
Applied Aspects of Information Technology 2018; Vol.1 No.1: 22–32

Design of Information Technology and Systems DOI: https://doi.org/10.15276/aait.01.2018.2

22 Systems analysis, applied information systems and technologies ISSN 2617-4316 (Print)
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0 /deed.uk)

UDK 004.42: 004.51

Ihor A. Kravchenko
1
, Department of Computerized Control Systems, E-mail: 10@gmail.com,

ORCID: 0000-0003-1751-6049, Odessa, Ukraine

Viktor О. Speranskyy
1
, Candidate of Technical Sciences, Associate Professor, Associate Professor at the

Department of Computerized Control Systems, E-mail: speranskiyva@ukr.net, ORCID: 0000-0002-8042-

1790, Odessa, Ukraine
1Odessa National Polytechnic University, Shevchenko ave., 1, Odessa, Ukraine

CROSS-PLATFORM PRACTICES FOR MOBILE APPLICATION DEVELOPMENT OF AU-

TOMATED TRADE ACCOUNTING

Abstract. The problem of single application development that can work in widely used modern mobile platforms (Android and iOS) is

dicussed. Current situation in building of crossplatform applicatioons is studied. The choise of appropriate development tools has been ex-

plained. The basic principles and rules of design and development of crossplatform mobile applications using chosen Xamarin.Forms tech-

nology has been described. The paper consists of two parts. The first part describes purposes and benefits of used Xamarin.Forms crossplat-

form technology and contains technical requirements. The Xamarin.Forms technology using with C# object oriented programming language.

The second part describes the best practices of using this technology in current project: MVVM pattern definition for devlopement using best

style OOP; C# asynchoronous programming for creating comfortable and fast for use application; custom controls creating used in current

project for best UI experience; using platformspecific code with DependencyService; customization of standard controls with Renderers;

final application optimization to reach maximum performance and minimum battery consumption at a time (results of battery time optimiza-

tion are presented). Finally, studied and written about using of new features of Xamarin.Forms by big developers’ community. Examples of

software code and application screenshots used in application are given. The work shows the stages of the development of the mobile busi-

ness application modules, which is already used in commercial product; all of the given examples are thoroughly tested during the develop-

ment process and in real work, that allowed to make conclusions about best practices. The use of the developed sowftware allowed increas-

ing the efficiency of trade accounting due to decreasing of monotonous operations quantity and as a result, the decreasing of errors in staff

work, that already gave opportunity for money economy.

Keywords: mobile applications developing; crossplatform; Xamarin.Forms; Android; iOS; UWP; .NET; C#; MVVM

Introduction

Problem statement. Before software
development developers already know which

devices and operating systems they will create a

software product for. Nowadays, the most popular
devices for today's business applications are

personal computers, smartphones and tablets. Three

most commonly used operating systems for personal
computers are: Windows, Linux, macOS. For mobile

devices are Android and iOS.

Current situation in building of crossplatform

applicatioons is studied in [1; 14; 15]. The principle
of abstracting a graphical interface in many cases

solves the problem of cross-platform, but not

always. Crossplatform application is not a single
application for different platforms, but a single code

base in different applications. And here it becomes

very important to correctly build the architecture of
the application, namely, the maximum separation of

the interface and logical parts.

There is another option that is called hybrid

applications that use web technologies rather than
native development. The result is a web application

that runs in a wrapper and is served not as a web

page, but as a separate application requiring
installation and having a separate icon. Hybrid

solutions are quite popular due to the fact that the

© I. A. Kravchenko; V. O. Speranskyy; 2018

function of the web browser can handle virtually any
mobile OS, which means if the application is already

running under any mobile OS, then launch it to

another will not work. Nevertheless, the use of such
an approach does not allow for the high speed of the

final development.The paper also includes UWP

(Universal Windows Platform), which is not an
operating system but is just a platform for the creation

and run engaging and immersive applications that

work across a wide variety of the Windows 10 device

families. The API is implemented in C++ and is
supported in VB.NET, C#, F#, and JavaScri

Typically, most software products are released

immediately for multiple operating systems to reach
larger audience of users. But at the same time, the

price and development time are growing. So the

problem is a to develop single application that can
work everywhere with minimum of additional

afterwork. In order to minimize and synthesize code

writing for several operating systems, the

crossplatform technologies for software
development are used.

The aim of this work is to show the use of

crossplatform technology Xamarin.Forms that was
chosen due to convenient development tools and

good performance of ready-made applications to

automate the trade accounting with use of

crossplatform application.

Applied Aspects of Information Technology 2018; Vol.1 No.1: 22–32

Design of Information Technology and Systems

ISSN 2617-4316 (Print) Systems analysis, applied information systems and technologies 23

Main part

There is a key difference between iOS and

Android in terms of application execution — a way to
precompile them. The Dalvik java virtual machine

and Just-in-time compilation (on-the-fly compilation)

are used to run applications on Android. The iOS uses

Ahead-of-Time (compile before execution) for this.
The difference is shown in Fig.1.

The Xamarin takes this distinction into account

by providing separate compilers for each of these
platforms which allows getting native applications

that run outside the context of the browser and can

use all the hardware and software resources of the
platform.

The simplest way is to use Visual Studio 2017

development environment to develop using the

Xamarin.Forms technology but it is need to activate
Business or Enterprise licence that costs $999 or

$1899 respectivly. The development of presented

project is carried out using the C# programming
language. However, it is possible to add projects

written using the VB.NET programming language.

For professional development of mobile applications
it is needed to understand well the principles of

object-oriented programming.

Fig. 1. Template and code sharing

Current work is created as Cross-Platform pro-

ject in Visual Studio 2017 using the template of Mo-

bile App (Xamarin.Forms) project of the Visual C#.
Master Detail form pattern means that an application

includes a page with a side menu. Typically, the

Blank App is used, that is, a blank project that con-

tains only the most essential components. In most
cases, it is more convenient for developers to create

blank projects to add only what they really need.

A list of platforms determines whether some
platforms will be included in the project; you need to

choose the platforms for which the application de-

velopment is planned. It is better to choose every-

thing: nothing will change if some platforms are not
used at all.

The point that will affect further development is

the code sharing strategy. To understand better what to

choose, first consider the components of the project.
All projects created in Visual Studio have a So-

lution file (with a sln extension), and the project file

itself (with the extension csproj, if the language is C

#, or vbproj if the language is VB.NET). The project
file contains a list of files used in the project: for

example, folders, program code files, images, class

diagrams, and more. However, sometimes one pro-
ject is not enough. Therefore, file-based solutions

are included that contain links to one or more pro-

jects. In addition, projects may have links to each
other within a single solution. For a Xamarin.Forms

project, a solution will be created for four several

projects at the same time (Fig. 2).

Fig. 2. Solution with projects

The TestApp project is a common project

where most of the code is created. Other projects are
created for each platform, where use of special code

can be specified, inherent only on a separate plat-

form. A project shown with bold text is used as a

startup project and it can be changed to another type
needed to run the application in another platform.

Considering the code distribution strategies,

.NET Standard is a list of specifications to ensure
the universality of libraries [2]. Because of this, the

same libraries in different environments can be used,

ensuring that these libraries meet the needs of.NET
Standard. During compilation, a DLL-library is cre-

ated for a general project that can be used anywhere,

in this case, it uses a separate platform.

Shared Projects works differently: in each pro-
ject that corresponds to the platform, there is a com-

mon project code. No libraries are created during

compilation for the general project and the general
code is packed together with the platform project.

That is, NET Standard uses the common code

separately from the project platform, and Shared Pro-

jects uses the generic code inside the project platform.
For developers this means that Shared Projects

allows you to use the compiler directives (for exam-

ple, #if __ANDROID__) and use links to the librar-
ies of individual platforms in a general code that is

not possible for .NET Standard. However, .NET

Standard makes universal code more versatile, and
the Dependency Service is used to call the code im-

plemented separately for each platform.

Applied Aspects of Information Technology 2018; Vol.1 No.1: 22–32

Design of Information Technology and Systems

24 Systems analysis, applied information systems and technologies ISSN 2617-4316 (Print)

In any case, it is better to use .NET Standard –

this will make the code universally available and

allow the use of other libraries that support .NET
Standard.

1. Components of the project

In Xamarin.Forms, objects that are situated on

the device screen are called visual elements. They
are split into three categories:

– page;

– layout;
– view.

Page is a visual element that occupies the entire

screen of the device (or a large part of it). A mobile
app can have one or more pages. A user can navigate

from one page to another, for this there is a mecha-

nism for navigating between pages in the project.

Pages may vary, depending on the display and inter-
action with the user.

Layout (template) is a template that brings up

the views of the page. There are various markups,
for example, you can arrange items using the

Grid markup, which allows them to be placed as a

grid, or using the StackLayout layout that places
elements one after the other.

View is the element used to display data and in-

teract with the user. For example, a button, an input

field, a label with a text, a switch and other items.
Therefore, we can say that the page contains a

layout that contains a view. There are some features:

the page cannot contain a view directly, it must nec-
essarily have in itself only one layout. However, the

layout may have other layouts that also contain one

or more views.

Developer can create a visual interface in a pro-
gram code or in XAML-files [3]. It is recommended

to do this in XAML files, so the program code will

be cleaner. In addition, in XAML-files developer
can specify the properties of the objects that provide

the data to display to the user.

2. Use of MVVM design pattern

In modern programming, it is important to be

able to divide the code describing the UI from code

with business logic. To do this, many design tem-

plates were created for developers. The recommend-
ed design template for Xamarin.Forms is MVVM

[4-5].

MVVM (Model – View – ViewModel) is a de-
sign template that uses the properties of objects to

provide data to the elements of the interface. It con-

sists of three parts:
1) View is a visual element that displays user

data.

2) Model – a data model that retains some kind

of data.

3) ViewModel – a class that collects data from
a model and provides them with a visual element

using a special mechanism called Binding.

The main feature of MVVM is that Binding can

work in both directions: to take data from a model
into a visual element, and vice versa – to take data

from a visual element into a model, or in both direc-

tions at the same time.
For example, there is a counter-agent edit page

where the user can fill out his data. For this page,

you need to create a ViewModel that contains a ref-
erence to an instance of the ContractorProxy class

(contr-agent) that contains the necessary properties

(name, email, comment, etc.).

As a Model we use data the ContractorProxy
class:

Public Class ContractorProxy

 Private _PointName As String
 Public Property PointName As String

 Get

 Return _PointName
 End Get

 Set(ByVal value As String)

 _PointName = value

 End Set
 End Property

End Class

As a ViewModel using class ContractorEditor-
ViewModel:

public class ContractorEditorViewModel

{

 private ContractorProxy _card;
 public ContractorProxy Card

 {

 get{return _card;}
 }

 public string Name

{
get { return this.Card?.PointName; }

set { if (this.Card?.PointName!= value)

 {

 this.Card.PointName = value;
 this.OnPropertyChanged(nameof(Na

me));

 }
}

}

 In order to notify the page that the data has
changed and new data has been displayed to the us-

er, developer need to implement the INotifyProper-

tyChanged interface in ViewModel and add the fol-

lowing code:

Applied Aspects of Information Technology 2018; Vol.1 No.1: 22–32

Design of Information Technology and Systems

ISSN 2617-4316 (Print) Systems analysis, applied information systems and technologies 25

public event PropertyChangedEventHandler Proper-

tyChanged;

protected void OnPropertChanged ([Caller-
MemberName] string propertyName = ""){

 var changed = PropertyChanged;

 if (changed == null)

 return;
 changed.Invoke(this, new Property-

ChangedEventArgs(propertyName));

}
The above program code generates a changed

event (with a property name parameter whose value

needs to be read), which will be somewhere “heard”
and the visual element that “looks” on the property

with that name, should read the value of this proper-

ty. But to do this, you need to call the OnProperty-

Changed method.
Now we can create a ContractorEditorPage

page that contains the necessary visual elements.

public partial class ContractorEditorPage : Con-
tentPage

{

 private ContractorEditorViewModel
_viewModel;

 public ContractorEditorPage()

 {
 InitializeComponent();

 _viewModel = new ContractorEditor-

ViewModel();
 this.BindingContext = _viewModel;

}

}

In the program code written above, the
_viewModel object is created and assigned the Bind-

ingContext properties of the page. Now you can set

the properties of the visual properties of a View-
Model property in the XAML of this page:

<Entry Text=“{Binding Name}”/>

Now when the user puts the text in the field, the
Name property in ViewModel will be automatically

updated, and with it will be updated the Model itself,

which is expressed by the Card property in View-

Model.
From this, we can draw the following conclu-

sions: ViewModel provides data for View. View has

a link to ViewModel, and ViewModel has a link to
Model. However, Model does not know about

ViewModel, just as if ViewModel knows nothing

about who uses its data. Code can link directly to
Model. However, this issue occurs only for small

code examples: in this case, it is impossible to see

the whole “tragedy” of mixing the code page with

the code of business logic. The bigger the project the
bigger the price of the error. The answer is, for ex-

ample, other tablets can be used for tablets, which

describes a more responsive interface on the big

screen. In addition, the data will be used the same.
That is, it is more profitable to allocate the program

code that provides data to another class so that it can

then be used elsewhere. Therefore, experienced de-

velopers always share the programmatic code of the
visual interface from the program code of the busi-

ness logic of the project: it provides the universality

of the code and its reliability.
However, if a model class contains a large

number of properties it is not necessary for each

such property to create a wrapper property in
ViewModel. Use the wrapper property (in this ex-

ample, the Name property) when it is necessary to

somehow prepare the data for the interfaces (for ex-

ample, before the name of the counterpart, add the
word “Name”). In this case, XAML can write:

<Entry Text = “{Binding Card.PointName}” />

Thus, the property of the Card located in
ViewModel will find the PointName property whose

value will be displayed in the input field.

Taking into account all of the above, one can
formulate the pros and cons of this design template.

Pros:

– ensuring the reliability and universality of the

code;
– Automatic updating of properties in View-

Model after changing the properties of visual ele-

ments;
Cons:

– increasing of links quantity in the project;

– the imperfection of XAML due to the lack of

a checklist with the properties list in ViewModel.
It is worth noting that the given disadvantages

are non-significant and offset against the pros.

3. Using benefits of OOP

The most important thing in a modern program

is not the writing of software code, but the construc-

tion of a proper hierarchy of data models. The use of
OOP capabilities allows us to reduce the amount of

software code and its repeatability. Therefore, we

will apply the OOP for the typesetting.

In most cases, mobile applications contain a
large number of pages. In addition, for each page a

template must be created. Often, pages can be simi-

lar to each other in a functional way. Contractor edi-
tor, product editor, document editor; list of counter-

agents, list of goods items, list of documents. Same

things can be done in the basic functionality. To
begin, create a basic viewmodel, where we will add

a functionality for the INotifyPropertyChanged in-

terface (code above).

Applied Aspects of Information Technology 2018; Vol.1 No.1: 22–32

Design of Information Technology and Systems

26 Systems analysis, applied information systems and technologies ISSN 2617-4316 (Print)

public abstract class BaseViewModel

: INotifyPropertyChanged

{
 bool _isBusy = false;

 public bool IsBusy

 {

 get {return _isBusy; }
 set {SetProperty(ref _isBusy, val-

ue);}

 }
}

The IsBusy property is required to show the

loading animation when performing some kind of
action (downloading or sending data, etc.). Below

you will find out how to work with it.

Consider an example with a checklist for a page

with a list. For example, there is a page with a list of
goods. We need to download a list of items as soon

as the page is displayed on the screen. The page has

an OnAppearing method, which can describe any
actions that should occur as soon as the page is dis-

played on the screen. To begin, we will create a

look-up model.
public class GoodsRowListViewModel :

BaseViewModel{

public new ObservableCollection

<GoodsRowListItemViewModel> Items
{

get { return (ObservableCollection

<GoodsRowListItemViewMod-
el>)base.Items;

}

public virtual async Task<bool>

LoadItems()
{

 this.IsBusy=true;

 this.IsBusy=false;
}

}

Items – is a collection that will be added to the
list of loaded goods. The LoadItems method will

perform actions to load data from services and add

them to the Items collection. Now the page needs to

add a ListView item that is required to display a list
with data (this code will be omitted for visualiza-

tion) and call the method to load the data.

protected async override void OnAppearing()
{

 base.OnAppearing();

 await _viewModel.LoadItems();
}

Now when we go to this page, data will be

downloaded (Fig. 4).

Fig. 4. Data loading

The boot animation connects by using the

ListView property of the IsRefreshing property via

Binding to the IsBusy property in the lookup model.
However, the pages with lists in the application

may be many. Therefore, we can allocate a common

functionality for lists to the upper level of the hierar-
chy, creating a ListViewModel class for that and

load the LoadItems method there.

protected abstract void AddItem(Object item);

protected abstract
Task<IEnumerable<object>> GetList-

FromDataSource();

protected abstract object CreateItem(object
listItem);

public virtual async Task LoadItems()
{

 this.IsBusy = true;

 IEnumerable<object> serviceResult = await

GetListFromDataSource();
 foreach(object proxyObject in serviceRe-

sult)

 {
 this.AddItem(this.CreateItem(proxyObj

ect));

 }

 this.IsBusy = false;
}

Now for each page on the list, you need to

create a lookup model, follow it from
ListViewModel, and implement abstract methods.

Thus, most of the functionality and code remain the

same, ensuring the versatility of the code and its

Applied Aspects of Information Technology 2018; Vol.1 No.1: 22–32

Design of Information Technology and Systems

ISSN 2617-4316 (Print) Systems analysis, applied information systems and technologies 27

suitability for change. If you want to add some

functionality to all pages with lists, then you can add

it to the ListViewModel class. But if you want to
expand the functionality only in some classes, you

can select a general code for them and put it on the

upper level of the abstraction.

4. Asynchronous programming in C#

The current development of applications re-

quires knowledge of asynchronous programming. It

is needed to create a responsive interface: that is,
long-term operations (downloading data from the

network or performing complex tasks) should not

block UI-thread. The programming language C # for
such purposes provides handy tools in the form of

async and awaits operators [6]. It should be noted

that asynchrony does not mean multithreading. In-

deed, a long-term task can be performed in a sepa-
rate thread, but this is not required. For an example,

consider the code above to download data after the

page is displayed.
protected async override void OnAppearing()

{

 base.OnAppearing();
 await _viewModel.LoadItems();

 DoSomething();

}

The await statement indicates that the execution
of the program will be suspended until the code after

the await operator is executed. The LoadItems

method will be launched in a separate thread (run it
in a separate thread decides the compiler, but usually

uses a separate thread), and when it is executed, the

program will continue its execution. In some cases,

if the next program code does not depend on the
outcome of the asynchronous operation, the compil-

er can continue the program execution. However, the

wait operator will be ignored if the word header does
not add the word async.

Thus, the program remains “sensitive” to interact

with the user.
The await method can be used only for those

methods returned by Task. Using void in the asyn-

chronous method is possible only for events, in other

cases it is not recommended (otherwise it will not be
possible to catch the exception).

public async Task LoadCount()

{
this.Count = await GetCountAsync();

}

But often the method should return some data.
To retrieve data, you must use the typed Task class.

public async Task<int> LoadCount()

{

int count = await GetCountAsync();

return count;

}

For any method, we can create an asynchronous
version of it. For example, there is an ordinary

GetCount method that returns int. How to return

from it the Task <int> to execute it in a separate

thread?
public async Task<int> GetCountAsync()

{

return await Task.Run(() => GetCount());
}

Another way:

public async Task<int> GetCountAsync()
{

return await Task.Factory.StartNew(() =>

GetCount());

}
The difference lies in the fact that in the second

case, we can use the additional parameters of

launching the method in a separate thread (in this
paper these details will be omitted).

Note: In the VB.NET programming language,

the same asynchronous mechanism is used but it is
based on the syntax of the language.

5. Creating custom visual elements

Because Xamarin.Forms combines all three

platforms, a small number of visual elements are
available from the start, that is, only those that are

present on all three platforms at once. However, de-

velopers have the ability to create their own visual
elements, and there are also many free user libraries

with visual components.

We can use the ContentView class [7] to create

our own visual element. To do this, we will create a
new element that follows from ContentView with

the XAML code. Consider an example of creating a

checkbox (let us call it Checker), this component is
not present in Xamarin.Forms. Instead, a Switch per-

forms the same functions as the classic checkbox

(check box), but has a slightly different interpreta-
tion. For example, the check box is “yes” or “no”,

while the switch is set to “on” or “off”, although for

the code it is true or false in any case.

So, adding a regular label (Label) to XAML.
<ContentView.Content>

 <Grid RowSpacing="0" >

 <Grid.RowDefinitions>
 <RowDefinition />

 </Grid.RowDefinitions>

 <Label Grid.Row="0" x:Name="IconLabel"
FontSize="32" HorizontalOptions="Center"

VerticalTextAlignment="Center" VerticalOp-

tions="Center">

 <Label.GestureRecognizers>

Applied Aspects of Information Technology 2018; Vol.1 No.1: 22–32

Design of Information Technology and Systems

28 Systems analysis, applied information systems and technologies ISSN 2617-4316 (Print)

 <TapGestureRecognizer

Tapped="OnCheckTapped"/>

 </Label.GestureRecognizers>
 </Label>

 </Grid>

</ContentView.Content>

In the code of the visual element, the following
is added:

public static readonly BindableProperty Is-

SelectedProperty = BindableProper-
ty.Create(nameof(IsSelected), typeof(bool),

 typeof(Checker), false, Binding-

Mode.TwoWay, propertyChanged: OnIs-
SelectedPropertyChanged);

public bool IsSelected

{
get {return

(bool)GetValue(IsSelectedProperty);}

set {
 SetValue(IsSelectedProperty, value);}}

 private static void OnIsSelectedProperty

Changed(BindableObject bindable, object
oldvalue, object newvalue){

if (!(bindable is Checker selector))

 return;

selector.SetIcon((bool)newvalue);
}

Property IsSelected will be used to indicate the

status of the checkbox. The IsSelectedProperty
property has a BindableProperty type that allows us

to use the IsSelected property for the Binding mech-

anism. When we create it, we must specify the name

and type of the property that changes-Xia, its default
value, the Binding mode, and the method to be

called when changing the property value. The OnIs-

SelectedPropertyChanged method changes the icon
depending on the state of the property. To do this,

use the so-called icon fonts (for example, FontAwe-

some), which in fact are fonts, but display the text as
an image. Add another important OnCheckTapped

method, which will be called after clicking on the

icon.

This method changes the value of the IsSelected
property to the opposite; in the property, the set will

be called, where a new value for IsSelectedProperty

will be called, which, in turn, will call the OnIs-
SelectedPropertyChanged method, which will

change the image for the icon. This way, the user

will see that the check mark has been flagged.
Using the Checker element looks like this:

<views:Checker IsSelected=”{Binding Is-

Selected}”/>

We can also add other properties, such as color,
size, and more.

That is, we must use BindableProperty to write

our own visual elements. This allows us to “look” at

the property of the element through the Binding
mechanism, which is not contrary to the require-

ments of MVVM.

6. Using platform-dependent code

All three platforms are different between co-
bundles, so Xamarin. Forms's “out of the box” can-

not cover all the required functionality. However,

developers have the opportunity to “get” specific
data from a specific platform or perform some ac-

tions on their own. To do this, there is a Dependen-

cyService mechanism [9]. Let us consider it on an
example of receiving the serial number of the de-

vice. Device serial number is a unique ID that can be

used for various purposes, such as adding a device to

a list of trusted user devices.
First, the IDevice interface was created (in the

C# programming language there is a rule called in-

terfaces with letter I).
public interface IDevice

{

 string DeviceSerialNumber { get; }
}

Now each platform project needs to implement

this interface. Let us start with android.

[assembly: Dependency
(typeof(TcuClientStandard.Droid.Helpers.Devi

ce))]

namespace TcuClientStandard.Droid.Helpers
{

public class Device : IDevice

{

 public string DeviceSerialNumber
 {

 get { return Android.OS.Build.Serial; }}

}}
Above the namespace, it is needed to specify an

attribute that in this class will be used for Dependen-

cyService. So, it will be seen from the general pro-
ject during execution.

The same code will be for iOS:

[assembly: Dependency

(typeof(TcuClientStandard.iOS.Helpers.Devic
e))]

namespace TcuClientStandard.iOS.Helpers

{
public class Device : IDevice{

 public string DeviceSerialNumber

 {
 get { return UIK-

it.UIDevice.CurrentDevice.IdentifierForVend

or.AsString(); }

 }

Applied Aspects of Information Technology 2018; Vol.1 No.1: 22–32

Design of Information Technology and Systems

ISSN 2617-4316 (Print) Systems analysis, applied information systems and technologies 29

}}

Now we can use the platform-dependent code

in the general project:
public static string DeviceSerialNumber{

 get {

 return DependencyService.

Get<IDevice>().DeviceSerialNumber;
}}

Thus, the same functionality in each platform is

implemented in its own way, and then used in the
general project.

7. Customizing visual elements with renders

Sometimes situations arise when we need to
change the appearance of standard items or add a

new functionality that is only on a separate platform.

For this, there is a mechanism for ExportRenderer

[10]. Consider using it as an example of extending
the function of the standard Label. This was per-

formed to add the ability to display the underlined

text.
For this, an ExtendedLabel class was created

that is inherited from Label, and the IsUnderline

property using BindableProperty.
public static readonly BindableProperty IsUnder-

lineProperty = BindableProper-

ty.Create(“IsUnderline”, typeof(bool),

typeof(ExtendedLabel), false, Binding-
Mode.OneWay);

public bool IsUnderline

{ get{ return (bool)GetValue(IsUnderlineProperty);
}

 set{

 SetValue(IsUnderlineProperty, value);

}}
Now add the ExtendedLabelRenderer to the

Android project, which is inherited from LabelRen-

derer. In order to change the functionality of an ele-
ment, we need to redefine the OnElementChanged

method. This method will be called once when creat-

ing a visual element.
protected override void OnElement-

Changed(ElementChangedEventArgs<Label> e){

base.OnElementChanged(e);

var view = (ExtendedLabel)Element;
var control = Control;

UpdateUi(view, control);

}
In the renderer classes, there are two main

properties: Element and Control. Element means the

visual element used in Xamarin.Forms. Control is a
visual element of the platform. That is, in this case

Element is ExtendedLabel, and Control is an android

textView element.

Next will be called the UpdateUi method,

which will make the text highlighted if the desired

property is enabled.
private static void UpdateUi(ExtendedLabel view,

TextView control)

{

if (view.IsUnderline)
{

control.PaintFlags = control.PaintFlags |

PaintFlags.UnderlineText;
}}

But in order to allow the underscore to be “on

the fly”, we need to redefine the OnElementProper-
tyChanged method, which will be used to change

any visual properties of the Xamarin.Forms proper-

ty.

protected override void OnElementProperty-
Changed(object sender, PropertyChangedEventArgs

e){

base.OnElementPropertyChanged(sender, e);
var view = (ExtendedLabel)Element;

if (e.PropertyName == Extended-

Label.IsUnderlineProperty.PropertyName)
{

Control.PaintFlags = view.IsUnderline ? Con-

trol.PaintFlags | PaintFlags.UnderlineText : Con-

trol.PaintFlags &= ~PaintFlags.UnderlineText;
}}

Now, in order for a custom renderer to work,

you need to put the ExportRenderer attribute above
the namespace.

[assembly:

ExportRenderer(typeof(ExtendedLabel),

typeof(ExtendedLabelRenderer))]
The first parameter means for which visual el-

ement the renderer will be used, and the second pa-

rameter indicates which renderer will be used.
The use of Extended-Label with underline in the

fields “Customer” and “Article” is shown in Fig. 5.

8. Performance and battery time optimization

Weak place for mobile apps (especially on An-

droid) is ListView. Wrong work with lists can cause

fading during scrolling. This is because the applica-

tion performs a lot of work in the main thread, which
results in framerate (the number of frames per sec-

ond). To optimize the work of lists in Xama-

rin.Forms, caching elements is used [11].
That is, when scrolling, the same visual ele-

ments are used, only the data that is displayed to the

user is changed. To enable this option, you need to
set CashingStrategy = “RecycleElement” for

ListView [12].

Here are some more tips:

– use the same height for the cells;

Applied Aspects of Information Technology 2018; Vol.1 No.1: 22–32

Design of Information Technology and Systems

30 Systems analysis, applied information systems and technologies ISSN 2617-4316 (Print)

– use AbsoluteLayout, RelativeLayout, Grid

with a fixed-size line instead of StackLayout;

– avoid a complex investment of some elements
to others;

– avoid using a large number of items: for ex-

ample, Label can use the FormattedString property

instead of a large number of labels;
– if pictures are used in the list, they should be

downloaded asynchronously, using the

OnItemAppearing event in the list;
– if standard images are used in the Image

class, it is advisable to use the same ImageSource

property for identical images, thus, one source will
be used for all images, which will greatly save

memory.

Fig. 5. Result of custom renderers using

For diagnostics, we can use some features in the

developer's parameters [13].

An important diagnostic feature is the
“Graphics Processor Profile”. You can use Android

Device Monitor to investigate which process blocks

the UI stream (Fig. 6).

Fig. 6. Frame capturing settings

This program has the capture capability of the

device. When you click the “Capture system wide

trace using Android systrace” button, you must set
the capture time (usually 5 seconds). After clicking

“OK” you should immediately start to scroll the list

on the device within the specified time. When you

open the trace.html file, you can see which frames

took more time than allowed for comfortable percep-

tion. Such frames occupy more space on the sched-

ule. By clicking on the frame, you can see which
task was performed at that time.

Another diagnostic feature used is the option

“Adjust GPU overlay” that shows the degree of

nesting of visual elements (Fig. 7).

Fig. 7. Elements overlay (little left, a lot of right)

Having the results of diagnostics written earlier,
the optimization of developed application were per-

formed. The optimization of application perfor-

mance and number of ambigious operations per-

fomed by staff using mobile device were studied.
The results of battery time for the same device be-

fore (blue color) and after (orange color) performing

all optimizations according to the level of screen

brightness are presented in Fig. 8.

Fig. 8. Battery time dependence at predefined screen

brightness level before (2) and after (1)

software optimization

Applied Aspects of Information Technology 2018; Vol.1 No.1: 22–32

Design of Information Technology and Systems

ISSN 2617-4316 (Print) Systems analysis, applied information systems and technologies 31

Conclusion

Professional development of mobile

applications with Xamarin.Forms technology has
become more real than ever. The technology is

constantly updated, new features are added, more

and more users are joining the Xamarin developer

community. A lot of articles and recommendations
were created by collaborative efforts of developers,

answers to a lot of questions were provided in the

forums, and application setup became more
convenient. For those developers who just start

using Xamarin.Forms, you just need to find the best

practices and use them in your own projects. This
paper contains the answers for most urgent

questions: which design template to use, how to

work with the main technology links and how to

optimize the work with the graphical user interface.
The software optimization resulted 10-12% increase

of time using battery and speed of applicatin work at

the same device. The described work is the part of
the commercial project [16]. Its implementation

allowed to increase the efficiency of trade

accounting due to decreasing of the number of
monotonous operations and as a result the

decreasing of human factor in everyday work.

References

1. Kravchenko, I. A., & Speransky, V. O.
(2018), “Analysis of technologies for creating a cli-

ent application on mobile platforms Android and

iOS for trading accounting system for small and me-
dium businesss”, Information Sciences, Information

Systems and Technologies: Abstracts of the 15-th

All-Ukrainian Conference of Students and Young

Scientists. Odessa, Ukraine, April 27, 2018, pp. 48-
51.

2. Sharing code overview [Electronic Re-

source]. – Access Mode https :
//docs.microsoft.com/en-us/xamarin/cross-

platform/app-fundamentals/code-sharing.

3. Markup Extensions for XAML Overview
[Electronic Resource]. – Access Mode https :

//docs.microsoft.com/en-us/dotnet/framework/ xaml-

services/markup-extensions-for-xaml-overview.

4. From Data Bindings to MVVM. [Electronic
Resource]. – Access Mode https :

//docs.microsoft.com/en-us/xamarin/xamarin-

forms/xaml/xaml-basics/data-bindings-to-mvvm.
5. Simple Activity Indicator: Xamarin Forums.

[Electronic Resource]. – Access Mode : https

://forums.xamarin.com/discussion/comment/346268/
#Comment_346268.

6. Asynchronous programming with async and

await (C#) [Electronic Resource]. – Access Mode :

https://docs.microsoft.com/en-
us/dotnet/csharp/programming-

guide/concepts/async/,

7. Creating Custom Controls with Bindable

Properties in Xamarin.Forms [Electronic Resource].
– Access Mode : https://mindofai.github.io/Creating-

Custom-Controls-with-Bindable-Properties-in-

Xamarin.Forms/.
8. Xamarin Forms Pages Forms [Electronic

Resource]. – Access Mode :

https://docs.microsoft.com/ru-ru/xamarin/xamarin-
forms/user-interface/controls/pages

9. Xamarin Forms Layouts Forms [Electronic

Resource]. – Access Mode :

https://docs.microsoft.com/ru-ru/xamarin/xamarin-
forms/user-interface/controls/layouts,

10. Introduction to DependencyService [Elec-

tronic Resource]. – Access Mode :
https://docs.microsoft.com/en-us/xamarin/xamarin-

forms/app-fundamentals/dependency-

service/introduction.
11. Xamarin. Forms Custom Renderers [Elec-

tronic Resource]. – Access Mode :

https://docs.microsoft.com/en-us/xamarin/xamarin-

forms/app-fundamentals/custom-renderer/.
12. Optimizing Xamarin.Forms Apps for Maxi-

mum Performance [Electronic Resource]. – Access

Mode : https://blog.xamarin.com/optimizing-
xamarin-forms-apps-for-maximum-performance/.

13. ListView Performance [Electronic Re-

source]. – Access Mode :

https://docs.microsoft.com/en-us/xamarin/xamarin-
forms/user-interface/listview/performance.

14. Tips for Creating a Smooth and Fluid An-

droid UI [Electronic Resource]. – Access Mode :
https : //blog.xamarin.com/tips-for-creating-a-

smooth-and-fluid-android-ui/.

15. Xanthopoulos S., and Xinogalos S. (2013),
“A comparative analysis of cross-platform develop-

ment approaches for mobile applications”, Proceed-

ings of the 6-th Balkan Conference in Informatics,

ACM, pp. 213-220 .
16. Trade Accounting [Electronic Resource]. –

Access Mode : https://andriy.co/TCUMobile-

Siste-
ma_ucheta_mobilnoi_torgovli_i_distributsii_dlya_K

PK .aspx

Received 10.12.2018

Applied Aspects of Information Technology 2018; Vol.1 No.1: 22–32

Design of Information Technology and Systems

32 Systems analysis, applied information systems and technologies ISSN 2617-4316 (Print)

1
Кравченко, Ігор Андрійович , кафедри комп’ютеризованих систем управління,

E-mail: 10@gmail.com, ORCID: 0000-0003-1751-6049, м. Одесса, Украина
1
Сперанський, Віктор Олександрович, кандидат техніч. наук кафедри комп’ютеризованих

систем управління, E-mail: speranskiyva@ukr.net, ORCID: 0000-0002-8042-1790, м. Одесса, Украина
1Oдесский национальный политехнический университет, пр-т Шевченко, 1, м. Одесса, 65044,

Украина

КРОСПЛАТФОРМОВА ПРАКТИКА РОЗРОБКИ МОБІЛЬНИХ

ДОДАТКІВ ДЛЯ АВТОМАТИЗОВАНОГО

ТОРГІВЕЛЬНОГО ОБЛІКУ

Анотація. В роботі описано основні принципи та правила проектування та розробки мобільних додатків, що

використовують кросплатформову технологію Xamarin.Forms. Описано основні принципи та правила проектування та
розробки мобільних додатків, що використовують перехресну технологію Xamarin.Forms. Робота базується на розробці
мобільного бізнес-додатку, який вже використовується в комерційній компанії, всі наведені приклади перевірено в реальній
роботі. Стаття складається з двох частин. Перша частина описує цілі та переваги використовуваної технології
Xamarin.Forms і містить технічні вимоги. Технологія Xamarin.Forms вимагає використання об'єктно-орієнтованого
програмування в C#. У другій частині описуються найкращі практики використання цієї технології в поточному проекті:

визначення шаблонів MVVM, асинхронне програмування C#, створення користувальницьких елементів керування,
використання платформозалежного коду з DependencyService, налаштування стандартних елементів управління з
використанням Renderers і оптимізація програми для максимальної продуктивності. Описано додавання нових можливостей
до Xamarin.Forms великої спільноти розробників. Наведено приклади програмного коду та скріншоти програм.
Використання розробленого програмного забезпечення дозволило підвищити ефективність торговельного обліку за рахунок
зменшення кількості монотонних операцій і, як наслідок, зменшити кількість технічних помилок у роботі персоналу.

Ключові слова: розробка мобільних додатків; кросплатформовість; Xamarin.Forms; Android; Ios; UWP; .NET; C#;
MVVM

1
Кравченко, Игорь Андреевич , кафедри компьютеризированных систем управления,E-mail:

10@gmail.com, ORCID: 0000-0003-1751-6049, г. Одесса, Украина
1
Сперанский, Виктор Александрович, кандидат технич. наук кафедры компьютеризированных

систем управления,, E-mail: speranskiyva@ukr.net, ORCID: 0000-0002-8042-1790, г. Одесса, Украина
1Одесский национальний политехнический университет, пр-т Шевченко, 1, г. Одесса, 65044, Украина

КРОССПЛАТФОРМЕННАЯ ПРАКТИКА РАЗРАБОТКИ МОБИЛЬНЫХ

 ПРИЛОЖЕНИЙ ДЛЯ АВТОМАТИЗИРОВАННОГО

 ТОРГОВОГО УЧЁТА

Аннотация. Обсуждается проблема разработки единого приложения, способного работать на большинстве

современных мобильных платформ. В работе описаны основные принципы и правила проектирования и разработки

мобильных приложений, использующих кроссплатформенную технологию Xamarin.Forms. Описаны основные принципы и
правила проектирования и разработки мобильных приложений, использующих кроссплатформенную технологию
Xamarin.Forms.
Работа базируется на разработке мобильного бизнес-приложения, которое уже используется в коммерческой компании, все
приведенные примеры проверено в реальной работе. Статья состоит из двух частей. Первая часть описывает цели и
преимущества используемой технологии Xamarin.Forms и содержит технические требования. Технология Xamarin.Forms
требует использования объектно-ориентированного программирования в C#. Во второй части описываются лучшие
практики использования этой технологии в текущем проекте: определение шаблонов MVVM, асинхронное

программирование в C#, создание пользовательских элементов управления, использования платформозависимого кода
используя DependencyService, настройки стандартных элементов управления с использованием Renderers и оптимизация
программы для максимальной производительности. Описаны дополнения новых возможностей большого сообщества
разработчиков к Xamarin.Forms. Приведены примеры программного кода и скриншоты программ. Использование
разработанного программного обеспечения позволило повысить эффективность торгового учета за счет уменьшения
количества монотонных операций и, как следствие, уменьшить количество технических ошибок в работе персонала.

Ключевые слова: разработка мобильных приложений; кроссплатформенность; Xamarin.Forms; Android; iOS; UWP;
NET; C#; MVVM

	UDK 004.42: 004.51
	Introduction
	Conclusion

	References
	КРОСПЛАТФОРМОВА ПРАКТИКА РОЗРОБКИ МОБІЛЬНИХ
	ДОДАТКІВ ДЛЯ АВТОМАТИЗОВАНОГО
	ТОРГІВЕЛЬНОГО ОБЛІКУ
	КРОССПЛАТФОРМЕННАЯ ПРАКТИКА РАЗРАБОТКИ МОБИЛЬНЫХ
	ПРИЛОЖЕНИЙ ДЛЯ АВТОМАТИЗИРОВАННОГО
	ТОРГОВОГО УЧЁТА

