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ABSTRACT

This paper presents an approach to aircraft recognition using complex-valued neural networks. The objective of the article is to
study the effectiveness of complex-valued neural networks for aircraft identification tasks based on radar data, the efficiency
evaluated based on criteria such as classification accuracy, robustness to noise interference, the ability to maintain high accuracy with
limited training data, and an optimal trade-off between accuracy and computational complexity. The study focuses on aircraft
identification using phase and amplitude characteristics of radar signals, which are essential for aviation security and airspace
monitoring. The research method includes theoretical analysis, modeling, and experimental testing. The paper discusses the
architectural features of artificial neural networks that utilize complex numbers for signal processing. This approach enables the
incorporation of phase information, which significantly improves the accuracy of radar data analysis. The results confirm that
complex-valued neural networks surpass traditional models in recognition accuracy. Specifically, the inclusion of the phase
component provides an increase in accuracy by up to eight and a half percent. Additionally, complex-valued neural networks
demonstrate high resistance to noise interference, maintaining classification accuracy of up to ninety-two and three-tenths percent
even at a noise level of thirty percent. Despite these advantages, the primary limitation of complex-valued neural networks is their
higher computational complexity compared to real-valued models. This requires significant resources for training and
implementation, which can be a critical factor for applications where real-time signal processing speed is essential. The study also
explores optimization possibilities for artificial neural networks by developing hybrid approaches that combine the strengths of
different network types and by simplifying architectures without compromising accuracy. The findings indicate that artificial neural
networks are an effective tool for aircraft classification, particularly in complex signal environments and conditions with noise
interference. These networks have significant potential for widespread use in both military and civilian airspace monitoring systems,
providing enhanced accuracy and reliability in recognition tasks. The results obtained in this study open new opportunities for
advancing aviation security technologies and automating aircraft recognition systems.
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INTRODUTION demands for the efficiency of current aircraft
classification systems.

The novelty of this study lies in the
development of a neural network model for UAV
classification that incorporates not only amplitude
but also phase information from radar and acoustic
signals. This approach significantly improves
classification accuracy and robustness under
challenging conditions with high levels of noise.

Complex-valued neural networks, which use
complex numbers to represent weights, inputs, and
activations, offer an innovative approach to
processing radar signals. Due to their ability to work
effectively with phase information, they open up
new opportunities for identifying aircraft by their
unique radar characteristics [1].

The relevance of the research topic is due to the

Aircraft recognition is a key task in many
industries, including aviation security, defense
systems, and airspace monitoring. Modern radar
systems generate large amounts of data that require
highly accurate and fast processing. Traditional
approaches, including classical neural networks,
demonstrate limitations in the accuracy of data
analysis that have a phase nature or complex
amplitude-phase dependence.

An important scientific problem is the necessity
for accurate and reliable identification of low-
observable aircraft, particularly unmanned aerial
vehicles (UAVs), whose number in airspace is
rapidly  increasing. This poses  significant

© Korzhov S., Yesilevskyi V., 2025 growing number of objects in the airspace, among
which there are more and more inconspicuous

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

38 Computer science and software engineering ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)


https://doi.org/
https://orcid.org/0009-0005-7187-6039
mailto:serhii.korzhov@nure.ua
https://orcid.org/0000-0002-5935-1505
mailto:valentyn.yesilevskyi@nure.ua
https://doi.org/10.15276/aait

Korzhov S. O, Yesilevskyi V. S. /

Applied Aspects of Information Technology

2025; Vol. 8 No 1: 38-47

vehicles, such as drones. This places high demands
on the accuracy, speed, and adaptability of
recognition systems.

The objective of the article is to study the
effectiveness of complex-valued neural networks for
aircraft identification tasks based on radar data, the
efficiency evaluated based on criteria such as
classification accuracy, robustness to noise
interference, the ability to maintain high accuracy
with limited training data, and an optimal trade-off
between accuracy and computational complexity.
The main objectives are to analyze the theoretical
aspects of complex-valued neural networks
(CVNNSs), evaluate their advantages over traditional
networks, and conduct experimental modeling.

One of the most popular deep learning models
is convolutional neural network (CNN) [2], which is
used mainly in images processing.

The article provides an overview of the main
characteristics of complex-valued neural networks,
their architecture and applications in radar signal
processing. The  results of  experiments
demonstrating the feasibility of using CVNNs for
aircraft recognition are presented, and conclusions
about their practical significance are formulated.

LITERATURE REVIEW

Modern UAVs are widely used in various fields,
including the military, intelligence, tactical
surveillance, and cargo delivery. Given the growing
number of cases of use of strike and reconnaissance
UAVs, the development of effective systems for
their recognition and classification is becoming
critical. The use of such technologies is important to
ensure safety and efficiency in various scenarios, in
particular to maintain control over the airspace, as
well as to provide accurate data for real-time
decision-making.

The use of neural networks to solve the
problem of classifying UAVs by their acoustic
signature is of great interest to researchers. A study
presented in [3] developed an approach based on the
use of a convolution neural network to identify
aircraft types based on sound data. The study
demonstrates the effectiveness of such methods even
with a limited amount of training data, which
emphasizes the importance of high-quality dataset
preparation. Given that acoustic signatures can vary
depending on the type of UAV and environmental
conditions, the use of neural networks allows for
effective classification, even in difficult conditions.

Another study presented in [4] shows that
neural networks can be effectively used to cluster
attack UAVs. Using a neural network self-
organization map (NN SOM) type network for first-

person view (FPV) UAVs, the classification
accuracy was over 98%. The results indicate the
significant potential of using deep neural networks
to solve the problems of separating and classifying
group objects in real conditions, which is important
for surveillance and monitoring systems.

The study presented in [5] deals with improving
the course stability of UAVs in the absence of global
navigation satellite system (GNSS). The use of
additional sensors in combination with learning
algorithms minimized the error in determining the
course by 19.2 %. This confirms the potential of
artificial ~ intelligence to solve  autonomous
navigation problems in difficult conditions where the
use of traditional navigation systems is impossible
due to signal loss or interference.

The process of developing a technology for
automating the collection and filling of a training
data set for neural network recognition is considered
in [6]. In particular, the use of UAVs for collecting
aerial photographs, which have their own
characteristics due to low flight altitude and the
impact of vibrations, is investigated. The importance
of creating specialized data selection methods for
training neural networks that take into account these
specific UAV flight conditions is considered. The
study describes the creation of a software package
that includes the processes of image segmentation
and classification, followed by model retraining and
testing on new data. It is noted that the improvement
in the quality of classification after replenishing the
dataset with new segments was 6 %, which indicates
the effectiveness of methods for automating data
collection for neural network learning.

Despite  significant advances, the main
challenge remains ensuring high real-time
classification accuracy in a variety of acoustic
environments and the presence of noise. Indeed, in
real-world conditions, the sound signals received
from UAVs can be distorted by external factors such
as wind, other flying objects, or even weather
conditions, which greatly complicates the
classification task [7]. It is also necessary to take
into account the limitations of computing resources
inherent in autonomous systems operating in real
time. These constraints require optimization of
models and algorithms to ensure the accuracy and
speed of classification in a resource-constrained
environment.

The description of an object's image by its
contour is sufficient for the classification of airborne
objects and uses significantly less information
compared to deep neural network analysis. This
provides several advantages. Various methods of
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mathematical contour description are known [8],
including those for determining types of aircraft.

Among the promising areas of aircraft
recognition, approaches based on radar analysis and
the use of correlation algorithms attracts special
attention. The study in [9] considers a correlation
algorithm for radar recognition of airborne objects
by their long-range portraits. The main feature is the
radar range portrait obtained using high-resolution
sensing signals, and additional features are the
trajectory characteristic and rotary modulation.
Experiments for 20 types of aircraft have shown the
high efficiency of the algorithm, especially for
turbojets, propeller aircraft, helicopters, and
missiles.

Another study [10] concerns the detection of
small UAVs based on the electromagnetic spectrum.
The authors propose a combined approach to
detecting UAVS, which includes thermal imaging
cameras, optical video cameras, radar stations, and
radio monitoring systems. This approach can
significantly improve the efficiency of detecting
even low-visibility objects.

In this context, the use of CVNNs capable of
efficiently processing the phase and amplitude
characteristics of signals can play an important role.
The integration of CVNNs with correlation
algorithms and multispectral detection methods
could significantly improve the accuracy and
reliability of airborne object recognition in difficult
conditions.

Thus, further research should focus on the
integration of innovative signal processing
algorithms  with  modern  neural  network
technologies. This will not only improve existing
approaches to aircraft classification and detection,
but also lay the foundation for building new adaptive
systems capable of operating in real time and taking
into account various operating scenarios.

OBJECTIVE AND RESEARCH TASKS

CVNNSs are becoming an increasingly popular
tool for analyzing complex signals, such as radar and
acoustic signals, due to their unique ability to
process both amplitude and phase information.
Traditional real-valued models often ignore the
phase component of signals, which contains
important  information about the  structure,
characteristics, and features of the objects being
analyzed. This significantly limits the accuracy of
such models in tasks where phase characteristics
play a key role, such as aircraft recognitions.

The objective of the article is to study the
effectiveness of complex-valued neural networks for
aircraft identification tasks based on radar data, the

efficiency evaluated based on criteria such as
classification accuracy, robustness to noise
interference, the ability to maintain high accuracy
with limited training data, and an optimal trade-off
between accuracy and computational complexity.
One of the central tasks was to compare the
effectiveness of the CNN with traditional real-valued
networks, which would allow us to assess the
practical feasibility of their application. The study
involved several important stages, starting with the
design of the network architecture and ending with
its testing on signals with different noise levels.

The main advantage of CNNs is their ability to
store and process complex signals in a form that
includes both amplitude and phase. For example, for
radar systems, phase information allows determining
the direction, speed, and even the shape of an
aircraft with higher accuracy. Acoustic signals, in
turn, carry phase data that helps to better recognize
different types of engines or features of aircraft
mechanisms.

The activation function has the problem of
gradient vanish [11], which occurs in deep neural
networks. CNN also uses modified rectified linear
units (ReL.U) function to reduce this effect. With this
activation function, the gradient passes through these
layers without any alteration allowing the deep
models to be more reliable. It also reduces the
number of parameters to be updated in each
iteration, since it is a conditional function which
does not depend on any parameter, except for the
input to function [12].

In the study, the artificial neural network
(ANN) architecture consisted of several layers: the
input layer was adapted to receive complex signals,
the hidden layers used special activation functions
such as complex-valued ReL.U, and the output layer
performed the classification. The use of a modified
gradient descent algorithm made it possible to take
into account the specifics of complex numbers, in
particular their phase nature, which was important
for optimizing the learning process. Additionally,
regularization methods such as Dropout and L2-
regularization were used to prevent the model from
overfitting.

The results of the study demonstrated a
significant advantage of the ANN over traditional
networks. The accuracy of aircraft classification in
the ANNs reached 95.6 %, while in the really
significant models this figure was 87.9 %. This
confirms that phase information, which can only be
processed by CNNs, plays a crucial role in
recognition tasks. Particularly important was the
ability of the CNNs to maintain classification
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accuracy even in the face of noise interference: the
accuracy remained at 92.3 % with a noise level of
30%, while the truly significant models showed a
decrease to 78.5 %.

However, despite their advantages, ANNs also
have certain limitations. Their computational
complexity is a significant problem, as processing
complex numbers requires more resources and time.
This can be critical in scenarios where high speed of
operation is required, such as in airspace operational
monitoring systems. Therefore, one of the most
promising areas of development is to optimize the
architecture of ANNs, for example, by using hybrid
models that combine the advantages of real-valued
and complex-valued networks. This approach would
reduce computational costs while maintaining high
accuracy.

MATERIALS AND METHODS OF
RESEARCH

Considering modern works on the topic of
research, it is obvious that there are a large number
of CNN architectures, which provide a wide choice
for each application area. At the same time, most
studies provide only a general overview of neural
networks for localization and classification based on
common datasets. Note that there are no commonly
accepted datasets for which training and verification
must be performed. Therefore, the use of neural
networks for localization and classification in the
field of unmanned aerial vehicles requires a deeper
study of localization and  classification
accuracy [13].

To recognize aircraft using neural networks, we
chose CVNNs, which are capable of processing not
only amplitude but also phase information of signals
[14]. This is especially important for accurate
classification analysis, since a signal containing a
phase component provides more data for identifying
aircraft types, and complex numbers allow storing
this information.

Computer vision, and as an extension object
recognition, is often negatively affected by the
dynamics of real-world conditions such as bad
lighting conditions, blocked perspective scenarios,
or poor real-time performance.

The real-world vision scenarios were as
follows.

e Viewpoint variation: objects viewed from
different angles may look completely different,
making it challenging for detection algorithms to
recognize them from various perspectives.

e Deformation: Many objects are not rigid
bodies and can be deformed in extreme ways, adding
complexity to their detection.

e Occlusion: Objects that are partially or
completely covered by other objects can be
challenging to detect.

o Illumination Conditions: Variations in
lighting conditions can affect the performance of
object detection algorithms.

e Real-time detection: Real-time detection not
only requires fast algorithms but also fast
technologies in terms of networking and possibly
real-time processing, which can be challenging due
to technological limitations [15].

Considering modern works on the topic of
research, it is obvious that there are a large number of
CNN architectures, which provide a wide choice for
each application area. At the same time, most studies
provide only a general overview of neural networks
for localization and classification based on common
datasets. Note that there are no commonly accepted
datasets for which training and verification must be
performed. Therefore, the use of neural networks for
localization and classification in the field of
unmanned aerial vehicles requires a deeper study of
localization and classification accuracy [11].

The neural network architecture consists of an
input layer designed for processing complex signals,
several hidden layers for feature extraction, and an
output layer for classification. Specifically, the
standard CVNN architecture includes 5 hidden
layers with 128 neurons each, the simplified CVNN
architecture comprises 3 hidden layers with 64
neurons each, and the standard real-valued neural
network (RVNN) architecture mirrors the standard
CVNN, having 5 hidden layers with 128 neurons per
layer. The network uses specialized activation
functions adapted to work with complex numbers,
such as the complex-valued ReL. U, which allows for
efficient processing of such signals. The efficiency
of using complex-valued ReLU is evaluated based
on the following criteria: an increase in classification
accuracy due to phase information processing (up to
8.5%  improvement), robustness to  noise
(maintaining accuracy up to 92.3 % at a noise level
of 30 %), and optimization of the training process by
reducing the number of parameters updated. For
optimization, a modified version of standard
algorithms, such as gradient descent, is used, to find
the optimal parameters that maximize (or minimize)
the expected value of the cost function [16].

Two main types of signals were used to train
and test the model: radar and acoustic. Radar signals
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were obtained from real radar systems that record
reflected signals from aircraft, including unmanned
aerial vehicles. Acoustic signals, in turn, were
collected using microphones that recorded the
sounds of the engines of various aircraft.

Before being fed into the neural network, radar
and acoustic signals are transformed into complex-
valued vectors of fixed dimension. After
preprocessing steps (normalization and noise
filtering), each input signal is represented as a vector
containing 128 complex samples, capturing both
amplitude and phase information. Therefore, the
input dimension for each signal is 128 complex
numbers, which allows the model to correctly learn
and classify the signals. This ensured the high
quality of the network training. The data collected
included different types of aircraft, as well as
background noise that simulate the real-world
conditions in which the system will operate [17].

The network training process included several
stages. First, the optimal hyperparameters for the
network were selected, such as the size of mini
batches, the learning rate, and the number of training
epochs. The optimal hyperparameters for the neural
network were determined using the Grid Search
method, focusing on maximizing the classification
accuracy on the validation dataset and analyzing
learning curves.

The selected hyperparameter values are as
follows:

Batch size: 64.

e Learning rate: 0.001.

o Number of training epochs: 50.

e Optimization algorithm: Adam.

e Dropout rate: 0.2.

Then, the model was trained using optimization
algorithms such as Adam to minimize the loss
function. Regularization methods, such as Dropout
and L2 regularization, were applied to prevent
overfitting. After each training epoch, the network
was evaluated using metrics such as accuracy,
receiver operating characteristic — area under the
curve (ROC-AUC), and F1l-measure to understand
how well the model classifies aircraft [18].

After training, the model was tested on a
separate dataset to evaluate its ability to generalize,
i.e., to correctly classify new signals that were not
present during training. In addition, the model was
tested on signals with different noise levels to assess
its resistance to interference that may occur in real-
world conditions. These stages allowed us to check
how well the model copes with the tasks of aircraft
classification in noise and interference.

To process and analyze the results, we
compared the results obtained using complex-valued
neural networks and traditional real-valued models.
This made it possible to assess how the use of phase
information and complex numbers improves the
classification accuracy compared to other methods.

RESEARCH RESULTS

Classification accuracy

Table 1 shows a comparison of aircraft
classification accuracy between CVNNs and
traditional RVNNs. The results demonstrate a
significant advantage of the CNNs, which confirms
the effectiveness of using phase information in
classification tasks.

Table 1. Comparison of aircraft classification

accuracy
Model | Classification | Training time |Classification
type | accuracy (%) (hours) time (Ms)
CVNN 95.6 12 5.4
RVNN 87.9 9 4.1

Source: compiled by the authors

Analysis: The indicated training times (12 hours
for CVNN and 9 hours for RVNN) represent the
point at which the models achieve maximum
accuracy, beyond which additional epochs do not
significantly improve performance. As can be seen
from the table, complex-valued networks showed
7.7 % higher classification accuracy compared to
traditional real-valued networks. This result is
significant because it demonstrates the benefits of
taking into account phase information that cannot be
effectively processed by conventional models.
However, ANNs require more training time due to
the complexity of processing complex numbers,
although the classification time is slightly faster than
that of real-valued models.

Influence of phase information

Table 2 shows a comparison of the
classification results between models that use only
amplitude information and those that take into
account both amplitude and phase. The use of phase
information has led to a significant increase in
accuracy.

Table 2. Comparison of classification results
between models

Model Classification| Classification
accuracy (%) | time (ms)
Amplitude signals only 87.1 4.8
Amplitude + Phase 95.6 5.4

Source: compiled by the authors
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Analysis: The use of phase information further
improved the classification accuracy by 8.5 %. This
was made possible because the phase component of
the signal contains additional characteristics that
allow for more accurate recognition of aircraft types,
particularly in conditions where signals have similar
amplitude profiles. The additional classification time
is insignificant and does not affect real-world
application scenarios where the classification speed
remains within acceptable limits for operational
systems.

Resistance to noise

Table 3 compares the classification accuracy as
a function of noise level for complex-valued and
true-valued models. Testing was performed on
signals with different noise levels (10 %, 20 %,
30 %).

Table 3. Classification accuracy as a function

of noise level
Noise level (%) CVNN RVNN
10 98.2 91.4
20 95.1 85.7
30 92.3 78.5

Source: compiled by the authors

Analysis: Complex-valued neural networks
demonstrate higher robustness to noise at all noise
intensity levels. At a noise level of 10%, the CVNNs
achieved an accuracy of 98.2 %, while the RVNNs
showed a result of 91.4 %. As the noise level
increases, the accuracy of the CVNNs decreases, but
remains significantly higher than that of the ANNs.
This suggests that complex models have a better
ability to filter out noise, as phase information
provides additional markers that help maintain
classification in the face of noise.

Influence of dataset size on classification
accuracy

One of the important tasks was to evaluate how
the size of the training dataset affects the
performance of the CVNNs compared to the true
supervised models (TSMs). For this purpose, several
subsets of the dataset of different sizes were used:

25 %, 50 %, 75 %, and 100% of the total data set.

Table 4. Influence of training dataset size on
classification accuracy

Dataset size CVNN: RVNN:
(%) Accuracy (%) Accuracy (%)
25 84.2 76.8
50 89.5 82.1
75 93.1 85.6
100 95.6 87.9

Source: compiled by the authors

Analysis: The 100 % dataset size corresponds to
the full dataset containing 10,000 samples (signals).
As can be seen from the table, CVNNs demonstrate
higher accuracy in all cases regardless of the size of
the dataset. The difference between models remains
stable across various dataset sizes, reaching a
maximum (7.7 %) when using the full dataset
(100 %). However, even with a limited dataset
(25 %), the CVNN outperforms the RVNN by 7.4 %,
indicating the consistent advantage of the complex-
valued model. This indicates that complex models
make better use of the available information due to
the phase component of the signals. This feature is
critical in tasks where access to large amounts of
data is limited.

Training time for different architectures

Another aspect of the study was to compare the
time required to train models of different
architectures, including standard ANNSs, simplified
ANNs with fewer parameters, and multilayer neural
networks (MLNS). The results are shown in Table 5.

Table 5. Comparison of training time for
different architectures

Architectur | Training |Accura| Neurons | Number
e type time |cy (%) |per hidden| of
(hours) layer hidden
layers
CVNN 12 95.6 128 5
(standard)
CVNN 8.5 93.4 64 3
(simplified)
RVNN 9 87.9 128 5
(standard)

Source: compiled by the authors

Analysis: The standard architecture of the
CVNN requires more training time (12 hours) but
provides maximum classification accuracy (95.6%).
The simplified CVNN architecture contains fewer
parameters compared to the standard model.
Specifically, the number of hidden layers was
reduced from 5 to 3, and the number of neurons per
hidden layer decreased from 128 to 64. This
reduction significantly shortened the training time
while preserving high accuracy. This version allows
for a significant reduction in training time (by 3.5
hours) with a slight loss of accuracy (2.2 %). This
demonstrates the potential for further model
optimization. The real-valued models have an
advantage in training time, but their accuracy is
much lower, which limits their use in tasks requiring
high accuracy.
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General conclusions

Comparing the results of all five tables allows
us to make the following generalizations:

1. Accuracy: The ANNs significantly
outperform the traditional models in terms of
classification accuracy, especially in cases where the
use of phase information is critical.

2. Robustness: CNNs demonstrate higher
robustness to noise, maintaining accuracy even in
high noise environments.

3. Efficiency on small data: CNNs are more
efficient with small amounts of data, making them
suitable for resource-constrained applications.

4. Computational cost: Although CNNs require
more time for training, their accuracy justifies this
cost, and simplified versions of the models reduce
training time without significant loss of accuracy.

Thus, complex-valued neural networks are the
undisputed leader for aircraft classification tasks,
providing high accuracy, noise resistance, and the
ability to work efficiently with phase information.
This makes them a promising choice for integration
into modern airspace monitoring and object
recognition systems.

DISCUSSION OF RESULTS
Advantages of the approach

In conclusion, this paper provides an extensive
survey of CVNNSs, highlighting significant
advancements in their AFs and learning algorithms.
Despite the computational and implementation
challenges associated with CVNNs, their potential to
outperform RVNNs in various applications is
undeniable [19].

Phase information in signals, which contains
important characteristics about objects, such as
engine type or structural features of aircraft, gives
neural networks additional opportunities to more
accurately identify an object. This is especially
useful when dealing with radar signals, where the
amplitude response may be similar for different
aircraft, but their phase profiles differ significantly
[20].

Complex-valued neural networks have also
shown higher resistance to noise, which is an
important advantage in real-world applications. They
are able to work effectively with signals with high
noise levels while maintaining classification
accuracy, making them ideal for use in airspace

Limitations of the study

Despite its many advantages, the use of
complex-valued neural networks has certain
limitations. One of the main drawbacks is the higher
computational complexity of these networks
compared to traditional models. Processing complex
numbers requires more time and resources for
training, as well as more computing power for
classification [21]. This can be critical in scenarios
where high speed of real-time signal processing is
important, such as in rapid response systems or in
conditions where instant object identification is
required.

Another problem is the complexity of working
with large amounts of data. Although CNNs show
high accuracy, processing large arrays of signals can
be difficult due to the need for more complex
computations. This can be a problem for systems
that operate in real time, where the amount of data to
be processed can be very large, for example, in the
case of monitoring a large number of objects
simultaneously.

Opportunities for improvement

Given these limitations, there are several ways
to improve the architecture of complex-valued
neural networks. One of the most promising ways is
to develop hybrid approaches that combine the
advantages of both complex-valued and real-valued
models. This approach allows maintaining the
classification accuracy by taking into account phase
information, but at the same time reduces
computational costs by combining different types of
models to process different types of signals.

Another direction is to optimize the network
architecture to reduce its computational complexity.
This can be achieved through techniques such as
networks with fewer parameters or by using faster
learning algorithms that reduce the time required to
process data without losing accuracy. Such
optimizations will make these networks more
accessible for use in real-world systems where not
only accuracy but also efficiency is important.

You can also work on improving noise and
interference filtering algorithms. The use of more
sophisticated methods for signal processing at the
pre-processing stage can further reduce the impact of
interference, increasing the system's resistance to
external interference.

Possibilities of application in real systems

monitoring systems where signals are often The developed complex-valued neural networks

interfered with by other sources. have significant potential for use in real aircraft
recognition systems. Particularly relevant are their
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capabilities for use in military airspace monitoring
systems, where the accuracy and speed of object
identification are critical to security. Complex-
valued models can be effectively used to analyze
radar signals, which allows timely detection and
classification of different types of aircraft [22].

These networks can also be used in civilian
security systems, such as aviation monitoring, where
it is necessary to recognize aircraft and drones at a
great distance, even in difficult weather conditions
or in conditions of active interference from other
signal sources.

Complex-valued neural networks can be
integrated into autonomous monitoring systems to
ensure airspace safety, where accuracy and noise
immunity are important factors to maintain the
effective operation of such systems.

Thus, complex-valued neural networks show
high potential for application in real-world aircraft
recognition systems. They provide significantly
higher accuracy, noise tolerance, and can effectively
work with phase information of signals, making
them ideal for complex classification tasks.
However, to achieve optimal performance,
computational complexity and optimization issues
need to be addressed, which are key to their
implementation in real-world systems.

CONCLUSIONS

The conducted study confirms the effectiveness
of CVNNs for aircraft recognition tasks using radar
and acoustic signals.

Key results include:

Improved Accuracy: CVNNs demonstrated
significantly higher classification accuracy (95.6%)

compared to traditional real-valued neural networks
(87.9%), primarily due to the utilization of phase
information.

Robustness to Noise: CVNNs maintained high
accuracy (92.3 %) even at a noise level of 30%,
outperforming  real-valued  models  (78.5%),
highlighting their robustness in challenging signal
conditions.

Effectiveness with Limited Data: CVNNs
preserved high accuracy (84.2 %) even when trained
on only 25 % of the dataset, indicating their
efficiency in scenarios with limited training data.

Computational Complexity: Although CVNNs
require greater computational resources, simplified
architectures significantly reduced training time (by
approximately 30 %) without substantial loss in
accuracy (93.4 %), demonstrating potential for
practical real-time applications.

Overall, CVNNs present a reliable and robust
method for advanced aircraft classification, suitable
for integration into both civilian and military
airspace monitoring systems. Future research should
focus on computational optimizations and hybrid
network architectures to further enhance practical
applicability.
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AHOTAIIA

V crarTi npecTaBIeHo MiAXiA 10 pO3Mi3HABAHHS JiTATFHUX allapariB 3a JOIOMOTOI0 KOMIUICKCHO3HAYHHUX HEHPOHHHUX MEPEex.
Meroro 1BOro JOCHI/KEHHSI € BU3HAYCHHsS e(eKTHBHOCTI KOMIUICKCHO3HAYHHX HEHPOHHHMX MEpeX MOPIBHAHO 3 TpaJuliiHAMU
MAX0MaMK 10 po3Mi3HaBaHHA. JlOCHi/pkeHHS 30cepe/DKeHO Ha imeHTH(ikalii MOBITPSHUX CyIeH 3a JOMOMOrol (a3oBHX i
aMIUTITYJHAX XapaKTepUCTHK PaaioNOKAIIfHIX CHUTHANIB, SKi € BaOXIIMBAMH JUII aBiamiiiHoi Oe3NeKH Ta MOHITOPHHTY HOBITPSIHOTO
mpocTopy. MeTon HOCHIDKEHHsT BKIIFOYA€ TEOPETHYHMII aHalli3, MOIETIOBAaHHS Ta CKCIEPHMEHTAIbHY NepeBipky. Y CTarTi
00rOBOPIOIOTECS OCOONIMBOCTI apXiTEKTYpH IITYYHHUX HEHPOHHUX MEpex, sIKi BUKOPHCTOBYIOTb KOMIUIEKCHI 4MCIa i 00poOKu
curHaiiB. Takuii miaxin 103Bosse BKIIOYATH (ha3oBy iH(OpMAIito, 0 3HAYHO MMiIBUIIYE TOYHICTh aHAJi3y palioNOKaIliHHUX JTaHUX.
PesynsraTi miATBEpAXKYIOTh, IO KOMIUIEKCHO3HA4HI HEHPOHHI Mepeki NepeBepIIylOTh TPAAMLiHHI Momeni 3a TOYHICTIO
posmi3HaBaHHs. 30KpeMa, BKIIOUEHHsS (ha30BOi CKIIAIOBOI 3a0e3rnedye MiJBUIEHHS TOYHOCTI IO BOCBMH 3 IOJIOBUHOIO BiJICOTKIB.
KpiMm Toro, KOMIUIEKCHO3HAYHI HEHPOHHI Mepexi AeMOHCTPYIOTh BUCOKY CTIHKICTh 10 IIYMOBHX IEpELIKOJ, 30epiraroud TOYHICTh
Kinacudikamii 10 IeB’siHOCTa JBOX 1 TPbOX JECATHX BiJICOTKA HABITh NPH PiBHI LIyMy B TPUALATH BifCOTKiB. He3Baxaroum Ha 1ii
repeBaru, OCHOBHUM OOMEXEHHSIM KOMIUICKCHO3HAYHHUX HEHPOHHUX MEpEeX € iXHs BHIIA O0YHCIIOBAIbHA CKIIAHICTH MOPIBHIHO 3
peanbHO3HaYHUMU MozessiMu. lle BuMarae 3HauyHMX pecypciB Ul HaBYaHHSA Ta BIPOBA/DKEHHA, 110 MOXE OyTM KPUTHYHUM
(dakropoM I AOAATKIB, A€ IIBHIKICTh OOpOOKM CHTHAy B peajbHOMY 4Yaci € BaIMBOM. JOCHTIDKEHHS TaKoX JOCIIDKYE
MOXUIUBOCTI ONTUMI3aLlii IS INTYYHHX HEUWPOHHHUX MEpPEX IUIIXOM PO3POOKH TiOPUAHUX IiIXOMIIB, SIKi HOEAHYIOTh CHUIIbHI CTOPOHH
PI3HHMX THIB MepeX 1 LUIIXOM CIPOILEHHS apXiTekTyp Oe3 mixomu uisi TogHocTi. OTpuMaHi AaHi CBiguaTh MpO Te, IO IITYYHI
HEHpOHHI Mepexi € e(eKTUBHUM IHCTPYMEHTOM JUIsl Kiachdikalii JITanbHUX amapatiB, OCOOJIMBO Yy CKJIAIHHUX CHUTHAJIBHUX
CepesoBHUIIAX Ta yMOBAaxX i3 IIYMOBMMHM mepelnkonaMu. Lli Mepexi MatoTh 3HAUHMI MOTEHIaN JUIS IIMPOKOrO BUKOPUCTAHHA 5K Y
BilICBKOBHX, TaK i B LMBUIBHHX CHCTEMaX MOHITOPUHTY MOBITPSHOIO MPOCTOPY, 3a0e3nedyrodn MiJBUIIeHY TOUYHICTh 1 HaJIHHICTD y
3aja4ax po3Mi3HaBaHHA. Pe3ynbTaTH, OTpUMaHI B IbOMY JOCIHIPKCHHI, BIJIKPUBAIOTh HOBI MOMJIMBOCTI IS BIOCKOHAJEHHS
TEXHOJIOT1H aBialliiHOl Oe3MeKH Ta aBTOMATH3aLli] CUCTEM PO3Ii3HAaBaHHSI JIiTAKiB.
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Oe3rneka; ineHTudikaris 00'ekra
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