2018; Vol.1 No.1: 22-32
DOI: https://doi.org/10.15276/aait.01.2018.2

Applied Aspects of Information Technology
Design of Information Technology and Systems

UDK 004.42: 004.51

Ihor A. Kravchenko', Department of Computerized Control Systems, E-mail: 10@gmail.com,

ORCID: 0000-0003-1751-6049, Odessa, Ukraine

Viktor O. Speranskyy', Candidate of Technical Sciences, Associate Professor, Associate Professor at the
Department of Computerized Control Systems, E-mail: speranskiyva@ukr.net, ORCID: 0000-0002-8042-
1790, Odessa, Ukraine

'Odessa National Polytechnic University, Shevchenko ave., 1, Odessa, Ukraine

CROSS-PLATFORM PRACTICES FOR MOBILE APPLICATION DEVELOPMENT OF AU-
TOMATED TRADE ACCOUNTING

Abstract. The problem of single application development that can work in widely used modern mobile platforms (Android and iOS) is
dicussed. Current situation in building of crossplatform applicatioons is studied. The choise of appropriate development tools has been ex-
plained. The basic principles and rules of design and development of crossplatform mobile applications using chosen Xamarin.Forms tech-
nology has been described. The paper consists of two parts. The first part describes purposes and benefits of used Xamarin.Forms crossplat-
form technology and contains technical requirements. The Xamarin.Forms technology using with C# object oriented programming language.
The second part describes the best practices of using this technology in current project: MVVVM pattern definition for deviopement using best
style OOP; C# asynchoronous programming for creating comfortable and fast for use application; custom controls creating used in current
project for best Ul experience; using platformspecific code with DependencyService; customization of standard controls with Renderers;
final application optimization to reach maximum performance and minimum battery consumption at a time (results of battery time optimiza-
tion are presented). Finally, studied and written about using of new features of Xamarin.Forms by big developers’ community. Examples of
software code and application screenshots used in application are given. The work shows the stages of the development of the mobile busi-
ness application modules, which is already used in commercial product; all of the given examples are thoroughly tested during the develop-
ment process and in real work, that allowed to make conclusions about best practices. The use of the developed sowftware allowed increas-
ing the efficiency of trade accounting due to decreasing of monctonous operations quantity and as a result, the decreasing of errors in staff

work, that already gave opportunity for money economy.

Keywords: mobile applications developing; crossplatform; Xamarin.Forms; Android; iOS; UWP; .NET; C#; MVVM

Introduction

Problem statement. Before software
development developers already know which
devices and operating systems they will create a
software product for. Nowadays, the most popular
devices for today's business applications are
personal computers, smartphones and tablets. Three
most commonly used operating systems for personal
computers are: Windows, Linux, macOS. For mobile
devices are Android and iOS.

Current situation in building of crossplatform
applicatioons is studied in [1; 14; 15]. The principle
of abstracting a graphical interface in many cases
solves the problem of cross-platform, but not
always. Crossplatform application is not a single
application for different platforms, but a single code
base in different applications. And here it becomes
very important to correctly build the architecture of
the application, namely, the maximum separation of
the interface and logical parts.

There is another option that is called hybrid
applications that use web technologies rather than
native development. The result is a web application
that runs in a wrapper and is served not as a web
page, but as a separate application requiring
installation and having a separate icon. Hybrid
solutions are quite popular due to the fact that the

© I. A. Kravchenko; V. O. Speranskyy; 2018

22 Systems analysis, applied information systems and technologies

function of the web browser can handle virtually any
mobile OS, which means if the application is already
running under any mobile OS, then launch it to
another will not work. Nevertheless, the use of such
an approach does not allow for the high speed of the
final development.The paper also includes UWP
(Universal Windows Platform), which is not an
operating system but is just a platform for the creation
and run engaging and immersive applications that
work across a wide variety of the Windows 10 device
families. The API is implemented in C++ and is
supported in VB.NET, C#, F#, and JavaScri

Typically, most software products are released
immediately for multiple operating systems to reach
larger audience of users. But at the same time, the
price and development time are growing. So the
problem is a to develop single application that can
work everywhere with minimum of additional
afterwork. In order to minimize and synthesize code
writing for several operating systems, the
crossplatform technologies for software
development are used.

The aim of this work is to show the use of
crossplatform technology Xamarin.Forms that was
chosen due to convenient development tools and
good performance of ready-made applications to
automate the trade accounting with use of
crossplatform application.

ISSN 2617-4316 (Print)

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0 /deed.uk)

Applied Aspects of Information Technology

2018; Vol.1 No.1: 22-32

Design of Information Technology and Systems

Main part

There is a key difference between iOS and
Android in terms of application execution — a way to
precompile them. The Dalvik java virtual machine
and Just-in-time compilation (on-the-fly compilation)
are used to run applications on Android. The iOS uses
Ahead-of-Time (compile before execution) for this.
The difference is shown in Fig.1.

The Xamarin takes this distinction into account
by providing separate compilers for each of these
platforms which allows getting native applications
that run outside the context of the browser and can
use all the hardware and software resources of the
platform.

The simplest way is to use Visual Studio 2017
development environment to develop using the
Xamarin.Forms technology but it is need to activate
Business or Enterprise licence that costs $999 or
$1899 respectivly. The development of presented
project is carried out using the C# programming
language. However, it is possible to add projects
written using the VB.NET programming language.
For professional development of mobile applications
it is needed to understand well the principles of
object-oriented programming.

ARM

AR Distribution

Runs
Natively

218 Distribution

L
+
JT

Runs
Natively

Fig. 1. Template and code sharing

Current work is created as Cross-Platform pro-
ject in Visual Studio 2017 using the template of Mo-
bile App (Xamarin.Forms) project of the Visual C#.
Master Detail form pattern means that an application
includes a page with a side menu. Typically, the
Blank App is used, that is, a blank project that con-
tains only the most essential components. In most
cases, it is more convenient for developers to create
blank projects to add only what they really need.

A list of platforms determines whether some
platforms will be included in the project; you need to
choose the platforms for which the application de-
velopment is planned. It is better to choose every-
thing: nothing will change if some platforms are not
used at all.

ISSN 2617-4316 (Print)

Systems analysis, applied information systems and technologies

The point that will affect further development is
the code sharing strategy. To understand better what to
choose, first consider the components of the project.

All projects created in Visual Studio have a So-
lution file (with a sIn extension), and the project file
itself (with the extension csproj, if the language is C
#, or vbproj if the language is VB.NET). The project
file contains a list of files used in the project: for
example, folders, program code files, images, class
diagrams, and more. However, sometimes one pro-
ject is not enough. Therefore, file-based solutions
are included that contain links to one or more pro-
jects. In addition, projects may have links to each
other within a single solution. For a Xamarin.Forms
project, a solution will be created for four several
projects at the same time (Fig. 2).

@ Solution TestApp' (4 projects)
TestApp

[{] TestApp.Android

[#] TestApp.iOS

TestApp.UWP (Universal Windows)

P
P
P
P

Fig. 2. Solution with projects

The TestApp project is a common project
where most of the code is created. Other projects are
created for each platform, where use of special code
can be specified, inherent only on a separate plat-
form. A project shown with bold text is used as a
startup project and it can be changed to another type
needed to run the application in another platform.

Considering the code distribution strategies,
.NET Standard is a list of specifications to ensure
the universality of libraries [2]. Because of this, the
same libraries in different environments can be used,
ensuring that these libraries meet the needs of. NET
Standard. During compilation, a DLL-library is cre-
ated for a general project that can be used anywhere,
in this case, it uses a separate platform.

Shared Projects works differently: in each pro-
ject that corresponds to the platform, there is a com-
mon project code. No libraries are created during
compilation for the general project and the general
code is packed together with the platform project.

That is, NET Standard uses the common code
separately from the project platform, and Shared Pro-
jects uses the generic code inside the project platform.

For developers this means that Shared Projects
allows you to use the compiler directives (for exam-
ple, #if _ ANDROID_) and use links to the librar-
ies of individual platforms in a general code that is
not possible for .NET Standard. However, .NET
Standard makes universal code more versatile, and
the Dependency Service is used to call the code im-
plemented separately for each platform.

23

Applied Aspects of Information Technology

2018; Vol.1 No.1: 22-32

Design of Information Technology and Systems

In any case, it is better to use .NET Standard —
this will make the code universally available and
allow the use of other libraries that support .NET
Standard.

1. Components of the project

In Xamarin.Forms, objects that are situated on
the device screen are called visual elements. They
are split into three categories:

— page;

— layout;

— view.

Page is a visual element that occupies the entire
screen of the device (or a large part of it). A mobile
app can have one or more pages. A user can navigate
from one page to another, for this there is a mecha-
nism for navigating between pages in the project.
Pages may vary, depending on the display and inter-
action with the user.

Layout (template) is a template that brings up
the views of the page. There are various markups,
for example, you can arrange items using the
Grid markup, which allows them to be placed as a
grid, or using the StackLayout layout that places
elements one after the other.

View is the element used to display data and in-
teract with the user. For example, a button, an input
field, a label with a text, a switch and other items.

Therefore, we can say that the page contains a
layout that contains a view. There are some features:
the page cannot contain a view directly, it must nec-
essarily have in itself only one layout. However, the
layout may have other layouts that also contain one
Or more views.

Developer can create a visual interface in a pro-
gram code or in XAML-files [3]. It is recommended
to do this in XAML files, so the program code will
be cleaner. In addition, in XAML-files developer
can specify the properties of the objects that provide
the data to display to the user.

2. Use of MVVM design pattern

In modern programming, it is important to be
able to divide the code describing the Ul from code
with business logic. To do this, many design tem-
plates were created for developers. The recommend-
ed design template for Xamarin.Forms is MVVM
[4-5].

MVVM (Model — View — ViewModel) is a de-
sign template that uses the properties of objects to
provide data to the elements of the interface. It con-
sists of three parts:

1) View is a visual element that displays user
data.

24 Systems analysis, applied information systems and technologies

2) Model — a data model that retains some kind
of data.

3) ViewModel — a class that collects data from
a model and provides them with a visual element
using a special mechanism called Binding.

The main feature of MVVM is that Binding can
work in both directions: to take data from a model
into a visual element, and vice versa — to take data
from a visual element into a model, or in both direc-
tions at the same time.

For example, there is a counter-agent edit page
where the user can fill out his data. For this page,
you need to create a ViewModel that contains a ref-
erence to an instance of the ContractorProxy class
(contr-agent) that contains the necessary properties
(name, email, comment, etc.).

As a Model we use data the ContractorProxy
class:

Public Class ContractorProxy
Private _PointName As String
Public Property PointName As String

Get
Return _PointName
End Get
Set(ByVal value As String)
_PointName = value
End Set
End Property

End Class

As a ViewModel using class ContractorEditor-
ViewModel:

public class ContractorEditorViewModel

{

private ContractorProxy _card,;
public ContractorProxy Card

{
get{return _card;}

public string Name
{
get { return this.Card?.PointName; }
set { if (this.Card?.PointName!= value)
{
this.Card.PointName = value;
this.OnPropertyChanged(nameof(Na
me));

}
}
}
In order to notify the page that the data has

changed and new data has been displayed to the us-
er, developer need to implement the INotifyProper-
tyChanged interface in ViewModel and add the fol-
lowing code:

ISSN 2617-4316 (Print)

Applied Aspects of Information Technology

2018; Vol.1 No.1: 22-32

Design of Information Technology and Systems

public event PropertyChangedEventHandler Proper-
tyChanged;

protected void OnPropertChanged ([Caller-

MemberName] string propertyName = ""){

var changed = PropertyChanged;
if (changed == null)

return;
changed.Invoke(this, new Property-

ChangedEventArgs(propertyName));

}

The above program code generates a changed
event (with a property name parameter whose value
needs to be read), which will be somewhere “heard”
and the visual element that “looks” on the property
with that name, should read the value of this proper-
ty. But to do this, you need to call the OnProperty-
Changed method.

Now we can create a ContractorEditorPage
page that contains the necessary visual elements.

public partial class ContractorEditorPage : Con-

tentPage

{

private ContractorEditorViewModel
_viewModel,

public ContractorEditorPage()
{
InitializeComponent();
_viewModel = new ContractorEditor-
ViewModel();
this.BindingContext = _viewModel,
}

}

In the program code written above, the
_viewModel object is created and assigned the Bind-
ingContext properties of the page. Now you can set
the properties of the visual properties of a View-
Model property in the XAML of this page:

<Entry Text="{Binding Name}”/>

Now when the user puts the text in the field, the
Name property in ViewModel will be automatically
updated, and with it will be updated the Model itself,
which is expressed by the Card property in View-
Model.

From this, we can draw the following conclu-
sions: ViewModel provides data for View. View has
a link to ViewModel, and ViewModel has a link to
Model. However, Model does not know about
ViewModel, just as if ViewModel knows nothing
about who uses its data. Code can link directly to
Model. However, this issue occurs only for small
code examples: in this case, it is impossible to see
the whole “tragedy” of mixing the code page with
the code of business logic. The bigger the project the
bigger the price of the error. The answer is, for ex-

ISSN 2617-4316 (Print)

Systems analysis, applied information systems and technologies

ample, other tablets can be used for tablets, which
describes a more responsive interface on the big
screen. In addition, the data will be used the same.
That is, it is more profitable to allocate the program
code that provides data to another class so that it can
then be used elsewhere. Therefore, experienced de-
velopers always share the programmatic code of the
visual interface from the program code of the busi-
ness logic of the project: it provides the universality
of the code and its reliability.

However, if a model class contains a large
number of properties it is not necessary for each
such property to create a wrapper property in
ViewModel. Use the wrapper property (in this ex-
ample, the Name property) when it is necessary to
somehow prepare the data for the interfaces (for ex-
ample, before the name of the counterpart, add the
word “Name”). In this case, XAML can write:

<Entry Text = “{Binding Card.PointName}” />

Thus, the property of the Card located in
ViewModel will find the PointName property whose
value will be displayed in the input field.

Taking into account all of the above, one can
formulate the pros and cons of this design template.

Pros:

— ensuring the reliability and universality of the
code;

— Automatic updating of properties in View-
Model after changing the properties of visual ele-
ments;

Cons:

— increasing of links quantity in the project;

— the imperfection of XAML due to the lack of
a checklist with the properties list in ViewModel.

It is worth noting that the given disadvantages
are non-significant and offset against the pros.

3. Using benefits of OOP

The most important thing in a modern program
is not the writing of software code, but the construc-
tion of a proper hierarchy of data models. The use of
OOP capabilities allows us to reduce the amount of
software code and its repeatability. Therefore, we
will apply the OOP for the typesetting.

In most cases, mobile applications contain a
large number of pages. In addition, for each page a
template must be created. Often, pages can be simi-
lar to each other in a functional way. Contractor edi-
tor, product editor, document editor; list of counter-
agents, list of goods items, list of documents. Same
things can be done in the basic functionality. To
begin, create a basic viewmodel, where we will add
a functionality for the INotifyPropertyChanged in-
terface (code above).

25

Applied Aspects of Information Technology

2018; Vol.1 No.1: 22-32

Design of Information Technology and Systems

public abstract class BaseViewModel
. INotifyPropertyChanged

bool _isBusy = false;
public bool IsBusy
{
get {return _isBusy; }
set {SetProperty(ref _isBusy, val-
ue);}
}

}
The IsBusy property is required to show the

loading animation when performing some kind of
action (downloading or sending data, etc.). Below
you will find out how to work with it.

Consider an example with a checklist for a page
with a list. For example, there is a page with a list of
goods. We need to download a list of items as soon
as the page is displayed on the screen. The page has
an OnAppearing method, which can describe any
actions that should occur as soon as the page is dis-
played on the screen. To begin, we will create a
look-up model.

public class GoodsRowL.istViewModel :

BaseViewModel{

public new ObservableCollection

<GoodsRowL istltemViewModel> Items

get { return (ObservableCollection

<GoodsRowL istltemViewMod-

el>)base.Items;

}

public virtual async Task<bool>

Loadltems()

{
this.IsBusy=true;
this.IsBusy=false;
}

}

Items — is a collection that will be added to the
list of loaded goods. The Loadltems method will
perform actions to load data from services and add
them to the Items collection. Now the page needs to
add a ListView item that is required to display a list
with data (this code will be omitted for visualiza-
tion) and call the method to load the data.

protected async override void OnAppearing()

{

base.OnAppearing();
await _viewModel.Loadltems();

}
Now when we go to this page, data will be
downloaded (Fig. 4).

26 Systems analysis, applied information systems and technologies

ol 100% M 17:44

nopatn Q

Toeapu

Tosapwn >

01_TECTOBASA rPYMNA

2

He npogoBsonbyi
Mponosonkuyi

AKUIT NopapyHkn
02_TECTOBASA IPYMMNA
AnKoronsHi Hanoi
TIOTIOHOBI BUpPOGK

MNueo

—_ — £
O 1J <

Fig. 4. Data loading

The boot animation connects by using the
ListView property of the IsRefreshing property via
Binding to the IsBusy property in the lookup model.

However, the pages with lists in the application
may be many. Therefore, we can allocate a common
functionality for lists to the upper level of the hierar-
chy, creating a ListViewModel class for that and
load the Loadltems method there.

protected abstract void Addltem(Object item);
protected abstract
Task<IEnumerable<object>> GetList-
FromDataSource();

protected abstract object Createltem(object
listltem);

public virtual async Task Loadltems()
{

this.IsBusy = true;

IEnumerable<object> serviceResult = await
GetListFromDataSource();

foreach(object proxyObiject in serviceRe-

sult)
this.Addltem(this.Createltem(proxyObj
ect));
}
this.IsBusy = false;
}
Now for each page on the list, you need to
create a lookup model, follow it from

ListViewModel, and implement abstract methods.
Thus, most of the functionality and code remain the
same, ensuring the versatility of the code and its

ISSN 2617-4316 (Print)

Applied Aspects of Information Technology

2018; Vol.1 No.1: 22-32

Design of Information Technology and Systems

suitability for change. If you want to add some
functionality to all pages with lists, then you can add
it to the ListViewModel class. But if you want to
expand the functionality only in some classes, you
can select a general code for them and put it on the
upper level of the abstraction.

4. Asynchronous programming in C#

The current development of applications re-
quires knowledge of asynchronous programming. It
is needed to create a responsive interface: that is,
long-term operations (downloading data from the
network or performing complex tasks) should not
block Ul-thread. The programming language C # for
such purposes provides handy tools in the form of
async and awaits operators [6]. It should be noted
that asynchrony does not mean multithreading. In-
deed, a long-term task can be performed in a sepa-
rate thread, but this is not required. For an example,
consider the code above to download data after the
page is displayed.
protected async override void OnAppearing()

{
base.OnAppearing();
await _viewModel.Loadltems();
DoSomething();

}

The await statement indicates that the execution
of the program will be suspended until the code after
the await operator is executed. The Loadltems
method will be launched in a separate thread (run it
in a separate thread decides the compiler, but usually
uses a separate thread), and when it is executed, the
program will continue its execution. In some cases,
if the next program code does not depend on the
outcome of the asynchronous operation, the compil-
er can continue the program execution. However, the
wait operator will be ignored if the word header does
not add the word async.

Thus, the program remains “sensitive” to interact
with the user.

The await method can be used only for those
methods returned by Task. Using void in the asyn-
chronous method is possible only for events, in other
cases it is not recommended (otherwise it will not be
possible to catch the exception).
public async Task LoadCount()

{
this.Count = await GetCountAsync();

}

But often the method should return some data.
To retrieve data, you must use the typed Task class.
public async Task<int> LoadCount()

{

int count = await GetCountAsync();

ISSN 2617-4316 (Print)

Systems analysis, applied information systems and technologies

return count;

¥

For any method, we can create an asynchronous
version of it. For example, there is an ordinary
GetCount method that returns int. How to return
from it the Task <int> to execute it in a separate
thread?

public async Task<int> GetCountAsync()
{

return await Task.Run(() => GetCount());

}

Another way:
public async Task<int> GetCountAsync()
{
return await Task.Factory.StartNew(() =>
GetCount());

The difference lies in the fact that in the second
case, we can use the additional parameters of
launching the method in a separate thread (in this
paper these details will be omitted).

Note: In the VB.NET programming language,
the same asynchronous mechanism is used but it is
based on the syntax of the language.

5. Creating custom visual elements

Because Xamarin.Forms combines all three
platforms, a small number of visual elements are
available from the start, that is, only those that are
present on all three platforms at once. However, de-
velopers have the ability to create their own visual
elements, and there are also many free user libraries
with visual components.

We can use the ContentView class [7] to create
our own visual element. To do this, we will create a
new element that follows from ContentView with
the XAML code. Consider an example of creating a
checkbox (let us call it Checker), this component is
not present in Xamarin.Forms. Instead, a Switch per-
forms the same functions as the classic checkbox
(check box), but has a slightly different interpreta-
tion. For example, the check box is “yes” or “no”,
while the switch is set to “on” or “off”, although for
the code it is true or false in any case.

So, adding a regular label (Label) to XAML.

<ContentView.Content>

<Grid RowSpacing="0" >
<Grid.RowDefinitions>
<RowDefinition />
</Grid.RowDefinitions>
<Label Grid.Row="0" x:Name="IconLabel"

FontSize="32" HorizontalOptions="Center"

VerticalTextAlignment="Center" VerticalOp-

tions="Center">

<Label.GestureRecognizers>

27

Applied Aspects of Information Technology

2018; Vol.1 No.1: 22-32

Design of Information Technology and Systems

<TapGestureRecognizer

Tapped="0OnCheckTapped"/>

</Label.GestureRecognizers>

</Label>

</Grid>
</ContentView.Content>
In the code of the visual element, the following
is added:
public static readonly BindableProperty Is-
SelectedProperty = BindableProper-
ty.Create(nameof(lsSelected), typeof(bool),
typeof(Checker), false, Binding-

Mode. TwoWay, propertyChanged: Onls-
SelectedPropertyChanged);

public bool IsSelected

{

get {return

(bool)GetValue(lsSelectedProperty); }

set {

SetValue(lsSelectedProperty, value); }}
private static void OnlsSelectedProperty

Changed(BindableObject bindable, object

oldvalue, object newvalue){

if (!(bindable is Checker selector))

return;

selector.Setlcon((bool)newvalue);

}

Property IsSelected will be used to indicate the
status of the checkbox. The IsSelectedProperty
property has a BindableProperty type that allows us
to use the IsSelected property for the Binding mech-
anism. When we create it, we must specify the name
and type of the property that changes-Xia, its default
value, the Binding mode, and the method to be
called when changing the property value. The Onls-
SelectedPropertyChanged method changes the icon
depending on the state of the property. To do this,
use the so-called icon fonts (for example, FontAwe-
some), which in fact are fonts, but display the text as
an image. Add another important OnCheckTapped
method, which will be called after clicking on the
icon.

This method changes the value of the IsSelected
property to the opposite; in the property, the set will
be called, where a new value for IsSelectedProperty
will be called, which, in turn, will call the Onls-
SelectedPropertyChanged method, which will
change the image for the icon. This way, the user
will see that the check mark has been flagged.

Using the Checker element looks like this:

<views:Checker IsSelected="{Binding Is-
Selected}”/>

We can also add other properties, such as color,
size, and more.

28 Systems analysis, applied information systems and technologies

That is, we must use BindableProperty to write
our own visual elements. This allows us to “look” at
the property of the element through the Binding
mechanism, which is not contrary to the require-
ments of MVVM.

6. Using platform-dependent code

All three platforms are different between co-
bundles, so Xamarin. Forms's “out of the box” can-
not cover all the required functionality. However,
developers have the opportunity to “get” specific
data from a specific platform or perform some ac-
tions on their own. To do this, there is a Dependen-
cyService mechanism [9]. Let us consider it on an
example of receiving the serial number of the de-
vice. Device serial number is a unique ID that can be
used for various purposes, such as adding a device to
a list of trusted user devices.

First, the IDevice interface was created (in the
C# programming language there is a rule called in-
terfaces with letter I).

public interface IDevice

{
string DeviceSerialNumber { get; }

}

Now each platform project needs to implement
this interface. Let us start with android.

[assembly: Dependency

(typeof(TcuClientStandard.Droid.Helpers.Devi

ce))l

namespace TcuClientStandard.Droid.Helpers

{

public class Device : IDevice

{

public string DeviceSerialNumber

{
get { return Android.OS.Build.Serial; }}

1}

Above the namespace, it is needed to specify an
attribute that in this class will be used for Dependen-
cyService. So, it will be seen from the general pro-
ject during execution.

The same code will be for iOS:

[assembly: Dependency
(typeof(TcuClientStandard.iOS.Helpers.Devic
e))]

namespace TcuClientStandard.iOS.Helpers

public class Device : IDevice{
public string DeviceSerialNumber

{
get { return UIK-

it.UIDevice.CurrentDevice.ldentifierForVend
or.AsString(); }

}

ISSN 2617-4316 (Print)

Applied Aspects of Information Technology

2018; Vol.1 No.1: 22-32

Design of Information Technology and Systems

i

Now we can use the platform-dependent code
in the general project:
public static string DeviceSerialNumber{
get {
return DependencyService.
Get<IDevice>().DeviceSerialNumber;
1}
Thus, the same functionality in each platform is
implemented in its own way, and then used in the
general project.

7. Customizing visual elements with renders

Sometimes situations arise when we need to
change the appearance of standard items or add a
new functionality that is only on a separate platform.
For this, there is a mechanism for ExportRenderer
[10]. Consider using it as an example of extending
the function of the standard Label. This was per-
formed to add the ability to display the underlined
text.

For this, an ExtendedLabel class was created
that is inherited from Label, and the IsUnderline
property using BindableProperty.
public static readonly BindableProperty IsUnder-
lineProperty = BindableProper-
ty.Create(“IsUnderline”, typeof(bool),
typeof(ExtendedLabel), false, Binding-
Mode.OneWay);
public bool IsUnderline
{ get{ return (bool)GetValue(IsUnderlineProperty);
}

set{
SetValue(lsUnderlineProperty, value);

3

Now add the ExtendedLabelRenderer to the
Android project, which is inherited from LabelRen-
derer. In order to change the functionality of an ele-
ment, we need to redefine the OnElementChanged
method. This method will be called once when creat-
ing a visual element.
protected override void OnElement-
Changed(ElementChangedEventArgs<Label> e){
base.OnElementChanged(e);
var view = (ExtendedLabel)Element;
var control = Control;
UpdateUi(view, control);

}

In the renderer classes, there are two main
properties: Element and Control. Element means the
visual element used in Xamarin.Forms. Control is a
visual element of the platform. That is, in this case
Element is ExtendedLabel, and Control is an android
textView element.

ISSN 2617-4316 (Print)

Next will be called the UpdateUi method,
which will make the text highlighted if the desired
property is enabled.
private static void UpdateUi(ExtendedLabel view,
TextView control)

if (view.IsUnderline)

control.PaintFlags = control.PaintFlags |
PaintFlags.UnderlineText;

3
But in order to allow the underscore to be “on
the fly”, we need to redefine the OnElementProper-
tyChanged method, which will be used to change
any visual properties of the Xamarin.Forms proper-
ty.
protected override void OnElementProperty-
Changed(object sender, PropertyChangedEventArgs
e){
base.OnElementPropertyChanged(sender, €);
var view = (ExtendedLabel)Element;
if (e.PropertyName == Extended-
Label.IsUnderlineProperty.PropertyName)
{
Control.PaintFlags = view.IsUnderline ? Con-
trol.PaintFlags | PaintFlags.UnderlineText : Con-
trol.PaintFlags &= ~PaintFlags.UnderlineText;

1

Now, in order for a custom renderer to work,
you need to put the ExportRenderer attribute above
the namespace.

[assembly:

ExportRenderer(typeof(ExtendedLabel),

typeof(ExtendedLabelRenderer))]

The first parameter means for which visual el-
ement the renderer will be used, and the second pa-
rameter indicates which renderer will be used.

The use of Extended-Label with underline in the
fields “Customer” and “Avrticle” is shown in Fig. 5.

8. Performance and battery time optimization

Weak place for mobile apps (especially on An-
droid) is ListView. Wrong work with lists can cause
fading during scrolling. This is because the applica-
tion performs a lot of work in the main thread, which
results in framerate (the number of frames per sec-
ond). To optimize the work of lists in Xama-
rin.Forms, caching elements is used [11].

That is, when scrolling, the same visual ele-
ments are used, only the data that is displayed to the
user is changed. To enable this option, you need to
set CashingStrategy = “RecycleElement” for
ListView [12].

Here are some more tips:

— use the same height for the cells;

Systems analysis, applied information systems and technologies 29

Applied Aspects of Information Technology

2018; Vol.1 No.1: 22-32

Design of Information Technology and Systems

— use AbsoluteLayout, RelativeLayout, Grid
with a fixed-size line instead of StackLayout;

—avoid a complex investment of some elements
to others;

— avoid using a large number of items: for ex-
ample, Label can use the FormattedString property
instead of a large number of labels;

— if pictures are used in the list, they should be
downloaded asynchronously, using the
OnltemAppearing event in the list;

— if standard images are used in the Image
class, it is advisable to use the same ImageSource
property for identical images, thus, one source will
be used for all images, which will greatly save
memory.

Y =.1100% 8 13:28 @ . 100% 81323

= 3aMOBNEeHHA Bif NOKynua = 3amoBneHHs Bif NoKynus

BATANBHI TOBAPH nacymKm 3ArANBHI TOBAPK NIACYMKHA

N2 nokymenTy N2 foKymenTy

Id pokymenTy Id pokymeHTy
Nigposgin Nigpoagin

Status Status

Mokyneus Mokyneys
Po3npibHuii nokyneub HatucHiTb ans Bu6opy

Crarma Cratra

KACA HatucHiTh ans suéopy
Date of create Date of create
25.10.2018 25.10.2018

Natanfinnmmue

= i < O i <

NataNfAnnrnue

Fig. 5. Result of custom renderers using

For diagnostics, we can use some features in the
developer's parameters [13].

An important diagnostic feature is the
“Graphics Processor Profile”. You can use Android
Device Monitor to investigate which process blocks
the Ul stream (Fig. 6).

[} X
Systrace (Android System Trace)

Settings to use while capturing system level trace

Destination File: | [\ UsershigorkiDocumentsitrace. html Browse...

Trace duration (seconds): | 5 |

Trace Buffer Size (kb): | 2048 |

Enable Application Traces from: | None ~

Fig. 6. Frame capturing settings

This program has the capture capability of the
device. When you click the “Capture system wide
trace using Android systrace” button, you must set
the capture time (usually 5 seconds). After clicking
“OK” you should immediately start to scroll the list
on the device within the specified time. When you
open the trace.html file, you can see which frames

took more time than allowed for comfortable percep-
tion. Such frames occupy more space on the sched-
ule. By clicking on the frame, you can see which
task was performed at that time.

Another diagnostic feature used is the option
“Adjust GPU overlay” that shows the degree of
nesting of visual elements (Fig. 7).

= Tosapu

Tosapu 1 Kypka »» M'sico Kypka oxonogxena

__, [ediHka kypsua dac cKiH. yn.
0,6 Kr. OXON.

LliHa npoaaxy 77,00 USD Kinekicte 0 wr
LLnyHKu Kypsidi pac CKiH. yn.

0,6 KT OXON.
Lisa npogaxy 85,00 USD KinokicTe 0 wr

—.-l CepLie Kypaye oxos. hac. Bak.
H Uina npogaxy 0,01 USD Kinbkicte 0 wr

e~ Crerto kypsiye dpac CEC oxon.

0
Hl Uina npogaxy 0,01 USD Kinbkicte 0 kr

YsepTb TYLWKKU KypaYa 3aaHA

dac CEC oxon.

Uina npogaxy 0,01 USD Kinbkicte 0 kr

,—| Hixka Kypsaya dac CEC oxon.
H UiHa npoaaxy 0,01 USD Kinbkictb 0 kr

AOCOATU

= ToBapu nopatm Q

Tosapy »1 Kypka » m'sco Kypka oxonogena

Mevinka kypsva Hac ckiu. yn.
0,6 kr. oxon.

Uina npogaxy 77,00 USD Kinskicts 0 wr

Wnykku kypssi Pac ckix. yn.
0,6 kr. oxon.

Uina npopaxy 85,00 USD Kinsxicrs 0 wr

Cepue kypsue oxon. Pac. Bak.
Uina npopaxy 0,01 USD Kinsxiers 0 wr

Crerxo kypsiue fac CEC oxon.
Uina npopaxy 0,01 USD Kinskicts 0 xr

YsepTs Tywku Kypsaua sagHs
thac CEC oxon.
Uina npogaxy 0,01 USD Kinsxicrs 0 wr

Hixka kypsiua (ac CEC oxon.
Hina npopaxy 0,01 USD Kinskicts 0 xr

HWKHS YacT CrnuHKu Kyp-6p, H/ ¢ Huxua wact enunkm kyp-6p, H/d
oxon (dac cTpeiy sen yn) oxon (ac crpeiiy sen yn)
Uina npogaxy 0,01 USD KinbkicTs Uina npogaxy 0,01 USD Kinsxicts'
e ONTAFLIA IAALIA AVAR - Prnrism wmemiin mwme

Fig. 7. Elements overlay (little left, a lot of right)

Having the results of diagnostics written earlier,
the optimization of developed application were per-
formed. The optimization of application perfor-
mance and number of ambigious operations per-
fomed by staff using mobile device were studied.
The results of battery time for the same device be-
fore (blue color) and after (orange color) performing
all optimizations according to the level of screen
brightness are presented in Fig. 8.

2

t, hours
: /B
1

7 1
I_
50 25

Fig. 8. Battery time dependence at predefined screen
brightness level before (2) and after (1)
software optimization

6

&~

brightness,

100 80 %

30 Systems analysis, applied information systems and technologies

ISSN 2617-4316 (Print)

Applied Aspects of Information Technology

2018; Vol.1 No.1: 22-32

Design of Information Technology and Systems

Conclusion

Professional development of mobile
applications with Xamarin.Forms technology has
become more real than ever. The technology is
constantly updated, new features are added, more
and more users are joining the Xamarin developer
community. A lot of articles and recommendations
were created by collaborative efforts of developers,
answers to a lot of questions were provided in the
forums, and application setup became more
convenient. For those developers who just start
using Xamarin.Forms, you just need to find the best
practices and use them in your own projects. This
paper contains the answers for most urgent
questions: which design template to use, how to
work with the main technology links and how to
optimize the work with the graphical user interface.
The software optimization resulted 10-12% increase
of time using battery and speed of applicatin work at
the same device. The described work is the part of
the commercial project [16]. Its implementation

allowed to increase the efficiency of trade
accounting due to decreasing of the number of
monotonous operations and as a result the

decreasing of human factor in everyday work.
References

1. Kravchenko, I. A., & Speransky, V. O.
(2018), “Analysis of technologies for creating a cli-
ent application on mobile platforms Android and
iOS for trading accounting system for small and me-
dium businesss”, Information Sciences, Information
Systems and Technologies: Abstracts of the 15-th
All-Ukrainian Conference of Students and Young
Scientists. Odessa, Ukraine, April 27, 2018, pp. 48-
51.

2. Sharing code overview [Electronic Re-
source]. - Access Mode https
//docs.microsoft.com/en-us/xamarin/cross-
platform/app-fundamentals/code-sharing.

3. Markup Extensions for XAML Overview
[Electronic Resource]. — Access Mode https
//docs.microsoft.com/en-us/dotnet/framework/ xaml-
services/markup-extensions-for-xaml-overview.

4. From Data Bindings to MVVM. [Electronic
Resource]. — Access Mode https
//docs.microsoft.com/en-us/xamarin/xamarin-
forms/xaml/xaml-basics/data-bindings-to-mvvm.

5. Simple Activity Indicator: Xamarin Forums.
[Electronic Resource]. — Access Mode https
:/[forums.xamarin.com/discussion/comment/346268/
#Comment_346268.

ISSN 2617-4316 (Print)

6. Asynchronous programming with async and
await (C#) [Electronic Resource]. — Access Mode :
https://docs.microsoft.com/en-
us/dotnet/csharp/programming-
guide/concepts/async/,

7. Creating Custom Controls with Bindable
Properties in Xamarin.Forms [Electronic Resource].
— Access Mode : https://mindofai.github.io/Creating-
Custom-Controls-with-Bindable-Properties-in-
Xamarin.Forms/.

8. Xamarin Forms Pages Forms [Electronic
Resource]. - Access Mode
https://docs.microsoft.com/ru-ru/xamarin/xamarin-
forms/user-interface/controls/pages

9. Xamarin Forms Layouts Forms [Electronic
Resource]. - Access Mode
https://docs.microsoft.com/ru-ru/xamarin/xamarin-
forms/user-interface/controls/layouts,

10. Introduction to DependencyService [Elec-
tronic Resource]. — Access Mode
https://docs.microsoft.com/en-us/xamarin/xamarin-
forms/app-fundamentals/dependency-
service/introduction.

11. Xamarin. Forms Custom Renderers [Elec-
tronic Resource]. — Access Mode
https://docs.microsoft.com/en-us/xamarin/xamarin-
forms/app-fundamentals/custom-renderer/.

12. Optimizing Xamarin.Forms Apps for Maxi-
mum Performance [Electronic Resource]. — Access
Mode https://blog.xamarin.com/optimizing-
xamarin-forms-apps-for-maximum-performance/.

13. ListView Performance [Electronic
sourcel]. - Access Mode
https://docs.microsoft.com/en-us/xamarin/xamarin-
forms/user-interface/listview/performance.

14. Tips for Creating a Smooth and Fluid An-
droid Ul [Electronic Resource]. — Access Mode :
https //blog.xamarin.com/tips-for-creating-a-
smooth-and-fluid-android-ui/.

15. Xanthopoulos S., and Xinogalos S. (2013),
“A comparative analysis of cross-platform develop-
ment approaches for mobile applications”, Proceed-
ings of the 6-th Balkan Conference in Informatics,
ACM, pp. 213-220.

16. Trade Accounting [Electronic Resource]. —
Access Mode https://andriy.co/TCUMobile-
Siste-
ma_ucheta_mobilnoi_torgovli_i_distributsii_dlya K
PK .aspx

Re-

Received 10.12.2018

Systems analysis, applied information systems and technologies 31

Applied Aspects of Information Technology 2018; Vol.1 No.1: 22-32
Design of Information Technology and Systems

'Kpasuenko, Irop Anjpiiiosuu , kadeapu KoM IOTEPH30BAHAX CUCTEM yIIPABIIIHHS,

E-mail: 10@gmail.com, ORCID: 0000-0003-1751-6049, m. Onecca, Ykpauna

'Cnepancbkuii, BikTop OJleKcanapoBHY, KaHIUIAT TEXHIY. HAyK Kadeaph KOMIT IOTepPH30BAHUX
cucrem yrnpasminas, E-mail: speranskiyva@ukr.net, ORCID: 0000-0002-8042-1790, m. Onecca, Ykpaunna
'Onecckuit HaMOHANBLHEI MOTUTEXHUYECKHT YHEBEpcHTeT, Tp-T lleBuenko, 1, M. Onecca, 65044,
YkpanHa

KPOCIHVIAT®OPMOBA INTPAKTUKA PO3POBKHN MOBIJIBHUX
JOIATKIB IJIs1 ABTOMATHU30BAHOI'O
TOPI'IBEJIBHOTI'O OBJIIKY

Anoramisi. B poboti omicaHo OCHOBHI NPHHIOMIK Ta TNpaBWia ITPOEKTYBaHHS Ta PO3POOKH MOOUIBHHMX JOAATKIB, IO
BHKOPUCTOBYIOTh KpociuiaTgopmoBy TexHomorito Xamarin.Forms. OmnmncaHo OCHOBHI NPHHIMIM Ta TpaBWia HPOSKTYBAaHHS Ta
PO3pOOKH MOOUTBHHX JIOAATKIB, II0 BUKOPHUCTOBYIOTH INepexpecHy TexHoisoriro Xamarin.Forms. PoGora 6a3zyerbcs Ha po3poOii
MOOiTIbHOTO Gi3HEC-OaTKY, KU BXKe BUKOPHUCTOBYETHCS B KOMEPIiHHIH KOMITaHil, BCi HaBeJeHI NMPHUKIAIN TIEPEeBIPEeHO B peasbHIN
pobori. CraTTsi CKIagaeTbes 3 JBOX YacTHH. [lepiia yacTWHa OIMMCye LTI Ta IepeBard BHKOPHUCTOBYBAHOI TEXHOJOTIT
Xamarin.Forms i MmicTuTh TexHiuHi BHMoru. TexHonoriss Xamarin.Forms BHMarae BHKOpHCTaHHSI 00'€KTHO-OpPiEHTOBaHOTO
nporpamyBaHHsl B C#. Y apyriit 4acTHHI ONMUCYIOThCS HaWKpalll MPaKTHKA BUKOPHCTAHHS Ii€i TEXHOJOTI] B IIOTOYHOMY TP OCKTI:
BHU3Ha4YeHHs ImabimoHiB MVVM, acuHXpoHHe nporpamyBaHHs C#, CTBOpEHHS KOPHCTYBIBHHIIBKHX €JIEMEHTIB KepyBaHH,
BUKOPHCTaHHs Iu1aThopmosanexHoro koxy 3 DependencyService, HajalITyBaHHS CTAaHJIAPTHUX €JIEMEHTIB YNpPaBIiHHA 3
BUKOpUcTaHHsIM Renderers i onTuMizaliist mporpamMu Juisi MAaKCUMAaJIbHOI TPOAYKTHBHOCTI. ONUCaHO T0aBaHHS HOBUX MOMKIIMBOCTEH
no Xamarin.Forms Bemukoi cHiIBHOTH po3poOHMKIB. HaBeneHo mnpukimaad mNporpaMHOrO KOXy Ta CKPIHIIOTH MPOTrpaM.
Bukopucranns po3po0iieHOro IporpaMHoro 3abe3nedeHHst JO3BOIIO i IBHIIUTH e()eKTHBHICTh TOPrOBEIHHOTO O0IIIKY 328 paXyHOK
3MEHIICHHS KIIbKOCTI MOHOTOHHHX OIEpalliif i, IK HACIII0K, 3MEHIIHUTH KiJbKICTh TEXHIYHHX ITOMHJIOK Yy pOOOTI IepcoHay.

KuarouoBi ciioBa: po3pobka MOOITBHHX JOAATKIB; Kpocruiatgopmoricts; Xamarin.Forms; Android; los; UWP; .NET; C#;
MVVM

1KpaB‘leHK0, Hrops AngpeeBuu , KadeIpy KOMITBIOTEPU3MPOBAHHBIX CHCTEM yIpasierwst,E-mail:
10@gmail.com, ORCID: 0000-0003-1751-6049, r. Oznecca, Ykpauna

'Cnepanckuii, BUKTOp AJleKcAHAPOBMY, KAHINIAT TEXHAM. HayK Kaempbl KOMITBIOTEPU3UPOBAHHBIX
cucreM ynpasienusi,, E-mail: speranskiyva@ukr.net, ORCID: 0000-0002-8042-1790, r. Ozecca, Ykpanna
'Onecckuit HaOHATBHMI TOMUTEXHITYECKUIH yauBepcurer, np-T llleBuenko, 1, r. Onecca, 65044, Ykpanna

KPOCCIINTAT®OPMEHHASI IPAKTHKA PA3PABOTKH MOBHWJIBHBIX
MNNPUJIOKEHUU JISA ABTOMATHU3UPOBAHHOT' O
TOPIOBOI'O YYETA

Annoramus. OOcyxnaercs mpobieMa pa3pabOTKM €AMHOTO MPHIMKEHHUS, CIIOCOOHOro paboraTh Ha OOJBLIMHCTBE

COBPEMEHHBIX MOOWIBHBIX IUaTopM. B pabore omucaHbl OCHOBHBIC NPUHLMIBI M TpaBUia NPOSKTHPOBAHUS U Pa3pabOTKH
MOOWIIBHBIX MPUIOKEHH, UCTIONB3YIOMIMX KpoccIuiaThopMeHHyro TexHonoruio Xamarin.Forms. Onucansl OCHOBHBIC TPUHIHUIIBI U
[paBWJIa NPOSKTHUPOBAHMS M pPa3pabOTKM MOOMIBHBIX HPHIOKEHMH, HCIONB3YIOMUX KPOCCIUIATGOPMEHHYIO TEXHOIOIHIO
Xamarin.Forms.
Pabota 6a3upyercst Ha pa3paboTKe MOOMIBHOTO OU3HEC-TIPHIIOKEHHUS, KOTOPOE YXKE UCHONB3YeTCsl B KOMMEPUECKOH KOMIIaHHH, BCE
NPUBE/ICHHbIE MPHMEPBl MPOBEPEHO B peanbHOW pabore. CTaThsi COCTOMT M3 JBYX dacTed. [lepBas yacTb OMKCHIBACT LEIHM U
MPEeUMYIIECTBA HCIONb3yeMOi TexHomornu Xamarin.Forms u comepxut TexuHudeckue tpeboBanus. Texxomorust Xamarin.Forms
TpeOyeT HCIONb30BaHus OObEKTHO-OPUEHTHPOBAHHOIO MporpammupoBanus B C#. Bo BTOpoll 4acTH ONMCHIBAIOTCS JIydIlHe
MPAaKTHKA WCIONB30BaHMs JTOM TEXHOJNOTMH B TEKYIIeM MpOeKTe: ompeaeneHue madbionoB MVVM, acuHXpoHHOE
nporpamMupoBanre B C#, co3laHue MONB30BATENbCKUX 3JIEMEHTOB YHNPaBJICHUS, HCHOIB30BaHUS ILIAT()OPMO3aBUCHMOro Koja
ucnons3ys DependencyService, HaCTPOHKH CTaHIAPTHBIX JIEMEHTOB YIPAaBICHHs C MCHOJIb30BaHMEM Renderers W onTUMHU3aIus
MPOrpaMMbl JUIi MAaKCUMAJIbHOM MPOU3BOAUTENbHOCTH. OIMCAaHbl JOMOJHEHHS HOBBIX BO3MOXKHOCTEIl OONBLIOrO cOOOILIeCTBa
paspaborunkoB k Xamarin.Forms. [lpuBeneHsl mpumepsl TPOrpaMMHOrO KOAAa W CKPUHIIOTHL Tporpamm. lcmonp3oBaHme
pa3pabOTaHHOTO MPOrPaMMHOTO OOECIICHYEHHsI TO3BOJIIIO TOBBICUTh 3(PQPEKTHUBHOCTh TOPrOBOTO Y4eTa 3a CYET YMEHBIICHUS
KOJIMYIECTBA MOHOTOHHBIX ONEpPaIyii U, KaK CIEACTBHE, YMEHBIINTH KOJTHIECTBO TEXHNUECKUX OMIMOOK B paboTe mepcoHama.

KiaroueBble ciioBa: pa3paboTKa MOOWIBHBIX NPHIOKEHHUH; KpoccmaThopMeHHocTs; Xamarin.Forms; Android; iOS; UWP;
NET; C#, MVVM

32 Systems analysis, applied information systems and technologies ISSN 2617-4316 (Print)

	UDK 004.42: 004.51
	Introduction
	Conclusion

	References
	КРОСПЛАТФОРМОВА ПРАКТИКА РОЗРОБКИ МОБІЛЬНИХ
	ДОДАТКІВ ДЛЯ АВТОМАТИЗОВАНОГО
	ТОРГІВЕЛЬНОГО ОБЛІКУ
	КРОССПЛАТФОРМЕННАЯ ПРАКТИКА РАЗРАБОТКИ МОБИЛЬНЫХ
	ПРИЛОЖЕНИЙ ДЛЯ АВТОМАТИЗИРОВАННОГО
	ТОРГОВОГО УЧЁТА

