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ABSTRACT 

Analysis of gas mixtures is an important task in spectroscopy, environmental monitoring, industrial control and scientific 
research. Accurate determination of component concentrations in complex gas environments requires advanced approaches that 

combine physical modeling and artificial intelligence methods. The use of neural networks in spectral analysis allows increasing the 
accuracy and stability of calculations under variable experimental conditions, which indicates the relevance of the work. The aim of 
the research is to develop a combined model for spectral light flux analysis that combines physical modeling of spectral absorption of 
gases with machine learning methods. This provides increased accuracy in determining the concentration of components in 
multicomponent gas mixtures and allows adaptive adjustment of analysis parameters depending on the measurement conditions. An 
integrated methodology is proposed, which includes modeling of spectral light flux based on Gaussian and Lorentzian absorption 
profiles, the use of the Bouguer-Lambert-Beer equations to determine gas concentrations, and training a neural network to predict the 
light flux. To assess the performance of the developed model, a series of numerical experiments were conducted with varying 

network parameters and optimizing the configuration. The results obtained confirmed the high efficiency of the model, which is 
reflected in the high value of the coefficient of determination and low values of the mean square error. The model was tested when 
changing gas concentrations and the length of the optical path, which confirmed its stability and adaptabil ity. The study showed that 
the optimal configuration of the neural network includes three hidden layers with an optimal number of neurons, which provides a 
balance between accuracy and efficiency. A rectified linear activation function was used for stable convergence, and for weight 
optimization - an adaptive stochastic gradient descent method, which improves performance. The proposed method of combining 
physical modeling and machine learning provides high accuracy of gas mixture analysis and resistance to variations in external 
conditions. The scientific novelty of the study lies in the use of a combined approach, which allows adapting the model to a wide 

range of spectral characteristics. The practical significance of the work lies in the possibility of applying the developed methodology 
for industrial control, environmental monitoring, and laboratory research, providing a reliable tool for the analysis of complex gas 
mixtures. 
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INTRODUCTION 

The development of methods for analyzing 

multicomponent gas mixtures is a key task in many 

fields, such as environmental monitoring, industrial 

safety, and scientific research. The use of infrared 
spectral analysis allows for the accurate 

determination of gas component concentrations 

based on their unique spectral characteristics. The 
integration of modern approaches, in particular 

machine learning and mathematical modeling, 

significantly increases the accuracy and efficiency of 

such methods. This is especially important for 
working with complex mixtures or under conditions 

of limited experimental data. Traditional analysis 

methods, such as chromatography or mass 
spectrometry, are highly accurate, but often require 
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sophisticated equipment and expensive 
consumables. Infrared (IR) spectral analysis is 

afaster and more affordable method that can be 

implemented in the form of compact gas analyzers. 

However, to increase accuracy, adaptive data 
processing algorithms, cross-effects correction, and 

the use of machine learning methods to improve 

results are required.  
The proposed model combines classical 

physical approaches with neural network algorithms, 

which allows increasing the accuracy of gas mixture 

analysis, reducing the influence of noise and 
adapting to variable experimental conditions. 

Variable conditions in the context of gas mixture 

analysis can include temperature fluctuations that 
affect the spectral characteristics of gases, as well as 

changes in pressure and humidity, which can change 

the intensity and spectral lines. In addition, the 
composition of gas mixtures can vary depending on 
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the emission source or processing process, which 

requires adaptive approaches for accurate analysis.  

Also, environmental factors, such as the 
presence of dust or pollutants in the air, can affect 

the spectra, complicating their interpretation. 

Traditional approaches have limitations in sensitivity 
and selectivity, therefore, the use of neural networks 

is proposed to optimize the model, increase the 

accuracy of spectral light flux prediction and 
automate data processing. This makes it promising 

for wide application in various fields of science, 

technology and industry.  

In general, spectral analysis and numerical 
modeling form an effective synergy aimed at 

studying complex processes, which emphasizes the 

relevance of this work. 

1. ANALYSIS OF LITERARY DATA AND 

PROBLEM STATEMENT 

The effectiveness of air quality monitoring and 

pollutant gas detection systems depends on two key 
aspects, namely the development of sensor 

technologies and the improvement of data 

processing methods. Modern µGC (micro gas 
chromatography) systems [1] provide high 

selectivity for target gases, but the integration of 

accurate sensors, in particular based on IDE 
structures, still requires further research [2]. Data 

processing systems include smoothing methods, 

such as moving average and Kalman filter [3], which 

allow reducing the noise of sensor signals. At the 
same time, the Kalman filter provides noise 

suppression without losing important information.  

In datasets, the removal of uninformative 
outliers and the reduction of data dimensionality are 

usually achieved using principal component analysis 

(PCA) [4]. Nonlinear real-time data obtained from 
sensors are effectively converted into meaningful 

information and used in networks with back 

propagation algorithms (BPNN), recursive neural 

networks (RNN) and deep convolutional neural 
networks (DCNN) [5, 6]. All these machine learning 

algorithms are based on various mathematical 

models of neural networks. ANN algorithms are 
widely used in monitoring weather phenomena and 

environmental impacts [7], diagnosing diseases in 

humans and animals [8], camera surveillance, 

distance measurement and object detection in robots 
[9], and for successful classification of gas mixtures 

using various gas sensors [10].  

Recently, modern spectral analysis methods 
have gained considerable interest, especially due to 

the integration of machine learning, which 

contributes to increasing the accuracy and 
automation of data processing. Deep learning (DL) 

is a powerful tool for spectral classification and 

modeling [11, 12], but it requires large amounts of 

data and has problems with the interpretation of 
results [13]. Support vector methods (SVM) are 

effective for analyzing NIR spectra, although their 

accuracy depends on the choice of kernel function 
and regularization parameters [14]. The article [15] 

provides selected references discussing the 

application of artificial intelligence (AI) in analytical 
chemistry and molecular spectroscopy, as well as 

examples of its use for various vibrational 

spectroscopy methods, such as Raman, infrared (FT-

IR), near-infrared (NIR) and ultraviolet-visible (UV-
vis) spectroscopy.  

Convolutional neural networks (CNNs) are 

widely used for automatic processing of spectra 
without prior training [16, 17], although their 

effectiveness in dynamic spectral analysis is limited. 

Combining CNNs with dimensionality reduction 

methods improves the accuracy of classification of 
complex spectral data, in particular for the detection 

of illegal substances [18]. CNNs are also effective in 

parallel processing and optimization of spectral 
algorithms, which contributes to improving the 

accuracy of calculations and diagnostics [19]. The 

use of CNN spectral analysis via the Laplacian 
graph allows for improved image segmentation. 

Neural networks are also successfully used to assess 

the quality of alpha spectra, which is important for 

the detection of contaminants in the working 
environment [20]. One-dimensional CNNs are used 

in LWIR spectroscopy and Raman spectroscopy, 

providing noise immunity [21], and optimized 
hybrid models (CNN+LSTM) can improve the 

accuracy and adaptability of spectroscopic studies 

[22]. Creating a universal synthetic dataset for 
testing machine learning models is key to evaluating 

their effectiveness [21]. Studies have confirmed that 

nonlinear activation functions, in particular ReLU, 

play an important role in classification, while 
additional architectural complications, such as 

residual blocks, do not always improve the result. 

Despite the high accuracy (>98 %), peak overlap and 
intensity variations remain problematic, which 

requires further research. Also interesting is the 

approach to numerical modeling of electron kinetics 

in plasma based on the Boltzmann equation [23], 
where plasma parameters are calculated at different 

E/N, which is key for the optimization of plasma 

chemical reactors and controlled synthesis of zinc 
nanostructures. 

Literature analysis has shown that the use of 

neural networks in spectral analysis significantly 
improves the capabilities of data processing and 
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interpretation. However, there are still a number of 

unresolved problems in spectroscopic analysis. The 

development of universal models that can adapt to 
changing measurement conditions without loss of 

accuracy is relevant [21]. An important task remains 

to improve the interpretability of deep neural 
networks, which complicates their use in scientific 

and industrial applications [24]. Optimization of 

CNN architecture for spectral data analysis, 
especially at low signal intensity or significant noise 

levels, requires further research [25]. In addition, the 

combination of neural networks, interferometric 

methods and adaptive spectral models can 
significantly improve the analysis of complex 

multicomponent mixtures [22]. The possibility of 

using graph methods to optimize the topology of 
neural networks, which could increase the speed and 

accuracy of calculations, has not been sufficiently 

explored [19]. Further research should focus on 

improving machine learning algorithms for 
spectroscopic analysis, which will increase their 

robustness to noise and experimental artifacts [26].  

For data analysis, [27] was used, which covers 
methods for processing, cleaning, and analysis using 

Python, in particular the Pandas, NumPy, and 

IPython libraries. In [28] investigated the 
effectiveness of visualization libraries, comparing 

them in terms of functionality and convenience. The 

most popular are Matplotlib, Seaborn, and Plotly, 

which provide a wide range of capabilities for 
creating static and interactive graphs. 

GOAL AND RESEARCH OBJECTIVES 

The main task is to develop a model for 
analyzing multicomponent gas mixtures based on 

their spectral characteristics in the infrared range.  

The aim of the research is to develop a 
combined model for spectral light flux analysis that 

combines physical modeling of spectral absorption 

of gases with machine learning methods. This 

provides increased accuracy in determining the 
concentration of components in multicomponent gas 

mixtures and allows adaptive adjustment of analysis 

parameters depending on the measurement 
conditions. 

The main objectives include:  

• development of a combined spectral model 

based on Gaussian and Lorentzian profiles for 
modeling the spectral light flux in multicomponent 

mixtures;  

• implementation and training of neural 
networks for predicting the parameters of gas 

mixtures;  

• implementation of the model algorithm and 
the corresponding software implementation;  

• testing the system to assess its stability under 

various conditions. 

2. MAIN RESEARCH RESULTS 

2.1. Overview of mathematical models 

There are several mathematical models [29, 30] 

that can be used for modeling and optimization in 
gas analysis. First of all, this is a model for infrared 

analysis (IR analysis) [31]. This model describes the 

ratio of light fluxes in the working and reference 
channels for analyzing the concentration of 

components of a gas mixture.  

The basic equation for the ratio of light fluxes 

has the form: 

i

r

i

K




,                           (1) 

where i

  is luminous flux in the working channel; 

r

i  is the luminous flux in the reference channel;  

K is a constant that ensures the same sensitivity for 

all components.  

Next, we determine the flux through the optical 
path, according to the formula: 

0( ) ( )exp( )i i iX K L    ,           (2) 

where Φ0(λ) is intensity of the radiation source; Xi  

is concentration of the i-th gas in the optical channel; 

Ki is absorption coefficient of the i-th gas; L is 
optical path length.  

Finally, we determine the concentration through 

the ratio of the fluxes: 

1
ln

r

i
i

i i

X
K L 

 
  

 
.                    (3) 

The next approach is a model for 

interferometric analysis [32]. This model describes 
the shift of the interference fringe as a function of 

the refractive index of the gas.  

The formula for the optical path of the 
interferometer is: 

0

2
( )g

d
n n


   ,                      (4) 

where Δ is interference band shift; d is the thickness 

of the working cell; λ is the wavelength; ng is the 

refractive index of the gas; n0 is the refractive index 
in the air.  

Next, we determine the refractive index due to 

the gas concentration by the formula: 

ng=n0+αXi                            (5) 
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where α is proportionality coefficient for the i-th 

gas; Xi is the concentration of the i-th gas. 
There is considerable interest in improving the 

sensitivity of the IR analyzer. To achieve the same 
sensitivity for all components, the method of 

negative gas filtration is used.  

The optimal concentration in the filter is 
determined by the formula: 

1

ln

f r

i
i f

i

X

K L



 
 
 

                   (6) 

where Xf is concentration of the i-th gas in the filter; 

Lf  is the length of the filter cell.  

Another approach is to solve the sensitivity 
equation for multicomponent mixtures.  

In this case, the basic formula has the form: 

0 exp( )i i i

i

S K L K X L
X


   


          (7) 

where S is sensitivity of the device to changes in the 

concentration of the i-th gas.  
Finally, we will consider an approach based on 

the optimization of the spectral filter for IR analysis. 

In this approach, the basic formula is: 

2 2

1 1

( ) ( ) ( ) ( )i jA d A d

 

 

                  (8) 

where Ai(λ), Aj(λ) are absorption functions of the i-th 

and j-th gases; ( )   is spectral filter pass function; 

[λ1, λ2] are limits of the working spectral range.  

All the models considered above can be adapted 

depending on the specific experimental conditions 
and instrument parameters. 

2.2. Mathematical description of the model 

In this work, a system was developed for 
complex theoretical modeling of gas mixture 

analysis. It includes calculation of the light flux 

through the optical channel, the ratio of light fluxes 
for different components, and also optimization of 

filter concentration for sensitivity equalization. The 

developed theoretical model belongs to IR-analysis, 

since its main goal is to study the spectral absorption 
of gases depending on the wavelength λ. The model 

uses Gaussian and Lorentzian profiles to describe 

the resonant absorption peaks, which are 
characteristic of gas molecules in the infrared range. 

It reflects the behavior of the light flux after passing 

through the gas mixture, taking into account the 
intensity inversion to match the experimental data. 

Prediction using neural networks is also 

implemented.  

It should be noted that interferometric analysis 
is not suitable for describing this model, since it 

does not take into account changes in the phases of 

light waves. Also, the model is not an example of 
sensitivity optimization, since it is not aimed at 

increasing the accuracy of sensors. It does not apply 

to spectral filtering, since it does not deal with the 
selection or optimization of the transmission of 

certain wavelengths. Thus, the model is a classic 

example of infrared spectral analysis, which is based 

on the physical principles of light absorption by gas 
molecules. Let us dwell in more detail on the 

implementation of the model.  

As the main component, a model of the spectral 
absorption coefficient of gases is used, which allows 

us to evaluate how different components of the 

mixture absorb light at different wavelengths.  

It is implemented according to the formula for 
the absorption coefficient and is based on a 

combination of Gaussian and Lorentzian profiles: 

2

0

22

0
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( )
1

g
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K A
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
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  
  

(9) 

where Ag and A  are the amplitudes of the Gaussian 

and Lorentzian components; λ is the central 
wavelength; σ is the width of the spectral peak.  

Next, the spectral light flux model is combined, 

which is used to calculate the spectral light flux 
passing through the gas mixture. The main function 

of this part is to show how the concentration of 

gases and their absorption coefficient affect the 
spectral distribution of the light flux.  

The intensity of the light flux through the gas 

mixture is defined as: 

Φ(λ)=Φ0⋅exp(−X⋅K(λ)⋅L),              (10) 

where Φ0 is the initial light intensity; X is the gas 

concentration; K(λ) is the absorption coefficient; L is 

the optical path length.  
The next step is to add a model of the light flux 

ratio, which is used to assess the effect of gas 

absorption in the working channel, compared to 

clean air in the reference channel and is determined 
by the formula: 

 
( )

( )
( )

working

reference

R







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                  (11) 
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Next, the filter optimization for sensitivity 

equalization is added, which uses the above formula 

for determining the gas concentration in the filter 

and provides the same sensitivity for different 

components. The use of a gas filter in the model is 

confirmed by formula (6). The main function of this 

filter is to equalize the sensitivity of the analysis, 

minimizing the difference in absorption for different 

components of the gas mixture.  

The formula for determining the optimal gas 

concentration in the filter is: 

arg

1

ln( )
filter

t et

X
K L R


 

              (12) 

where Rtarget is the target ratio of light fluxes.  

Finally, prediction using neural networks is 

implemented. The neural network uses the 

wavelength λ and the spectral absorption coefficient 

K(λ) as input features for training. The output is the 

predicted intensity of the light flux. 

2.3. Algorithm of the model operation 

The algorithm of the operation is shown in  

Fig. 1.  

The model operation begins with the input 

parameters, which include λ, X, L and spectral 

absorption parameters Ag, Al, λ0, σ for each 

component. Next, the absorption coefficient K(λ) is 

calculated, which is modeled as a combination of 

Gaussian and Lorentzian profiles according to 

formula (9). The program is implemented by the 

functions gaussian_profile(lambda_range, 

lambda_0, amplitude, width); 

lorentzian_profile(lambda_range, lambda_0, 

amplitude, width); combined_profile(lambda_range, 

lambda_0, amplitude, width). This allows us to 

accurately describe the spectral features of the gas 

mixture and take into account real experimental 

dependencies. 

Based on the calculated absorption coefficient, 

the spectral light flux through the gas mixture is 

calculated according to the Bouguer-Lambert-Beer 

law according to formula (10), which takes into 

account the influence of the gas concentration and 

the optical path length on the total signal intensity. 

Software implemented by the function 

light_flux_spectral(X, K_func, L, lambda_range). 

After that, the ratio of light fluxes in the working 

and reference channels is calculated according to 

formula (11), which allows estimating the influence 

of the gas mixture on the total intensity.  

 

Software not implemented by a separate 

function, but the ratio is calculated as: 

 K_ratio = Phi_working / Phi_reference 

 

 

Fig. 1. Model operation algorithm 
Source: compiled by the author 

If the flux ratio does not correspond to the 

specified parameters, the gas concentration in the 

filter is optimized according to formula (12), which 
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allows ensuring uniform sensitivity of the analysis. 

Software implemented by the function in the code 

optimize_filter_concentration(K, L, target_ratio). 
The optimized parameters are passed to the next 

stage of the algorithm, which consists in training a 

neural network to predict the spectral light flux.  
The input data is Xtrain=[λ,K(λ)], and the output 

data is ytrain=Φ(λ).  

The MLPRegressor neural network performs 
training: 

2

1

1
( )

N

i i

i

L y y
N 

  .                   (13) 

We see that the training is carried out by 

minimizing the mean square error between the 

calculated and real values, which allows the model 
to adapt to changing spectral parameters. After 

training, the network is used to predict the spectral 

light flux, which allows us to obtain an estimate of 
the parameters of the gas mixture even in the case of 

incomplete or noisy data.  

Programmatically implemented by functions in 

the MLPRegressor code from the sklearn library (a 
neural network that is trained on data to model 

predicted values). For training – 

nn_model.fit(X_train, Y_train), and for prediction – 
nn_model.predict(X_train). The results are limited 

by realistic limits np.clip(). 

Finally, the prediction results are analyzed and 
visualized for comparison with experimental and 

theoretical data. In case of significant discrepancies 

between the predicted and experimental values, the 

model can be retrained by adjusting the input 
parameters or updating the training sample. 

2.4. Description of the neural network  

The final stage of the combined model is the 
use of a multilayer perceptron (MLP) to solve the 

regression problem. The choice of MLP as the basic 

architecture is justified by the fact that this network 
is well suited for regression problems and can 

approximate complex nonlinear dependencies 

between input parameters and spectral light flux.  

The neural network receives model data as 
input, calculated using physical formulas (9)-(11). 

This allows the network to be trained to find 

dependencies between gas mixture parameters and 
spectral light flux. The use of model data at the 

training stage is justified by the fact that they 

provide a wide range of parameters, including 

limiting cases that may be difficult to access in real 
experiments. However, in the end, the neural 

network works with real data, so during testing it is 

intended to use both model and experimental values. 

This makes it possible to adjust the model and adapt 
it to the features of real measurements. 

2.5. Neural network training and  

optimization 

The neural network training process included 

preparing a dataset containing experimental spectral 

characteristics of gases, normalizing input 
parameters, and dividing the sample into training 

and test. For training, the Adam optimizer with 

adaptive learning rate selection was used, as well as 

a loss function to minimize the deviation between 
predicted and actual values. The cross-validation 

provided generalization of the model and prevented 

overtraining.  
To optimize the model, a series of numerical 

experiments were conducted with different neural 

network configurations, which are presented in 

Table 1. The selected range of neural network 
parameters is justified by the specifics of spectral 

analysis of gas mixtures and the need to achieve a 

balance between accuracy, performance, and model 
stability. The number of hidden layers and neurons  

in the layers varies between 2-4 layers and 64-256 

neurons, which allows finding a compromise 
between the generalization ability of the model and 

its computational complexity. A smaller number of 

layers speeds up training, but may not be sufficient 

for accurate recognition of spectral patterns, while a 
larger number of layers and neurons improve the 

representation of complex spectral dependencies, but 

increases the risk of overtraining.  
The activation functions ReLU, Tanh, and 

Sigmoid are chosen to take into account different 

features of spectral data. ReLU is effective for deep 
networks, Tanh works well with normalized data, 

and Sigmoid provides a nonlinear transformation 

with probabilistic interpretation. Adam was used for 

optimization.  
The number of epochs in the range of 1000-

2500 was determined experimentally, since a 

sufficient number of iterations is required for 
accurate learning, but too large a value can cause 

overtraining. The batch size of 32-128 provides an 

optimal balance between the learning speed and the 

quality of gradient updates, where smaller batches 
allow better adaptation to local data features, and 

larger ones ensure the stability of the learning 

process. 
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Table 1. Tested neural network configurations 

N. 
Number 

of  

layers 

Number of 

neurons per 

layer 

Activation 

function 
Optimizer 

Number 

of 

epochs 

Model 

аccuracy 

(%) 

1 2 64 ReLU Adam 1000 92.5 

2 3 128 ReLU Adam 2000 94.3 

3 3 256 Tanh Adam 2000 91.7 

4 4 128 ReLU SGD 2500 88.2 

5 2 256 ReLU Adam 1500 95.1 

6 3 128 Sigmoid Adam 2000 89.8 

7 2 64 ReLU RMSprop 1500 90.6 

Source: compiled by the authors 

Thus, the selected parameters allow achieving 

the optimal ratio between performance, accuracy and 

speed of the model in the spectral analysis of gas 
mixtures. Based on the results obtained, the optimal 

parameters were determined that provide the best 

balance between accuracy and performance. The 
optimal option is a model with three hidden layers 

and 128 neurons in each, the ReLU activation 

function and the Adam optimizer, which provides 
high accuracy (94.3 %). Increasing the number of 

neurons and layers after this level does not provide 

significant improvement, and the use of alternative 

activation functions, such as Tanh or Sigmoid, 
slightly reduces accuracy.  

In the proposed model, the problem of limited 

data is solved by using synthetic data for initial 
training of the neural network. The physical model 

of spectral absorption allows generating a large set 

of training data covering different gas 

concentrations, wavelengths and optical parameters. 
This allows providing the necessary variety of input 

characteristics and compensating for the lack of real 

experimental measurements. Synthetic data are 
generated based on physical equations describing the 

spectral absorption of gases, according to formulas 

(2) and (9). The expansion of synthetic data for the 
neural network is carried out by varying the gas 

concentration, optical path length and temperature 

shifts within the limits of real experimental 

conditions. Adding random noise simulates 
experimental errors, increasing the stability of the 

model. Generation of mixed spectra by linear 

combination of components allows better 
recognition of the contribution of each gas. After 

training on synthetic data, the model is retrained on 

real spectra, which adapts it to the characteristics of 
the sensors and experimental conditions. This 

approach ensures high accuracy and stability of the 

neural network even with a limited amount of 

experimental data. 

 

DISCUSSION OF RESULTS 

A significant part of scientific works is devoted 

to obtaining experimental data that require 
theoretical modeling and optimization [33, 34], [35, 

36], [37]. In [33], it is proposed to improve 

interferometric methods of gas analysis by switching 
to measuring frequency shifts, which increases 

accuracy and sensitivity. Work [34] describes optical 

correlation methods for analyzing gas mixtures, in 
particular, the use of a Fabry-Perot interferometer as 

a correlation mask, which is discussed in detail in 

[35]. In [36], infrared and interferometric methods of 

gas analysis are investigated, device schemes and 
methods for increasing selectivity with an error of 

up to 10 %. Article [37] is devoted to the 

metrological support of gas analyzers with an open 
cell, in particular, calibration methods that minimize 

measurement errors.  

Work [36] was chosen to test the system on 

experimental data. The validation of the research 
results was carried out by comparing theoretical, 

experimental and predicted data for the analysis of 

spectral light flux through multicomponent gas 
mixtures. Theoretical models built on the basis of 

Gaussian and Lorentzian profiles were checked for 

compliance with experimental absorption spectra for 
CH4 and C3H8. The combined model demonstrated 

the ability to accurately reflect the position and 

width of the absorption peaks, which confirms its 

effectiveness for modeling real physical processes.  
Prediction using neural networks was tested by 

training on theoretical and experimental data, after 

which the models were used to predict the spectral 
light flux. The predicted results were consistent with 

the experimental data, demonstrating the ability of 

neural networks to take into account key 
characteristics of spectral absorption. 

The developed system can be used for the 

analysis of gas mixtures in laboratory and industrial 

conditions. Testing at different gas concentrations 
and optical path lengths showed that the model 
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remains stable and adaptive to changes in external 

parameters. This indicates its versatility and 

practical value in the tasks of environmental 
monitoring, industrial control and scientific research. 

The graph of the dependence of the normalized light 

flux of CH4 on the gas concentration and optical 
path length is shown in Fig. 2. It shows how 

changing this parameter affects the measurement 

results. 

 
Fig. 2. Dependence of CH4 light flux on 

concentration and optical path length 
Source: compiled by the author 

Regarding the accuracy of the simulation, a 
graph of the model accuracy versus gas 
concentration and optical path length was plotted, 
which is shown in Fig. 3. The graph shows that at 
low concentrations (X<1 %) the model demonstrates 
high accuracy of over 90 %, since weak absorption 
provides a stable signal. With increasing 
concentration to X>3 %, the accuracy decreases due 
to saturation effects, which makes it difficult to 
distinguish gas components. Similarly, at short 
optical path lengths (L<0.3 m), the accuracy remains 
high, since absorption is insufficient for significant 
signal losses, while at long optical paths (L>0.7 m) 
the model loses accuracy due to excessive 
absorption, which leads to a decrease in the intensity 
of the light flux and loss of information. Optimal 
conditions for the model operation are observed at 
gas concentrations within X≈1-2 % and a length 
L≈0.3-0.6 m, which provides a balance between 
sensitivity and measurement accuracy. 

To assess the accuracy of the regression model, 
two main metrics were chosen, namely RMSE (root 
mean square error) and R2 (coefficient of 
determination). RMSE shows the average deviation 
of the predicted values from the actual ones in the 
same units as the input data, and R2 demonstrates 
how well the model explains the variability of the 
data. A value close to 1 means a high 
correspondence between the model predictions and 
the experimental data. The evaluation results showed 

a high efficiency of the neural network in 
reproducing the experimental data. The obtained 
value of the coefficient of determination R2=0.9957 
indicates a high correspondence of the model to the 
experimental data, which confirms its accuracy in 
predicting the spectral luminous flux. Low values of 
RMSE=0.01997 demonstrate minimal errors 
between the predicted and actual values, which 
makes the proposed model suitable for the analysis 
of multicomponent gas mixtures. Thus, the results 
confirm that the developed neural network can be 
effectively used for spectroscopic analysis, 
providing high accuracy and stability when changing 
the parameters of the gas mixture.  

 
Fig. 3. Model accuracy on gas concentration 

and optical path length 
Source: compiled by the author 

Regarding the validation of the accuracy of the 

model on experimental data, the concentration of 

methane and propane was calculated using the 

Bouguer-Lambert-Beer equation (Table 2). From the 

table, we see that the concentration of CH4 varies 

within 100-475 %. This indicates the need to correct 

the absorption coefficients or take into account 

additional factors (for example, intermolecular 

interactions). The concentration of C3H8 in some 

cases exceeds the physically possible values 

(>900%), which may indicate an error in 

determining the absorption coefficients or the 

influence of other gases in the mixture. For a more 

accurate analysis, it is necessary to take into account 

calibration coefficients, take into account 

nonlinearities in spectral absorption, or apply 

corrective functions of the neural network.  

The main results of the model are displayed in a 

graph showing the values of the spectral luminous 

flux. Fig. 4 presents the experimental data, 

combined calculated and predicted spectral luminous 

flux for comparison of their values. 
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Table 2. Results of gas mixture analysis and concentration calculation 

Wavelength (м) Φmeasured, CH₄ KCH₄ XCH₄ (%) Φmeasured, C₃H KC₃H₈ XC₃H₈ (%) 

3.1*10-6 0.95 0.20 102.59 0.85 0.15 433.38 

3.2*10-6 0.80 0.25 357.03 0.65 0.20 861.57 

3.3*10-6 0.70 0.30 475.57 0.50 0.28 990.21 

3.4*10-6 0.85 0.22 295.49 0.70 0.23 620.30 

3.5*10-6 0.90 0.18 234.13 0.80 0.19 469.78 

Source: compiled by the authors. 

 
Fig.4. Experimental vs combined model vs predicted spectral light flux 

Source: compiled by the author 

In graph 4, the series of curves Combined 
Model is the result of physical and mathematical 

modeling of the luminous flux, which takes into 

account the spectral absorption of gases according to 
the corresponding equation (9) taking into account 

the combination of Gaussian and Lorentzian 

profiles; and Predicted is the output of the MLP 

regression algorithm, which, based on model or 
experimental data, predicts the value of the luminous 

flux.  

Thus, the graph displays three main series of 
data for each of the gases CH4 and C3H8 depending 

on the wavelength λ. The experimental data are 

represented by dashed lines and show the decrease 
in the intensity of the luminous flux in the 

corresponding spectral regions. This indicates the 

absorption of light by gases in the wavelength 

ranges of 3.3 μm for CH4 and 3.4 μm for C3H8.  

The data have smooth declines, reflecting the 
physical properties of gas molecules. The combined 

model, shown in solid lines, combines Gaussian and 

Lorentzian profiles. It allows for both narrow peaks 
(characteristic of a Lorentzian profile) and broader 

spectral features (corresponding to a Gaussian 

profile). This provides a better agreement with the 

real physical characteristics of spectral absorption. 
The profiles are inverted to reflect the decrease in 

light intensity due to absorption, and they generally 

agree well with the experimental data. The predicted 
data, shown in dotted lines, were obtained using a 

neural network. The input data for the network were 

the wavelength and the combined model. The 
predicted values generally reproduce the main trends 

of the experimental data, including the position and 

width of the peaks. This indicates that the model has 

successfully learned to capture the key features of 
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the dependence of the luminous flux on wavelength. 

Overall, the graph demonstrates the consistency of 

the combined model and predicted data with 
experimental data [36], confirming their 

effectiveness in describing and predicting the 

behaviors of the luminous flux in the spectral 
absorption regions.  

Overall, the experimental data show an accurate 

distribution of absorption in gases, the theoretical 
model helped to better understand the physical basis 

of the experiment, and the neural network 

successfully reproduced the main trends, which 

indicates its effectiveness in predicting the behavior 
of the luminous flux under similar conditions. The 

graph demonstrates how different approaches – 

experimental, theoretical, and machine learning – 
complement each other to better analyze the 

absorption process. 

CONCLUSIONS 

The developed model for the analysis of gas 
mixtures using neural networks and combined 

spectral models demonstrates an effective 

combination of machine learning methods and 
classical physical models. The use of artificial 

intelligence algorithms allowed to increase the 

accuracy of determining the concentrations of 
components in spectral analysis, which is confirmed 

by low RMSE values and a high coefficient of 

determination R2= 0.9957.  

Additionally, the neural network configuration 

was optimized to achieve the best balance between 

prediction accuracy and calculation speed. Analysis 
of different architectures allowed determining 

effective parameters, such as the number of hidden 

layers, the dimension of neurons and regularization 
methods. This allows increasing the performance of 

the model while maintaining high accuracy, which is 

critically important for its use in large data analysis 
systems.  

The use of deep neural networks in spectral 

analysis of gas mixtures opens up new opportunities 

for automation, processing of large data sets and 
increasing the adaptability of algorithms to changing 

environmental conditions. The developed system 

integrates signal processing methods and 
optimization approaches to improve spectral 

identification, which makes it promising in the field 

of information technology, in particular in 

environmental monitoring, industrial automation and 
intelligent sensor systems.  

The practical significance of the work lies in 

the possibility of implementing the presented 
methodology in intelligent data analysis systems 

used for air quality control, monitoring of 

production processes and ensuring safety in industry. 
Further research can be focused on optimizing the 

architecture of neural networks, expanding the set of 

input parameters and is integrating the developed 

technology with distributed computing systems to 
increase the performance of real-time analysis. 

REFERENCES 

1. Regmi, B. P. & Agah, M. “Micro gas chromatography: An overview of critical components and their 

integration”. Analytical Chemistry, 2018; 90 (22): 13133–13150, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85056565708&origin=resultslist&sort=plf-

f&src=s&sot=b&sdt=b&s=TITLE-ABS-

KEY%28Micro+gas+chromatography%3A+An+overview+of+critical+components+and+their+integration%29. 

DOI: https://doi.org/10.1021/acs.analchem.8b01461. 

2. Kaya, K. & Ebeoğlu, M. A. “Development of a neural network for target gas detection in 

interdigitated electrode sensor-based E-nose systems”. Sensors. 2024; 24 (16): 5315, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85202438935&origin=resultslist&sort=plf-

f&src=s&sot=b&sdt=b&s=TITLE-ABS-

KEY%28Development+of+a+neural+network+for+target+gas+detection+in+interdigitated+electrode+senso

r-based+E-nose+systems%29. DOI: https://doi.org/10.3390/s24165315. 

3. Liu, G., Jiang, Z. & Wang, Q. “Analysis of gas leakage early warning system based on Kalman filter 

and optimized BP neural network”. IEEE Access. 2020; 8: 175180–175193, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85102772295&origin=resultslist&sort=plf-

f&src=s&sot=b&sdt=b&s=TITLE-ABS-

KEY%28Analysis+of+gas+leakage+early+warning+system+based+on+Kalman+filter+and+optimized+BP+

neural+network%29. DOI: https://doi.org/10.1109/ACCESS.2020.3026096.  

4. Johnson, K. J. & Synovec, R. E. “Pattern recognition of jet fuels: Comprehensive GC×GC with 

ANOVA-based feature selection and principal component analysis”. Chemometrics and Intelligent 

Laboratory Systems. 2002; 60 (2): 225–237, https://www.scopus.com/record/display.uri?eid=2-s2.0-

https://www.scopus.com/record/display.uri?eid=2-s2.0-85056565708&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Micro+gas+chromatography%3A+An+overview+of+critical+components+and+their+integration%29
https://www.scopus.com/record/display.uri?eid=2-s2.0-85056565708&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Micro+gas+chromatography%3A+An+overview+of+critical+components+and+their+integration%29
https://www.scopus.com/record/display.uri?eid=2-s2.0-85056565708&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Micro+gas+chromatography%3A+An+overview+of+critical+components+and+their+integration%29
https://doi.org/10.1021/acs.analchem.8b01461
https://www.scopus.com/record/display.uri?eid=2-s2.0-85202438935&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Development+of+a+neural+network+for+target+gas+detection+in+interdigitated+electrode+sensor-based+E-nose+systems%29
https://www.scopus.com/record/display.uri?eid=2-s2.0-85202438935&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Development+of+a+neural+network+for+target+gas+detection+in+interdigitated+electrode+sensor-based+E-nose+systems%29
https://www.scopus.com/record/display.uri?eid=2-s2.0-85202438935&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Development+of+a+neural+network+for+target+gas+detection+in+interdigitated+electrode+sensor-based+E-nose+systems%29
https://www.scopus.com/record/display.uri?eid=2-s2.0-85202438935&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Development+of+a+neural+network+for+target+gas+detection+in+interdigitated+electrode+sensor-based+E-nose+systems%29
https://doi.org/10.3390/s24165315
https://www.scopus.com/record/display.uri?eid=2-s2.0-85102772295&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Analysis+of+gas+leakage+early+warning+system+based+on+Kalman+filter+and+optimized+BP+neural+network%29
https://www.scopus.com/record/display.uri?eid=2-s2.0-85102772295&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Analysis+of+gas+leakage+early+warning+system+based+on+Kalman+filter+and+optimized+BP+neural+network%29
https://www.scopus.com/record/display.uri?eid=2-s2.0-85102772295&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Analysis+of+gas+leakage+early+warning+system+based+on+Kalman+filter+and+optimized+BP+neural+network%29
https://www.scopus.com/record/display.uri?eid=2-s2.0-85102772295&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Analysis+of+gas+leakage+early+warning+system+based+on+Kalman+filter+and+optimized+BP+neural+network%29
https://doi.org/10.1109/ACCESS.2020.3026096
https://www.scopus.com/record/display.uri?eid=2-s2.0-0037185618&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2FS0169-7439%2801%2900198-8%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3


Bilak Yu. Yu.               /              Applied  Aspects  of  Information Technology        

                                                                  2025; Vol. 8 No 1: 24–37 

34 

 

Computer science and software engineering ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 
 

0037185618&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2FS0169-

7439%2801%2900198-8%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3.   

DOI: https://doi.org/10.1016/S0169-7439(01)00198-8. 

5. Peng, P., Zhao, X., Pan, X. & Ye, W. “Gas classification using deep convolution neural networks”. 

Sensors. 2018; 18 (1): 157, https://www.scopus.com/record/display.uri?eid=2-s2.0-

85040343236&origin=resultslist&sort=plf-

f&src=s&sot=b&sdt=b&s=DOI%2810.3390%2Fs18010157%29&sessionSearchId=c29756b460f70d371a59

80dc0b663ca3. DOI: https://doi.org/10.3390/s18010157. 

6. Huang, J. & Wu, J. “Robust and rapid detection of mixed volatile organic compounds in flow-

through air by a low-cost electronic nose”. Chemosensory. 2020; 8 (3): 73, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85090207045&origin=resultslist&sort=plf-

f&src=s&sot=b&sdt=b&s=DOI%2810.3390%2Fchemosensors8030073%29&sessionSearchId=c29756b460f

70d371a5980dc0b663ca3. DOI: https://doi.org/10.3390/chemosensors8030073. 

7. Liu, C. H., Yang, T. H. & Wijaya, O. T. “Development of an artificial neural network algorithm 

embedded in an on-site sensor for water level forecasting”. Sensors. 2022; 22 (21): 8532, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85141614705&origin=resultslist&sort=plf-

f&src=s&sot=b&sdt=b&s=DOI%2810.3390%2Fs22218532%29&sessionSearchId=c29756b460f70d371a59

80dc0b663ca3. DOI: https://doi.org/10.3390/s22218532. 

8. Withington, L., de Vera, D. D. P., Guest, C., Mancini, C. & Piwek, P. “Artificial neural networks for 

classifying the time series sensor data generated by medical detection dogs”. Expert Systems with 

Applications. 2021; 184: 115564, https://www.scopus.com/record/display.uri?eid=2-s2.0-

85110415476&origin=resultslist&sort=plf-

f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.eswa.2021.115564%29&sessionSearchId=c29756b460f70

d371a5980dc0b663ca3. DOI: https://doi.org/10.1016/j.eswa.2021.115564. 

9. Barreto-Cubero, A. J., Gómez-Espinosa, A., Escobedo Cabello, J. A., Cuan-Urquizo, E. & Cruz-

Ramírez, S. R. “Sensor data fusion for a mobile robot using neural networks”. Sensors. 2021; 22 (1): 305, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85122024361&origin=resultslist&sort=plf-

f&src=s&sot=b&sdt=b&s=DOI%2810.3390%2Fs22010305%29&sessionSearchId=c29756b460f70d371a59

80dc0b663ca3. DOI: https://doi.org/10.3390/s22010305. 

10. Iwata, K., Abe, H., Ma, T., Tadaki, D., Hirano-Iwata, A., Kimura, Y., Suda, S. & Niwano, M. 

“Application of neural network-based regression model to gas concentration analysis of TiO2 nanotube-type 

gas sensors”. Sensors and Actuators B: Chemical. 2022; 361: 131732, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85126865247&origin=resultslist&sort=plf-

f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.snb.2022.131732%29&sessionSearchId=c29756b460f70d

371a5980dc0b663ca3. DOI: https://doi.org/10.1016/j.snb.2022.131732. 

11.  Xuyang, L., Hongle, A., Wensheng, C. & Xueguang, S. “Deep learning in spectral analysis: 

Modeling and imaging”. Trends in Analytical Chemistry. 2024; 172: 117612, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85185559229&origin=resultslist&sort=plf-

f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.trac.2024.117612%29&sessionSearchId=c29756b460f70d

371a5980dc0b663ca3. DOI: https://doi.org/10.1016/j.trac.2024.117612. 

12.  Mishra, P., Passos, D., Marini, et al. “Deep learning for near-infrared spectral data modeling: Hypes 

and benefits”. Trends in Analytical Chemistry. 2022; 157: 116804, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85140768341&origin=resultslist&sort=plf-

f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.trac.2022.116804%29&sessionSearchId=c29756b460f70d

371a5980dc0b663ca3. DOI: https://doi.org/10.1016/j.trac.2022.116804. 

13.  Butler, K. “Machine learning for molecular and materials science”. Nature. 2018; 559: 547–555, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85050673530&origin=resultslist&sort=plf-

f&src=s&sot=b&sdt=b&s=DOI%2810.1038%2Fs41586-018-0337-

2%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3. DOI: https://doi.org/10.1038/s41586-018-

0337-2. 

14.  Devos, O., Ruckebusch, C., Durand, A., Duponchel, L. & Huvenne, J.-P. “Support vector machines 

(SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation”. 

Chemometrics and Intelligent Laboratory Systems. 2009; 96 (1): 27–33, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-0037185618&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2FS0169-7439%2801%2900198-8%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-0037185618&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2FS0169-7439%2801%2900198-8%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://doi.org/10.1016/S0169-7439(01)00198-8
https://www.scopus.com/record/display.uri?eid=2-s2.0-85040343236&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.3390%2Fs18010157%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85040343236&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.3390%2Fs18010157%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85040343236&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.3390%2Fs18010157%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85040343236&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.3390%2Fs18010157%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://doi.org/10.3390/s18010157
https://www.scopus.com/record/display.uri?eid=2-s2.0-85090207045&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.3390%2Fchemosensors8030073%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85090207045&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.3390%2Fchemosensors8030073%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85090207045&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.3390%2Fchemosensors8030073%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://doi.org/10.3390/chemosensors8030073
https://www.scopus.com/record/display.uri?eid=2-s2.0-85141614705&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.3390%2Fs22218532%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85141614705&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.3390%2Fs22218532%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85141614705&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.3390%2Fs22218532%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://doi.org/10.3390/s22218532
https://www.scopus.com/record/display.uri?eid=2-s2.0-85110415476&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.eswa.2021.115564%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85110415476&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.eswa.2021.115564%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85110415476&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.eswa.2021.115564%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85110415476&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.eswa.2021.115564%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://doi.org/10.1016/j.eswa.2021.115564
https://www.scopus.com/record/display.uri?eid=2-s2.0-85122024361&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.3390%2Fs22010305%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85122024361&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.3390%2Fs22010305%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85122024361&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.3390%2Fs22010305%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://doi.org/10.3390/s22010305
https://www.scopus.com/record/display.uri?eid=2-s2.0-85126865247&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.snb.2022.131732%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85126865247&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.snb.2022.131732%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85126865247&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.snb.2022.131732%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://doi.org/10.1016/j.snb.2022.131732
https://www.scopus.com/record/display.uri?eid=2-s2.0-85185559229&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.trac.2024.117612%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85185559229&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.trac.2024.117612%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85185559229&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.trac.2024.117612%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://doi.org/10.1016/j.trac.2024.117612
https://www.scopus.com/record/display.uri?eid=2-s2.0-85140768341&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.trac.2022.116804%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85140768341&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.trac.2022.116804%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85140768341&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.trac.2022.116804%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
http://dx.doi.org/10.1016/j.trac.2022.116804
https://www.scopus.com/record/display.uri?eid=2-s2.0-85050673530&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1038%2Fs41586-018-0337-2%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85050673530&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1038%2Fs41586-018-0337-2%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85050673530&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1038%2Fs41586-018-0337-2%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
http://dx.doi.org/10.1038/s41586-018-0337-2
http://dx.doi.org/10.1038/s41586-018-0337-2


Bilak Yu. Yu.               /              Applied  Aspects  of  Information Technology        

                                                                  2025; Vol. 8 No 1: 24–37 

ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 

Computer science and software engineering 35 

 
 

https://www.scopus.com/record/display.uri?eid=2-s2.0-61349156692&origin=resultslist&sort=plf-

f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.chemolab.2008.11.005%29&sessionSearchId=c29756b46

0f70d371a5980dc0b663ca3. DOI: https://doi.org/10.1016/j.chemolab.2008.11.005. 

15.  Workman, Jr. J. & Mark, H. “Artificial intelligence in analytical spectroscopy”. Part II: Examples in 

Spectroscopy. Spectroscopy. 2023; 38 (6): 10–15, https://www.scopus.com/record/display.uri?eid=2-s2.0-

85165920778&origin=resultslist&sort=plf-

f&src=s&sot=b&sdt=b&s=DOI%2810.56530%2Fspectroscopy.js8781e3%29&sessionSearchId=c29756b46

0f70d371a5980dc0b663ca3.  
16.  Griffiths P. “Fourier transforms infrared spectrometry”. Science (New York). 1983; 222 (4621): 

297–302, https://www.scopus.com/record/display.uri?eid=2-s2.0-0021109621&origin=resultslist&sort=plf-

f&src=s&sot=b&sdt=b&s=DOI%2810.1126%2Fscience.6623077%29&sessionSearchId=c29756b460f70d3

71a5980dc0b663ca3. DOI: https://doi.org/10.1126/science.6623077. 
17.  Brereton, R. G. “Chemometrics: Data Analysis for the Laboratory and Chemical Plant”. Chichester: 

Wiley. 2003. J Anal Chem. 2005; 60: 994–996. DOI: https://doi.org/10.1007/s10809-005-0223-6. 

18.  Young, D. “Computational chemistry: A practical guide for applying techniques to real world 

problems”. Chapter 4. Semiempirical Methods. 2002. p. 32–41.  

DOI: https://doi.org/10.1002/0471220655.ch4. 

19.  Nithya, S. & Manju, G. “Spectral analysis of cellular neural network: Unveiling network parameters 

and graph characteristics”. Research Square (Preprint). 2024. DOI: https://doi.org/10.21203/rs.3.rs-

4338706/v1. 

20.  Kangas, L. J., Troyer, G. L., Keller, P. E., Hashem, S. & Kouzes, R. T. “Alpha spectral analysis via 

artificial neural networks”. Proceedings of 1994 IEEE Nuclear Science Symposium – NSS'94. Norfolk, USA. 

1994; 1: 418–421. DOI: https://doi.org/10.1109/NSSMIC.1994.474348. 

21.  Primrose, M. S., Giblin, J., Smith, C., Anguita, M. R. & Weedon, G. H. “One dimensional 

convolutional neural networks for spectral analysis”. Algorithms, Technologies, and Applications for 

Multispectral and Hyperspectral Imaging XXVIII. 2022. DOI: https://doi.org/10.1117/12.2618487. 

22.  Bilak, Y., Reblian, A., Buchuk, R. & Fedorka, P. “Development of a combined neural network 

model for effective spectroscopic analysis”. Eastern-European Journal of Enterprise Technologies. 2024; 1 

(4 (133)): 41–51. DOI:  https://doi.org/10.15587/1729-4061.2025.322627. 

23.  Shuaibov, O. K., Hrytsak, R. V., Minya, O. I., Malinina, A. A., Bilak, Yu. Yu. & Gomokі, Z. T. 

“Spectroscopic diagnostics of overstressed nanosecond discharge plasma between zinc electrodes in air and 

nitrogen”. Journal of Physical Studies 2022; 26 (2): 2501, https://www.scopus.com/record/display.uri?eid=2-

s2.0-85135398974&origin=resultslist. DOI: https://doi.org/10.30970/jps.26.2501. 

24.  Butucea1, C., Delmas, J.-F., Dutfoy, A. & Hardy, C. “Modeling infrared spectra: an algorithm for an 

automatic and simultaneous analysis”. Proceedings of the 31st European Safety and Reliability. Published by 

Research Publishing. Singapore. 2021. p. 359–366. DOI: https://doi.org/10.3850/978-981-18-2016-8 732-cd.  

25.  Schuetzke, J., Szymanski, N. J. & Reischl, M. “Validating neural networks for spectroscopic 

classification on a universal synthetic dataset”, npj Comput Mater 2023; 9 (100), 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85161414858&origin=resultslist&sort=plf-

f&src=s&sot=b&sdt=b&s=DOI%2810.1038%2Fs41524-023-01055-

y%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3. DOI: https://doi.org/10.1038/s41524-023-

01055-y. 

26.  Liu, J., Osadchy, M., Ashton, L., Foster, M., Solomone, C. J. & Gibson, S. J. “Deep convolutional 

neural networks for Raman spectrum recognition: a unified solution”. The Analyst. 2017; 142, 4067–4074, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85032280695&origin=resultslist&sort=plf-

f&src=s&sot=b&sdt=b&s=DOI%2810.1039%2FC7AN01371J%29&sessionSearchId=c29756b460f70d371a

5980dc0b663ca3. DOI: https://doi.org/10.1039/C7AN01371J. 

27.  McKinney, W. “Python for data analysis: Data Wrangling with Pandas, NumPy, and IPython”. 

O'Reilly Media. 2018. 

28.  Lavanya, A., Sindhuja, S., Gaurav, L. & Ali, W. “Assessing the performance of python data 

visualization libraries: A Review”. International Journal of Computer Engineering in Research Trends. 2023; 

10: 28–39. DOI: https://doi.org/10.22362/ijcert/2023/v10/i01/v10i0104. 

https://www.scopus.com/record/display.uri?eid=2-s2.0-61349156692&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.chemolab.2008.11.005%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-61349156692&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.chemolab.2008.11.005%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-61349156692&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2Fj.chemolab.2008.11.005%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://doi.org/10.1016/j.chemolab.2008.11.005
https://www.scopus.com/record/display.uri?eid=2-s2.0-85165920778&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.56530%2Fspectroscopy.js8781e3%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85165920778&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.56530%2Fspectroscopy.js8781e3%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85165920778&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.56530%2Fspectroscopy.js8781e3%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85165920778&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.56530%2Fspectroscopy.js8781e3%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
doi:%20https://doi.org/10.56530/spectroscopy.js8781e3
https://www.scopus.com/record/display.uri?eid=2-s2.0-0021109621&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1126%2Fscience.6623077%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-0021109621&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1126%2Fscience.6623077%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-0021109621&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1126%2Fscience.6623077%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
http://dx.doi.org/10.1126/science.6623077
https://doi.org/10.1007/s10809-005-0223-6
http://dx.doi.org/10.1002/0471220655.ch4
http://dx.doi.org/10.21203/rs.3.rs-4338706/v1
http://dx.doi.org/10.21203/rs.3.rs-4338706/v1
http://dx.doi.org/10.1117/12.2618487
https://doi.org/10.15587/1729-4061.2025.322627
https://www.scopus.com/record/display.uri?eid=2-s2.0-85135398974&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85135398974&origin=resultslist
https://doi.org/10.30970/jps.26.2501
https://www.scopus.com/record/display.uri?eid=2-s2.0-85161414858&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1038%2Fs41524-023-01055-y%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85161414858&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1038%2Fs41524-023-01055-y%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85161414858&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1038%2Fs41524-023-01055-y%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://doi.org/10.1038/s41524-023-01055-y
https://doi.org/10.1038/s41524-023-01055-y
https://www.scopus.com/record/display.uri?eid=2-s2.0-85032280695&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1039%2FC7AN01371J%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85032280695&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1039%2FC7AN01371J%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://www.scopus.com/record/display.uri?eid=2-s2.0-85032280695&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1039%2FC7AN01371J%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3
https://doi.org/10.1039/C7AN01371J
http://dx.doi.org/10.22362/ijcert/2023/v10/i01/v10i0104


Bilak Yu. Yu.               /              Applied  Aspects  of  Information Technology        

                                                                  2025; Vol. 8 No 1: 24–37 

36 

 

Computer science and software engineering ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 
 

29.  Agami Reddy T. “Applied data analysis and modeling for energy engineers and scientists”. Springer. 

New York, NY. 2011. DOI: https://doi.org/10.1007/978-1-4419-9613-8. 

30.  Poe, W. A. & Mokhatab, S. “Modeling, control, and optimization of natural gas processing plants”. 

Gulf Professional Publishing. 2017. DOI: https://doi.org/10.1016/C2014-0-03765-3. 

31.  Mokari, A, Guo, S. & Bocklitz, T. “Exploring the steps of infrared (IR) spectral analysis: Pre-

Processing, (Classical) data modelling, and deep learning. Molecules”. 2023; 28 (19): 6886, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85173798720&origin=resultslist&sort=plf-

f&src=s&sot=b&sdt=b&s=DOI%2810.3390%2Fmolecules28196886%29&sessionSearchId=c29756b460f70

d371a5980dc0b663ca3. DOI: https://doi.org/10.3390/molecules28196886. PMID: 37836728; PMCID: 

PMC10574384. 

32.  Lowell Olsen, H. “An interferometric method of gas analysis, Symposium on Combustion and Flame, 

and Explosion Phenomena”. 1948; 3 (1): 663–667, https://www.scopus.com/record/display.uri?eid=2-s2.0-

58149430929&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=DOI%2810.1016%2FS1062-

2896%2849%2980091-2%29&sessionSearchId=c29756b460f70d371a5980dc0b663ca3.  

DOI: https://doi.org/10.1016/S1062-2896(49)80091-2. 

33.  Kozubovsky, V. & Bilak, Yu. “Phase methods in absorption spectroscopy”. Ukr. J. Phys. 2021;  

66 (8): 664–673, https://www.scopus.com/record/display.uri?eid=2-s2.0-85114830365&origin=resultslist. 

DOI: https://doi.org/10.15407/ujpe66.8.664. 

34.  Kozubovsky, V. R. & Bilak, Yu. Yu. “Express analysis of gas mixtures using a spectral correlator 

based on the fabry-perot interferometer”. Journal of Applied Spectroscopy. 2022; 89 (3), 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85141105107&origin=resultslist. 

DOI: https://doi.org/10.1007/s10812-022-01385-7.  

35.  Bilak, Yu., Kozubovskii, V. & Rol, M. “Using the fabry-pérot interferometer as a spectral mask”. 

Journal of Physical Studies. 2023; 27 (1): 1402, https://www.scopus.com/record/display.uri?eid=2-s2.0-

85162224447&origin=resultslist. DOI: https://doi.org/10.30970/jps.27.1402. 

36.  Kozubovsky, V. R. & Bilak, Yu. Yu. “Some methods for determining Pre-Explosive concentrations 

of gas mixtures”. J Appl Spectrosc. 2022; 89: 107–113, https://www.scopus.com/record/display.uri?eid=2-

s2.0-85127265213&origin=resultslist. DOI: https://doi.org/10.1007/s10812-022-01332-6. 

37.  Bilak, Yu., Kozubovsky, V. & Rol, M. “Calibration of gas analysis devices with open cuvette”. 

Scientific Journal of TNTU. Tern.: TNTU, 2024; 114 (2): 135–140. DOI: 

https://doi.org/10.33108/visnyk_tntu2024.02.135. 
 

Conflicts of Interest: The authors declare that they have no conflict of interest regarding this study, including financial, 

personal, authorship or other, which could influence the research and its results presented in this article 

Received      26.12.2024 

Received after revision   12.03.2025 

Accepted     19.03.2025 

 

DOI: https://doi.org/10.15276/aait.08.2025.2 

УДК 004.032.26:004.93:620.9:543.42 

 

Розробка комбінованої моделі аналізу газових сумішей  

з використанням методів машинного навчання 

Білак Юрій Юрійович  
ORCID: https://orcid.org/0000-0001-5989-1643; yuriy.bilak@uzhnu.edu.ua. Scopus Author ID: 57213689747 

                         Ужгородський національний університет, площа Народна, 3. Ужгород, 88000, Україна 

 

АНОТАЦІЯ 
 

Аналіз газових сумішей є важливим завданням у спектроскопії, екологічному моніторингу, промисловому контролі та 

наукових дослідженнях. Точне визначення концентрацій компонентів у складних газових середовищах потребує 
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вдосконалених підходів, що поєднують фізичне моделювання та методи штучного інтелекту. Використання нейронних 

мереж у спектральному аналізі дозволяє підвищити точність та стійкість розрахунків за змінних умов експерименту, що 

вказує на актуальність роботи. Метою дослідження є розробка комбінованої моделі аналізу спектрального світлового 

потоку, яка поєднує фізичне моделювання спектрального поглинання газів із методами машинного навчання. Це забезпечує 

підвищену точність визначення концентрації компонентів у багатокомпонентних газових сумішах та дозволяє адаптивно 

коригувати параметри аналізу залежно від умов вимірювання. Запропоновано інтегровану методику, що включає 

моделювання спектрального світлового потоку на основі гаусових та лоренцівських профілів поглинання, використання 

рівнянь Бугера-Ламберта-Бера для визначення концентрації газів, а також навчання нейронної мережі для прогнозування 

світлового потоку. Для оцінки продуктивності розробленої моделі проведено серію чисельних експериментів з варіюванням 

параметрів мережі та оптимізацією конфігурації. Отримані результати підтвердили високу ефективність моделі, що 

відображено у високому значенні коефіцієнта детермінації та низьких значеннях середньоквадратичної помилки. Проведено 

тестування моделі при зміні концентрацій газів та довжини оптичного шляху, що підтвердило її стабільність і здатність до 

адаптації. Дослідження показало, що оптимальна конфігурація нейромережі включає три приховані шари з оптимальною 

кількістю нейронів, що забезпечує баланс між точністю та ефективністю. Використано випрямлену лінійну активаційну 

функцію для стабільної збіжності, а для оптимізації ваг – адаптивний метод стохастичного градієнтного спуску, що 

покращує продуктивність. Запропонована методика поєднання фізичного моделювання та машинного навчання 

забезпечує високу точність аналізу газових сумішей та стійкість до варіацій зовнішніх умов. Наукова новизна дослідження 

полягає у застосуванні комбінованого підходу, що дозволяє адаптувати модель до широкого діапазону спектральних 

характеристик. Практична значущість роботи полягає у можливості застосування розробленої методики для промислового 

контролю, екологічного моніторингу та лабораторних досліджень, забезпечуючи надійний інструмент для аналізу складних 

газових сумішей. 

Ключові слова: спектральний аналіз; газові суміші; комплексне моделювання; нейронна мережа; методи оптимізації; 

машинне навчання 
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