-depth knowledge
of information technology but also be a good
psychologist and organizer [12, 13].

Automation of tasks solved by a system analyst
can significantly improve the quality of
requirements for a software product; reduce costs
and time for their preparation.

LITERATURE ANALYSIS

Use Cases are written in the language of the

years, studies have appeared on the automation of
UC descriptions. In [16], a classification of items of
UC scenarios were proposed, on the basis of which
tools were developed to automate the compilation of
UC descriptions. As a continuation of this line of
research, it is proposed to create models of
conceptual classes (MCC) in parallel with the UC
description. In [17], it was proposed to consider UC
in the form of two models — the description model
and the design model, which allows the formation of
the MCC.

Changing requirements at the first stages of
software design is a common occurrence [18,19], so
it becomes necessary to display the changes made to
the UC description and, in parallel, to the design
model. Existing means of displaying project
documentation [20, 21], [22] use various indexing
methods to search for information. In the best case,
they allow to visually trace the path from changing a
certain requirement to the group of classes that
implement it (direct tracing), or the path from

subject area. The terms used in their preparation will
be further displayed in user interfaces, in the names
of classes and their methods. Therefore, studies on
the automation of the compilation of a domain terms
glossary deserve attention [14, 15]. Also in recent

© Novikova N., 2020

changes in some classes to the requirements on the
basis of which these classes were created (reverse
tracing).

If we are talking about automating the
construction of a model of conceptual classes in the
process of compiling UC, then this is clearly not
enough. Changes introduced into the requirements

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/deed.uk)

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Systems analysis, applied information
systems and technologies

393

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

should be automatically processed and lead to the
adjustment of a previously compiled model of
conceptual classes, what's one has not been done
so far.

PROBLEM STATEMENT

Changing requirements at the level of use case
description means deleting previously compiled
items of the scenario and/or adding new ones. In
order to add a new item, it is necessary to qualify it
and perform the corresponding algorithm.
Algorithms for adding various types of scenario
items are described in detail in [16]. The problem is
the deletion of an existing item of the scenario since
its implementation in the form of conceptual classes
can service not only this item of the script, but also
other items of the scenario in question, and possibly
other scenarios.

To fix this problem, the two tasks should be
solved.

1. To develop a method for adjusting the MCC
in connection with changes in the wording of
various items of UC scenarios.

2. To develop a method for tracing each item in
a UC scenario into conceptual classes, their methods
and data, as well as a method for tracing any
function or given class into the corresponding items
in UC scenarios.

METHOD FOR CONCEPTUAL CLASSES
ADJUSTING

We will construe the removal of the UC, the
removal of the UC item, the change of the UC item
as changes of requirements. All these changes come
down to deleting one item of the scenario. To do
this, we will consider the removal of UC as a
sequential deletion of all of its items, and editing a
script item as a deletion with subsequent compilation
in a new edition. Thus, it is necessary to review the
removal of all types of items proposed in [17]:

— Create. The user commands the system to
create some object which can contain data used both
within the framework of this UC and other UC.

— Enter the data. The user enters into the
system a series of data, for which the system usually
must check the possibility of their use for further
work.

- Request a value. The user asks the system for
some data. This is usually followed by a user's
assessment of the data.

— Request a list. The user orders a list (for
example, data, services or documents) for a further
selection of some elements from it.

— Select from the list. The user selects the
necessary data or service (document) from the list.

— Enter the service (document). The user
enters the necessary service or document, which
determines the further sequence of actions. For
example, a payment method by bank card.

— Repeat the actions. The user has the
opportunity to go to the above items of the scenario,
or refuse to repeat them.

— Complete the UC. The item provides for the
successful completion of the UC, which may be
accompanied by the preservation of certain data, the
formation of a report, documents, etc.

We will use the class model proposed in [17].
All classes included in the MCC are represented by
the set

Mc ={c} (1)

Each class (prototype) is represented by a tuple

¢ =< tc,cName , z,uName , nP, mData , mFunc > (2)

where: tc ="class"|" prototyp ";

— cName is the name of the class;

— uName ,nP is the name of the UC and the
number of the item where the class was created:;

— ¢ ="u"|"s" is the lifetime of the class objects
(during the execution of the use case — u, or during
the operation of the system — s);

— mData is the set of attributes that the class
contains;

— mFunc is the set of functions (methods) that
the class contains.

Elements of a set mData are represented by a
tuple

data =< dName ,td, ref >, (3)

where: dName is the name of the attribute;
td ="si'|"ar"|"sc"|"ac"is the type of attribute

(single value, array, calculated single value,
calculated array);

ref ={< fName,uName,nP >} are references
to functions (methods) using the attribute;
where: fName is the name of the method;

uName ,nP determine the UC and the item at

which data use occurred.

The class method is defined in the following
way

func =< fName ,oData , mArgs , miData , 4

mCData ,mRfFunc > @
where: oData is the value returned by the method;
if oDana ="0", then the method returns nothing;

oData ="b", then the method returns a
Boolean value, which doesn't have to be saved in the
object after the completion of the method. In other
cases, the name should be included in the set
mData with the typetd ="sc"|"ac" and a reference

to this method;

394

Systems analysis, applied information
systems and technologies

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

mArgs is the set of arguments of the method;

mlData 1S the set of class attributes that take on
new values;

mCData is the set of class attributes used in the
calculations of this method;

mRfFunc is the set of links to external functions
(methods of other classes) used in this method.

Each element of the set mRfFunc is represented
by a tuple:

— mRfFunc ; =< cName ;, func; >,

where: cName i is the class to which the external

function belongs (in the general case, several
external functions may belong to the same class);

func; is the class cName ; function referenced
by the function func .

1. Deleting an item of “create” type

In accordance with [17], the “Create” item
provides for the creation of a class in accordance
with the following description:

1 =<"class ", cName 171 uName 1 nPl, mData 1 func1 >,

where: cName , is the name of class;
uName ,, nP; is the name of the use case and the

item deleted:;
mData ,
initialization;

— class attributes generated after

Then it is necessary to present the class c, in the

form of a prototype ¢’ and ensure that all items of
the scenarios in which this class prototype is used
are executed.

Let's define the changes you need to make to
the class c, to get the class ¢’ .

The class name and the lifetime of the class
objects must remain unchanged:

cName’'=cName, and ' =1,.

We define the set of functions that should work

with the prototype of the class:
mFun ¢’ = mFunc \{ funcl}.

References in class attributes to a deleted
function will be also automatically deleted when a
new set of class ¢’ attributes is generated.

To ensure the operation of each function in the
class ¢’ the necessary attributes must be stored. We
represent the set of functions mFunc in the form:

mFunc :{funcj}, j=1n,

where: n is the number of functions belonging to
this class.
Then the attributes necessary for the operation
of all functions from mFunc will be defined as
mData’' = U mCData ; . (6)
j=1
When creating a class, you must specify the
item and Use Case where it was created. When

funcl =< fName,"0", mArgs, miData, mCData , & >creating a prototype of a class, the item and UC

is the initialization function of the class object
(usually a constructor),

oData ="0" means the method isn't returning a
value;

mArgs = mData |

mlData = mData, ,

mCData may differ from mArgs , if the default
data exists;

mOFunc =& means when creating an object,
external functions are not used.

When deleting an item, two situations are
possible.

A. The previously created class was not used at
other items in given UC or in other use cases. In this
case, it should have only one function — funci, i.e.

mFunc \{funcl} =< .

This allows you to remove the class ¢, from a
set of classes.

Mc := Mc \{c, }. 5)

B. The previously created class was used in
other items of the corrected one or other use cases.

should be indicated where it was in demand. Since
the method of constructing conceptual classes does
not store the chronology of their creation and
modification, the creation of a prototype can be
attributed to any UC in which this class is used, and
to the first item in which access to ¢’ occur. We
write the selection conditions as follows: if

Hdataj e mData’| < fName,uName J.Yi,nPjyi >e refj,
then we take theuName' = uName ;;

To determine the item number in UC, we form
a set of links to functions ordered by increasing item
number:
mRf — sort [mRf],

then nP’=nP,,
where: nP, belongs to the first tuple of mRf

Finally, the class ¢’ will be presented as

¢’ =<" prototype",cName’,z’,uName’.
nP’,mData’,mFunc’ >

2. Deleting an item of “enter the data” type

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Systems analysis, applied information
systems and technologies

395

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

The “Enter data” item provides for the action
with the data of a previously created class
(prototype), as well as a possible verification of the
accuracy of the data entered.

We denote the UC asuName1, scenario item as
nP1, the set of data entered asmbData,, the
corresponding function as funcl, and the class
containing the data and the function asc, .

When deleting an item, the following situations
are possible.

A. The class c, is not used in other items of this
UC or other UCs, and the function funcl has no
references to other functions. This condition is met if
for each data element of the class c,
data =< dName ,td, gH, gL, ref >,
all function references
ref ={< fName,uName,nP >}
Contain only names uNamel and nP1:
Vdata; e mDatal|uName, ; =uNamel
ANP ; =nPl. ")
In this case, we remove the class c, from the set
of classes
Mc = Mc\{c,}
B. The class c, is used at other items of the
corrected UC or other UCs, and the function func 1

has no references to other functions. In this case,
condition (7) is not met and it is necessary to ensure
the fulfilment of all items of the scenarios

(nP, = nP1), in which this class is used.

We define the changes that need to be made to
the class c, to get the class c’, that matches the UC
descriptions with the deleted item nP1.

The class name and the lifetime of the class
objects must remain unchanged:

cName’=cName, and 7' =17,

The function funcl, except for the item nP1,

can be used in other items. Therefore, we perform
selective deletion of references.

If
Jdata; e mData 1|uName ; ; =uName 1A nP; ; =nP1,
then ref, . is removed from the setref .

i
If the condition

Vdata; € mData 1|uName,; ; # uName1AnP, ; # nP1

i)
Is met, then we delete the function funcl from the
set of function of class ¢’ :
mFunc’ = mFunc \{ funcl}.
If we represent the many functions mFunc of
the class ¢’ as

mFunc ={func ;}j=1n.

Then we can determine the data necessary for the
operation of all functions from mFunc :

mData’= U mCData ; .
j=1
Finally, the class ¢’ will be presented as

¢’ =<" prototype",cName’, 7, uName’,
nP’,mData’,mFunc’ >.

C. The class ¢, was not used in other items of
this UC or other UCs, and the function funcl has

references to other functions. In this case, it is not
enough to delete the class ¢, . We must also delete

the “traces” of calling other functions from the
function funcl.

In accordance with (4), the deleted function has
the form
funcl =< fName ,oData, mData 1,
miData , mCData , mRfFunc >
If any function func,, from the set mRfFunc
was created in the item nP1 UC uNamel in a
certain class c; and is not used at other items in the

scenarios, then it should be deleted. If the class c;

contains only a function func,,, that is used only in
the item nP1 UC uNamel, then the class ¢; must

also be deleted. If func, used in other items, then

only the reference to the item and UC should be
deleted.

Let us successively analyze each element of the
set of references mRfFunc to functions of other

classes.
Consider some element of the set
<cName ;, func >. The fulfilment of the condition

3 data; € mData ; | fName ; , = func . fName A
uName ; ; = uName 1A nP; ; = nP1
Indicates that the function func, was created
in item nP1 UC uNamel. If this condition is not
met, then the function fung, from the class c; is

not deleted, but a reference to it is only subjected to
this

< func.fName,uNamel, nP1>}.

If condition (8) is met, then the use of the
function func,, by other points in the scenarios
should be determined. If the condition
3 data; e mData ; | fName ; = func . fName A

(9)

uName ; ; # uName 1A nP; ; = nP1
Is met, then the function func,, from the class c; is
not deleted, but a reference to it only undergoes this.

396

Systems analysis, applied information
systems and technologies

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

If condition (8) is met and condition (9) is not,
then the function func,, is deleted from the class c;

mFunc ; := mFunc ; \{func .}

If the class c; does not contain other functions
(mFunc ; =), then the class is deleted «c;:
Mc = Mc \{c;}

Function verification operations are repeated

for all elements of the set mRfFunc .

Regardless of the results of the analysis
mRfFunc , the last corrective action is to remove the

class c, :
Mc = Mc\{c,}
D. The class c, is used at other items of the
corrected UC or other UCs, and the function funcl

has references to other functions. In this case, all
operations provided for by options B and C are
performed, except for deleting the classc, .

3. Deleting an item of “request a value” type

When designing the “Request a value” item, a
previously created class or a previously existing
class may have been used. In the first case, we need
to consider the possibility of deleting this class, in
the second — only deleting the corresponding
function and data.

We denote the UC considered as uNamel, the
scenario item as nP1, the set of requested data
values as mbData,, the corresponding function as
funcl, and the class containing the data and the
function as c, .

When deleting an item, the following situations
are possible.

A. The class c,is not used in other items of this
UC or other UCs, and the function funcl has no

references to other functions. In this case, all the
actions provided for in subsection 2.A are
performed.

B. The class ¢, is used at other items of the
corrected UC, or other UCs, and the function funcl

has no references to other functions. In this case, all
the actions provided for in subsection 2.B are
performed.

C. The class c, is not used in other items of this
or other UCs, and the function funcl has references

to other functions. In this case, all the actions
provided for in subsection 2.C are performed.

D. The class c, is used at other items of the
corrected UC, or other UCs, and the function func1

has references to other functions. In this case, all
operations provided for by options 2.B and 2.C are
performed, except for deleting the class c,.

4. Deleting an item of “Request a list” type

The process of deleting this item does not differ
from that considered earlier in section 3. However, it
needs to be borne in mind that the item “Select from
the list” should follow the item “Request a list” in
the UC scenario. Therefore, in the future, this item
should also be deleted.

5. Deleting an item of “Select from the list”
type

The scenario item provides for entering a value
selected by the user from the list.

The operation of deleting this item is similar to
the operation “Enter the data” type. However, it's
necessary to note that this item in the UC scenario
must be preceded by the “Request a list” item.
Therefore, correcting one of these points should be
considered as deleting both.

6. Deleting an item of “Enter the service”
type

The operation of deleting this item is similar to
the operation “Enter the data”. However, unlike the
“Enter the data” item, the service entered can
determine the choice of one or another scenario of
working with the system. Therefore, deleting this
item requires a detailed analysis of all further items
in the main scenario and extension scenarios.

7. Deleting an item of “Repeat the actions”
type

The implementation of the “Repeat the actions”
scenario item does not add new functions and
classes to the kernel of the system since it can be
implemented by user interface classes. Therefore,
the removal of this item does not lead to the
adjustment of the MCC, however, it significantly
changes the sequence of execution of the scenario
items.

8. Deleting an item of “Complete the UC”
type

When creating this item,
operations may have been performed:

— reception by an existing object of some data
mData , , that did not require analysis;

— registration of certain data mData , in existing
facilities;

the following

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Systems analysis, applied information
systems and technologies

397

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

— creation of a document containing certain data
mData ;.

Therefore, the process of deleting an item falls
into three stages.
8.1. Deleting the data

We denote the UC under consideration as
uName1, the scenario item as nP1, the set of input
data as mbData,, the corresponding function as
funcl, and the class containing the data and the
function as c;,.

Since the class ¢, was not created in nP1item,
the question of deleting the class ¢, is not
considered. It should be possibly needed to remove a
function funcl from the set of class ¢, functions
and data mData, from the set of class c, data.

If the condition

3funcl e mFunc, |ref,;.uName # uNamela (10)
ref,;.nP = nP1l

Is met then the function funcl is not deleted, but

only the link to its use in uName1 and nP1subjected
to this:
< fName 1,uName 1,nP1> .
If condition (10) is not satisfied, then the
function is deleted from the class c;:

mFuncl:= mFunc1\{funcl}

and the class data is adjusted:
n
¢;-mDatal= U mCData ;,
j=1
where: mCData ;. is determined from the remaining

functions

i
mFunc ={func ;}, j=1n.

8.2 Cancelling of data registration

When creating this item, the data to be
registered was obtained from one object and
registered in others. We denote the UC considered as
uName1l, the scenario item as nP1, the set of data
extracted from the class ¢, object as mData,, the

corresponding function as funcl. Data from the set
mData, can be registered in several objects of

different classes. Therefore, when cancelling
registration, it may be necessary to delete data from
the classes where they were registered; and to delete
the corresponding functions of these classes and the
function funcl.

The function that performs registration has the
form

funcl =< fName,,"0",J,J, mData ,,
. (1)
{c;,.func, }>
Consider the correction of one of the classes
(¢;), in which registration was performed. For

registration, a function fName, of this class was
used

func, =< fName,,"0", mArgs, miData,, mCData , < >,
where: mArgs e mData, is the part of the registered

data.
We analyze the function

of its use in other items and UC:

func, in the context

3func, € mFunc ; |ref ., .uName = uName 1A
S (12)
ref ;;.nP = nP1.

If the condition is true, then the function func,
is not deleted. From the set of c; class references

ref only the element < fName,,uNamel, nP1>,

representing the reference to the deleted item in the
scenario is subjected to deletion.

If condition (12) is not satisfied, then the
function func, must be deleted

mFunc ; := mFunc ; \{func, }

and the class data must be correctedc;

n
mData ; = U mCData , ,
i=1

where: mCData ; is determined from the remaining
functions
mFunc ; ={func;}, i=1n.
The considered sequence of operations should
be performed for each element from the set
{<¢c;, func,} from (11).

8.3 Cancelling the document creation

The creation of the document was performed
by one class (c,), that existed previously. The
function that creates the document (funcl) was also
used once and did not enter new data into the class.
Thus, cancelling the creation of a document is
limited to deleting a function func1 from class c, :

mFunc, = mFunc, \{func1}/.

9. Tracing Method

Depending on the task being solved, direct or
reverse tracing may be
required. By direct tracing, we mean the definition
of the connections of UC and its item with classes,
their methods and data that implement this item

(Fig. 1).

398

Systems analysis, applied information
systems and technologies

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

ucC
ulame Class c1 Class 2
1
3 dll — d21
d12
i —=| funectioni1
L function21

k

Fig. 1. Tracing from UC and its item to classes, methods and data
Source: compiled by the author

By reverse tracing, we mean the
definition of the connection for any data

element or class method with various UC and
their items (Fig. 2).

Class c1 Class c2
UC 1
- dz21 - uMlame
Cas di1 1
2
= functionl1] .
== functionz1 — | X
l -
— function12 =
oUc 2
ubMame
1
5
K
i1

Fig. 2. Tracing from a class method and data to UC and their items
Source: compiled by the author

9.1. Direct tracing

We denote the UC under consideration as
uNamel, the scenario item as nPl. Let Mect
represent a set of classes that are used to
implement nP1 (Mct € Mc).

Let us represent the result of Trd tracing as
a tuple

Trd =< UName 1, nP1, Mct >.
Each class from Mct will be presented as
¢ =< cName , mData , mFunc >

We will analyze the data of each class from
Mc.

If, for some class ¢, e Mc in the data set

mData ; there exists an element

Jdata, € mData ; | ref, ;.uName = NamelA

ref, ;.nP =nP1 '
then the following operations must be performed
A) If
Jc, € Mct | c,.cName =c;.cName , (13)

Then m D,=m tD,@f{d tg and
mFunc , :=mFunc , U {ref, ;. fName }.
B) If condition (13) is not met, then a class
¢, =< ¢;,{data, }, {ref, ;.fName } >. is created
9.2. Reverse tracing

For reverse tracing, it is necessary to
determine the UC and their items from the datum

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Systems analysis, applied information 399
systems and technologies

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

dName belonging to class c,. Let's represent the
result of Trd tracing as a tuple

Trr <tData, mUC >,
where: tData =< c,,dName >,

—muUC is a set of entries for each UC. Each entry
has the form
< uName ,mNP > . (14)

Here uName is the name of UC;

mNP is a set of entries of the form
<nP,mFunc >, where mFunc is the set of
functions directly or indirectly using data .
We define a set of functions from the class c,,

using dName .
Since each datum is represented by a tuple
data =< dName, td, gH, gL, ref >, then a set of

references ref allow us to define all functions
using dName :
ref ={< fName,uName, nP >}.

We transform each element of the set ref

into an element of the set mucC (14):
< uName ,{nP,{c,.func}}>.

Since functions of other classes (not c,) can
use dName through function class c,, we define
these functions by parameter mRfFunc (4).

If for some function of the class ¢, the
condition

3func, ; e mFunc ; |c,.func, e mRfFunc ; ;

is met then we introduce a new element into the
set mucC

>,

< uName ,{nP,{c;.func ;}} >,

where: uName and nP are given from definition
of class c; in accordance with (2).

After analyzing all classes, it is desirable to
combine some elements of the set muC . If there
are two entries, <uName,,mNP, > and

<uName ;,mNP; >, for which uName; =uName ;,

then they are combined into one
< uName ;,mNP; UmNP; >.

If there are two entries in the set mNP,
<nP,,mFunc; > and
which <nP, =nP; > then they are combined into

one <nP;,mFunc ; UmFunc ; >.

<nP;,mFunc ; > for

TESTING THE RESULTS OF THE
STUDY

By testing we mean two types of work:

— checking the correctness of changes in the
structure of classes when editing various items of
the scenario;

— assessment of the reduction of time for
changing the structure of classes in the conditions
of application of the proposed method of
automation of class correcting.

For the first study, the following Use Case
was described in Photo_studio system.

Title: “Accepting orders in the photo studio”.
Level: UC of the user's goal level.

Main actor: order taker (T).

Interested party: customer (C).

Software product: photo studio automation system
(S).

Table 1 shows the main successful UC
scenario, as well as the classes and methods that
were created for each item in the scenario.

Table 1. UC scenario, classes and methods for implementing scenario items

Use Case Classes used Methods used
Item No. Item content
C asks T for the provision of the service. T
1 creates a new orger in S. (Create) SOrder create()
2 C informs about the type of service. T enters data | SOrder, ServList.isService(ser),
in S. S confirms it. (Enter the data) ServList SOrder.setServ(ser)
3 C informs about format. T enters data in S. S SOrder, ServList.isFormat(form),
confirms it. (Enter the data) ServList SOrder.setFormat(form)
4 C informs about the number of copies. T enters SOrder, ServList.isCopies(n),
data in S. S confirms it. (Enter the data) ServList SOrder.setCopies(n)
. . . SOrder, ServList.getDeadline(ser, Form,n),
C informs about the desired lead time. T enters . . .
5 . . . ServList, OrderList.getDeadline(),SOrder.setDea
data in S. S confirms it. (Enter the data) OrderList dline(dl)
6 T asks S for the cost of the work. S reports it. C SOrder, Tariff.getCost(ser,form,n),
agrees. (Request a value) Tariff SOrder.setCost(cost)
C contributes a certain amount of money. T enters
7 data in S. S counts the back-giving change. (Enter | SOrder (Sa?nrgs:].getChange
the data)
C informs about the full name and contacts. P SOrder SOrder.setName(sname,
8 captures the received data in S. S passes the entry OrderL,ist Phon),OrderList.addOrder(sorder),
transaction in the Journal and the order in the list Reqister Register.addOrder(sorder),
of orders, generates a receipt. (Data Registration) 9 SOrder.printReceipt()
Source: compiled by the author
400 ISSN 2617-4316 (Print)

Systems analysis, applied information
systems and technologies

ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

Table 2 shows the changes in the requirements
(replacement, correcting, adding new items to the
scenario). The analysis of changes in items of the

scenario of four types is presented. The intermediate
state of the class structure (deleting an item in the
old edition) and the final state were recorded.

Table 2. Assessment of the correctness of changes in the structure of classes as a result of changes in
requirements

No | Scenario item new edition | Item Class Structure Changes Consistency
type After scenario item For the new edition of item | with expected
deleting results

1 | CasksT for the provision | Create | SOrder class is deleted The prototype SOrder is Yes

of the service. T creates (item 1). SOrder switched into class status.

in S a new order with the prototype is created (item | The create(fio) method has

full name of C 2). All references are been added. All references

switched to the prototype | switched to the class

2 Instead of item 2. Output | The ServList class is The ServList.getList() Yes

2. T asks S for a list of the list | deleted. method is added in class

services. C outputs the ServList.isService(ser) prototype ServList

data. and SOrder.setServ(ser)

3. C chooses a service. T | Enter methods are deleted. The | The SOrder.setServ(ser)

captures the service data | the data | ServList prototype is method is added

in S. created in item 3
3 C informs about full Data SOrder.setName SOrder.setName Yes

name and contacts. T logging | (sname,Phon), (sname, Phon),

captures the received data OrderList.addOrder OrderList.addOrder

in S. S passes the entry (sorder), (sorder),

transaction in the Journal Register.addOrder Register.addOrder

and the order in the list of (sorder), (sorder),

orders, indicating the full SOrder.printReceipt() SOrder.printReceipt ()

name and contacts of C, methods are deleted methods are restored.

generates a receipt (The full name of C

entered as an attribute in
item 1 of the scenario)

Source: compiled by the author

Similar experiments have been performed with
items of scenarios of other types. In all cases, the
results obtained were in line with the expected ones.

For the second study, a group of students of 10
people was involved. In the Photo_studio system, 6
UCs were sequentially described for one project.
Then changes have been made to the items in the
scenario. The time was determined during which
each student in the traditional way (manually) will

Correction
Time (mim)
120
100
=0

S

A0

Zn |

correct the class system independently for one, two...
six precedents. The complexity of the class structure
was determined by the number of classes included in
it. The obtained dependence is presented in Fig. 3. It
is obvious that with an increase in the number of
classes, the time for their correcting significantly
increases; whilst the execution of this procedure in
an automated mode does not exceed fractions of a
second.

=

10 15 20

Number of Classes

Fig. 3. The dependence of the classes structure correcting time vs the number of classes
Source: compiled by the author

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Systems analysis, applied information
systems and technologies

401

Applied Aspects of Information Technology

2020; Vol. 3 No.1: 393-404

CONCLUSIONS

The article discusses the problem of
automating the description of Use Case at the stages
of formation and clarification of functional
requirements for the designed software product.
When requirements are changed at the first stages of
software product design, it becomes necessary to
display the changes made to the UC description, and
in parallel to the design model. Correcting scenario
items in the traditional way usually requires more
time.

To solve such problems, an algorithm has been
developed for the automated correcting of the
conceptual class model in connection with the
removal of existing items of the UC scenario of
various types. A method for tracing each item in a
UC scenario to conceptual classes, their methods
and data, as well as a method for tracing any

function or this class to the corresponding items in
UC scenarios is also proposed.

During the experiments, it was shown that
changing items of the scenario of various types lead
to adequate changes in the structure of classes
(models of conceptual classes). And also the
experiments showed the effectiveness of the
proposed methods from the point of view of a
significant reduction in time for adjusting classes in
an automated mode compared to the traditional
manual mode.

The proposed method can be used in various
technologies of object-oriented design based on the
use of UC, at the stage of constructing models of
conceptual classes and specifications of program
classes.

REFERENCES

1. Kobern, Alister. “Sovremennye metody opisaniya funkcional’nyh trebovanij k sistemam”. [Modern
Methods for Describing Functional Requirements for Systems] (in Russian). Moscow: Russian Federation.

Publ. Lori. 2002. 266 p.

2. Frank, Armour & Miller, Granville. “Advanced Use Case Modeling: Software Systems”, Publ.

Addison-Wesley. 2000. 425 p.

3. Leffingwell, Dean & Widrig, Don. ‘“Managing Software Requirements: A Use Case Approach,

Addison-Wesley Professional”. (Dec 7. 2012).

4. Alexander, lan & Maiden, Neil. “Scenarios, Stories, Use Cases”, Pybl. Wiley. 2004.

5. Wazlawick, Raul S. “Object-Oriented Analysis and Design for Information Systems: Modeling with
UML, OCL, and IFML”. Morgan Kaufmann. 2014. 376 p.

6. Bittner, Kurt & Spence, lan. “Use Case Modeling”. Addison-Wesley Professional, 368 p. (Aug.

20.2002).

7. Dobing, B. & Parsons, J. “Understanding the Role of Use Cases in UML: A Review and Research
Agenda”. Journal of Database Management. 2000; VVol.11 No.4: 28-36. DOI: https://doi.org/10.4018/978-1-

931777-12-4.ch008.

8. Vigers, Karl & Bitti, Dzhoj “Razrabotka trebovanij k programmnomu obespecheniyu”. [Software
requirements development] (in Russian). Publ. BHV. 2014. 736 p.
9. Davis, Alan Mark. “Just Enough Requirements Management: Where Software Development Meets

Marketing”. Dorset House. 2005. 240 p.

10. Irwin, G. & Turk, D “An Ontological Analysis of Use Case Modeling Grammar”. Journal of the
Association for In Formation Systems. 2005; Vol. 6 No. 1: 1-37. DOI: https://doi.org/10.17705/1jais.00063.
11. Matsuura, S. Ogataand. “A Review Method for UML Requirements Analysis Model Employing

System-Side Prototyping”. Publ. Springer
https://doi.org/10.1186/2193-1801-2-134

plus.

2013; Vol. 2 No. 1: 134 p. DO

12. Leffinguell, D. Uidrig. “Principy raboty s trebovaniyami. Unificirovannyj podhod”. [Principles of
Working with Requirements. Unified approach] (in Russian). Publ. Izdatel'skij dom “Vil'yams”, Moscow:

Russian Federation. 2002. 450 p.

13. Kohn, Mike. “Pol'zovatel'skie istorii: gibkaya razrabotka programmnogo obespecheniya”. [User
Stories: Agile Software Development] (in Russian). (Signature Series). Publ. Dialektika-Vil'yams. 2019.

256 p.

402

Systems analysis, applied information
systems and technologies

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.17705%2F1jais.00063

Applied Aspects of Information Technology 2020; Vol. 3 No.1: 393-404

14. Kungurtsev, A. B., Potochnyak, I. V. & Siliaev, D. A. “Metod avtomatizirovannogo postroeniya
tolkovogo slovarya predmetnoj oblasti”. [Method for Automated Construction of a Subject Dictionary] (in
Russian). Tekhnologicheskij audit i rezervy proizvodstva. 2015; No.2/2(22): 58-63.

15. Kungurtsev, O., Zinovatnaya, S., Potochniak, la. & Kutasevych, M. “Development of Information
Technology of Term Extraction From Documents in Natural Language”. Eastern-European Journal of
Enterprise Technologies. 2018; Vol. 6 No. 2 (96): 44-51. DOI: https://doi.org/10.15587/1729-
4061.2018.147978.

16. Vozovikov, Yu. N., Kungurtsev, A. B. & Novikova, N. A. “Informacionnaya tekhnologiya
avtomatizirovannogo sostavleniya variantov ispol'zovaniya”. [Information Technology for Automated Use
Cases] (in Russian). Naukovi praci Donec'kogo nacional’'nogo tekhnichnogo universitetu. Pokrovs'k:
Ukraine. 2017; No. 1(30): 46-59.

17. Kungurtsev, O., Novikova, N., Reshetnyak, M., Cherepinina, Ya., Gromaszek, K. &
Jarykbassov, D. “Method for Defining Conceptual Classes in the Description of Use Cases”. Proc. SPIE
11176, Photonics Applications in Astronomy, Communications, Industry and High-Energy Physics
Experiments, 1117624. (6 November 2019). DOI: https://doi.org/10.1117/12.2537070.

18. Gottesdiener, Ellen. “The Software Requirements Memory Jogger: A Desktop Guide to Help
Business and Technical Teams Develop and Manage Requirements”. Addison-Wesley. 2005. 360 p.

19. Hall, E.; Jackson, K. & Dik, D. “Razrabotka i upravlenie trebovaniyami”. [Development and
Requirements Management] (in Russian). Publ. Telelogic. 2005. 226 p.

20. “Informacionnye tekhnologii upravleniya. Metody poiska tekstovoj informacii”. [Information
Technology Management. Text Information Search Methods]. (in Russian). — Available from:
https://refdb.ru/look/2575304-p10.html. — Active link — 02.12.2007

21. “Indeksy. Teoreticheskie osnovy”. [Indices.Theoretical basis] (in Russian). — Available from:
http://www.sql.ru/articles/mssql/03013101indexes.shtml. — Active link — 05.10.2003

22. Ratcliffe, Martyn & Budgen, David. “The Application of Use Cases in Systems Analysis and
Design Specification”. Information and Software Technology. 2005; Vol.47 lIssue 9: 623-641. DOI:
10.1016/j.infsof.2004.11.00.

Conflicts of Interest: the authors declare no conflict of interest

Received 23.12.2019
Received after revision 14.02.2020
Accepted 18.02.2020

DOI: https://doi.org/10.15276/aait.01.2020.2
YJIK 004.912

3MIHA I TPACYBAHHSA BUMOT J1IO ITPOTPAMHOTI'O ITPOAYKTY
HA PIBHI KOHIEIITYAJIBHUX KJIACIB

Harania OaexciiBHa HoBikoBa
ORCID: http:// orcid.org/0000 — 0002 — 6257 — 9703, nataliya.novikova.31@gmail.com

OnechKHil HaIllOHAIBHUH MOPCBHKHIT yHIBEpCHTET, Byl. MeunnkoBa, 34. Oneca, 65029, Vkpaina

AHOTANIA

VY crarti mocnmimKyeThcs mpoOieMa aBTOMATH3alil ONKMCY BapiaHTiB BHKOPDHCTAaHHs Ha eTami (OpMyBaHHS BHMOT IIpH
MIPOEKTYBaHHI MPOTrPaMHUX TPOAYKTIB. 3alIPONIOHOBAHO METOIM KOPUTYBAHHS MOJIE KOHLENTYAIBHUX KIIaciB y 3B'I3Ky 31 3MiHaMu
B (opMyITIOBaHHI Pi3HUX MYHKTIB CIieHapiiB BapianTiB BuKopuctanHs abo Use Case i TpacyBaHHsSI KOKHOTO IYHKTY cieHapito Use
Case B KOHIENITyaJbHI KJacH, B iXx MeToan i arpuOyTH. 3MiHa BHMOT Ha PiBHI ONHCY IPEIEJEHTIB O3Ha4Ya€ BUIAJICHHS paHilIe
CKJIaJICHUX ITYHKTIB ClIeHapito i / abo monaBaHHS HOBUX. Bumanenns Use Case po3risigaeTbes K MOCIITOBHE BHIAJICHHS BCiX HOTO
MYHKTIB, a pelaryBaHHs MyHKTY CLEHApil0 - K BHAAICHHS 3 MOJAJIBLIMM CKIaJaHHAM y HOBIill pemakuii. Po3ristHyTO crocodu
BUJAJICHHS BCIX THIIIB ITYHKTIB CIEHAPIIO 3aMPOIIOHOBAHO1 KiIacH(DiKaIlii B pi3HUX MOXKIIUBHIX CHTYAIlisIX: CTBOPEHHI paHillle KJiac He
BHKOPHCTOBYBABCS B IHIIUX ITyHKTaX JAHOTO, a00 iHIIMX MpPELECHTIB; CTBOPEHUH paHillle KJac He BUKOPHCTOBYBABCS B IHIIHX
IYHKTaX JaHOTO, a00 IHIIMX MpEele/IeHTIB, ale QYHKIIis, 1[0 MICTUTBCS B KJaci, Ma€ MOCHJIaHHA Ha iHII (YHKIIT; CTBOpEHNiT paHimie
KJIaC BUKOPHUCTOBYBABCSI B IHILIHMX IMyHKTaX IaHOT0, a00 iHIIMX MPELEACHTIB i (GYHKIis, 1110 MICTUTHCS B KJaci, He Ma€ MOCUIIaHHS Ha
iHII (QYHKIIT; CTBOpPEHHI paHille Kjlac BUKOPUCTOBYBABCsS B IHIIMX IyHKTAaX JaHOTO, ab0 IHIIMX MPEUeneHTiB 1 (QyHKINs, 110
MICTUTBCS B KJIaci, Mae MOCHJIaHHA Ha iHi QyHKLil. Po3pobieno Metoan BusHauyeHHs 3B's3kiB Use Case 1 HOro ImyHKTY 3 KJacaM,
iX METoaMH i aTpuOyTaMH, SKi peani3yloTh el IMyHKT (MIpsSMe TpacyBaHHs) 1 BU3HAYCHHS 3B'I3Ky OyIb-sSKOTO JTaHOTO 200 METOIy

ISSN 2617-4316 (Print) Systems analysis, applied information 403
ISSN 2663-7723 (Online) systems and technologies

Applied Aspects of Information Technology 2020; Vol. 3 No.1: 393-404

kiacy 3 pisHumu Use Case i 1X IyHKTaMu (3BOPOTHE TPacyBaHHs). 3allpOINIOHOBAHMII METO/] KOPUTYBaHHS KOHICNTYAJIbHHX KIaciB
JIO3BOJISIE B aBTOMATH30BAHOMY PEXHMI BUJAQIATH Pi3HI NMyHKTH CLEHApiiB, 30epirarounm KOPEKTHE YSBJICHHS KOHLEHTYalbHUX
kiaciB. [TokazaHo, 1110 CHOCTEPIraeThCs iCTOTHE CKOPOYCHHS Yacy Ha KOPUTYBAHHS KJIAciB B aBTOMATH30BAHOMY PEXHMI MOPiBHIHO
3 TPaAULIHHUM PYYHUM PEKUMOM. MeToI TpacyBaHHS TaKOX iICTOTHO CKOpOUYe yac Ha MOLIyK 3B's3kiB Mk Use Case.

KniouoBi cioBa: BapiaHTH BUKOPUCTAHHS; CLIEHApii; MOJETi; KOHIENTYaJIbHI KJIacu, TpacyBaHHs

DOI: https://doi.org/10.15276/aait.01.2020.2
YK 004.912

WU3MEHEHUE U TPACCUPOBAHUE TPEBOBAHUI K TIPOTPAMMHOMY
HNPOAYKTY HA YPOBHE KOHIEINITYAJIBHBIX KJIACCOB

Harauusa Asnekceesna HoBukosa
ORCID: 0000 — 0002 — 6257 — 9703, nataliya.novikova.31@gmail.com
Opnecckuii HalIMOHAJIBHBIN MOPCKOH YHHBepcHTeT yiI. MeunukoBa, 34. Onecca, 65029, Ykpanna

AHHOTAIMA

B craTbe nccnenyercs mpobiieMa aBTOMATH3aIMK ONHICAHUS BapUAHTOB HCIIOJIB30BaHUS Ha dTarne (OpMUPOBaHHS TPeOOBAHMH
IIPY TIPOEKTUPOBAHUY IIPOTPAMMHBIX NPOIYKTOB. [IpeaoskeHbl MeToIp KOPPEKTHPOBKH MOJIEN KOHIIENTYaIbHBIX KIIACCOB B CBSI3H
C M3MEHEHHsSIMH B (DOPMYJIMPOBKE pa3IHYHBIX ITyHKTOB CIIEHAPHEB BApHAHTOB HCIONb30BaHWs i Use Case u TpaccHpOBKU
KaX0ro ImyHKTa clieHapusi Use Case B KOHIENTyalbHBIC KJIACCHI, B MX METOIbI U aTpuOyThl. MI3MeHeHHe TpeOOBaHUI Ha YPOBHE
OIMCaHMs NPELECJCHTOB O3HAYaeT y[ajJeHUE paHee COCTaBJICHHBIX MYHKTOB CLCHApHs W/WiM J00aBleHHs HOBBIX. YnmaneHue Use
Case paccMarpuBaeTcs Kak MOCIEI0BATEIbHOE YIaJCHHE BCEX €ro MYHKTOB, @ PSAaKTUPOBAHHE ITyHKTA CLEHAPUS — KaK yJIaleHUE C
MOCJIEAYIOIIMM COCTABJICHHEM B HOBOH pelaKkuuu. PaccMOTPEHBI cIOCOOBI yIaNeHUsI BCEX TUIIOB IIYHKTOB CLICHAPUS MPE/JI0KEHHON
KJIacCH(UKAIMN B Pa3IMYHBIX BO3MOXKHBIX CHUTYaIMsIX: CO3JAHHBIA paHee KJIacC He HMCIOJIB30BAJICS B APYTUX HMYHKTaX JaHHOTO,
00 MHBIX MPENEAEHTOB; CO3JaHHbIH paHee KJacC He HCIOJIB30BAJICSA B JAPYTHX IYHKTax JAHHOTO, JTHOO MHBIX MPENEISHTOB, HO
GyHKUU, comepiKarascs B Kacce, UMeeT CCHUIKH Ha Jpyrue (pyHKIH; CO3AaHHBIH paHee KIacc MCIOIb30BaJICs B APYTHX ITYHKTax
JTAaHHOT0, JTN0O MHBIX IPENeeHTOB U (YHKIUS, COAepIKaIIascs B KJacce, He UMeeT CCHUIKHM Ha Apyrue (QyHKIMHU; CO3/IaHHBII paHee
KJIacC HUCHOJIb30BANICS B IPYrUX MYHKTaX JAQHHOTO, JTMOO MHBIX MPELEJCHTOB M (DYHKIHS, COeprKallascs B Kacce, UMEET CCBUIKH
Ha npyrue QyHkiun. Pazpabotansl MeTobI onpeseneHus csazeil Use Case u ero myHKTa ¢ KiaccaMu, UX METOJaMH U aTpudyTamu,
PEATH3YIOIMMH 3TOT IHKT (TIpsIMasi TPaCCUPOBKa) U ONPEACICHUS CBSI3H JII000r0 JAHHOTO MIIM METOAa Kiacca ¢ pa3inuyHbiMu Use
Case n ux myHkramu (oOpaTHasi TpaccHpoBka). IIpesioKeHHBI METOX KOPPEKTHPOBKU KOHIENTYalbHbIX KJIACCOB MO3BOJISCT B
aBTOMATH3UPOBAHHOM PEKHME yIaiTh Pa3IMIHBIC TYHKTHI CLIECHAPHUEB,
COXpaHss KOPPEKTHOE NPEICTABICHHE KOHIENTYalbHbIX KiaccoB. IlokazaHo, 4TO HaOJIIOJAETCS CYLIECTBEHHOE COKpAICHHE
BpPEMEHH Ha KOPPEKTHPOBKY KJIACCOB B aBTOMAaTHU3MPOBAHHOM PEXUME CPAaBHUTENBHO C TPAJUIHUOHHBIM PYYHBIM pexxuMoM. Mertox
TPacCHPOBKH TAaKXKe CYIIECTBEHHO COKpAIaeT BpeMs Ha MOHUCK cBs3ei mexay Use Case.

KnioueBsbie ci10Ba: BapraHTHI HCIONB30BAHMS; CLICHAPHH, MOJIEIH; KOHIIENTyalbHbIe KJIACChl; TPACCHPOBKA

ABOUT THE AUTHOR

Nataliia O. Novikova, Senior Teacher of the Department“Technical Cybernetics and Information Technology named
Prof. R.V. Merkt”, Odessa National Maritime University, 34, Mechnikov, Str. Odessa, 65029, Ukraine
nataliya.novikova.31@gmail.com. ORCID: http:// orcid.org/ 0000 — 0002 — 6257 — 9703

Research field: Automation of Information Systems Design

Haranist OnexciiBua HoBikoBa, ct. Bukianad ka¢. TexniuHa kibepHeTHKa Ta iHpopManiiiHi TexHouorii iM. pod. P.B.
MepkTra. Onecbkuii HalllOHAIBHUK MOPCBKUI yHiBepcHTeT, Byl. Meunukosa, 34. Oneca, 65029, Ykpaina

404 Systems analysis, applied information ISSN 2617-4316 (Print)
systems and technologies ISSN 2663-7723 (Online)

mailto:nataliya.novikova.31@gmail.com

