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ABSTRACT

Analysis of gas mixtures is an important task in spectroscopy, environmental monitoring, industrial control and scientific
research. Accurate determination of component concentrations in complex gas environments requires advanced approaches that
combine physical modeling and artificial intelligence methods. The use of neural networks in spectral analysis allows increasing the
accuracy and stability of calculations under variable experimental conditions, which indicates the relevance of the work. The aim of
the research is to develop a combined model for spectral light flux analysis that combines physical modeling of spectral absorption of
gases with machine learning methods. This provides increased accuracy in determining the concentration of components in
multicomponent gas mixtures and allows adaptive adjustment of analysis parameters depending on the measurement conditions. An
integrated methodology is proposed, which includes modeling of spectral light flux based on Gaussian and Lorentzian absorption
profiles, the use of the Bouguer-Lambert-Beer equations to determine gas concentrations, and training a neural network to predict the
light flux. To assess the performance of the developed model, a series of numerical experiments were conducted with varying
network parameters and optimizing the configuration. The results obtained confirmed the high efficiency of the model, which is
reflected in the high value of the coefficient of determination and low values of the mean square error. The model was tested when
changing gas concentrations and the length of the optical path, which confirmed its stability and adaptability. The study showed that
the optimal configuration of the neural network includes three hidden layers with an optimal number of neurons, which provides a
balance between accuracy and efficiency. A rectified linear activation function was used for stable convergence, and for weight
optimization - an adaptive stochastic gradient descent method, which improves performance. The proposed method of combining
physical modeling and machine learning provides high accuracy of gas mixture analysis and resistance to variations in external
conditions. The scientific novelty of the study lies in the use of a combined approach, which allows adapting the model to a wide
range of spectral characteristics. The practical significance of the work lies in the possibility of applying the developed methodology
for industrial control, environmental monitoring, and laboratory research, providing a reliable tool for the analysis of complex gas
mixtures.
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INTRODUCTION sophisticated equipment and expensive
consumables. Infrared (IR) spectral analysis is
afaster and more affordable method that can be
implemented in the form of compact gas analyzers.
However, to increase accuracy, adaptive data
processing algorithms, cross-effects correction, and
the use of machine learning methods to improve
results are required.

The proposed model combines classical
physical approaches with neural network algorithms,
which allows increasing the accuracy of gas mixture
analysis, reducing the influence of noise and
adapting to variable experimental conditions.
Variable conditions in the context of gas mixture
analysis can include temperature fluctuations that
affect the spectral characteristics of gases, as well as
changes in pressure and humidity, which can change

The development of methods for analyzing
multicomponent gas mixtures is a key task in many
fields, such as environmental monitoring, industrial
safety, and scientific research. The use of infrared
spectral analysis allows for the accurate
determination of gas component concentrations
based on their unique spectral characteristics. The
integration of modern approaches, in particular
machine learning and mathematical modeling,
significantly increases the accuracy and efficiency of
such methods. This is especially important for
working with complex mixtures or under conditions
of limited experimental data. Traditional analysis
methods, such as chromatography or mass
spectrometry, are highly accurate, but often require

the intensity and spectral lines. In addition, the
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the emission source or processing process, which
requires adaptive approaches for accurate analysis.

Also, environmental factors, such as the
presence of dust or pollutants in the air, can affect
the spectra, complicating their interpretation.
Traditional approaches have limitations in sensitivity
and selectivity, therefore, the use of neural networks
is proposed to optimize the model, increase the
accuracy of spectral light flux prediction and
automate data processing. This makes it promising
for wide application in various fields of science,
technology and industry.

In general, spectral analysis and numerical
modeling form an effective synergy aimed at
studying complex processes, which emphasizes the
relevance of this work.

1. ANALYSIS OF LITERARY DATA AND
PROBLEM STATEMENT

The effectiveness of air quality monitoring and
pollutant gas detection systems depends on two key
aspects, namely the development of sensor
technologies and the improvement of data
processing methods. Modern uGC (micro gas
chromatography) systems [1] provide high
selectivity for target gases, but the integration of
accurate sensors, in particular based on IDE
structures, still requires further research [2]. Data
processing systems include smoothing methods,
such as moving average and Kalman filter [3], which
allow reducing the noise of sensor signals. At the
same time, the Kalman filter provides noise
suppression without losing important information.

In datasets, the removal of uninformative
outliers and the reduction of data dimensionality are
usually achieved using principal component analysis
(PCA) [4]. Nonlinear real-time data obtained from
sensors are effectively converted into meaningful
information and used in networks with back
propagation algorithms (BPNN), recursive neural
networks (RNN) and deep convolutional neural
networks (DCNN) [5, 6]. All these machine learning
algorithms are based on various mathematical
models of neural networks. ANN algorithms are
widely used in monitoring weather phenomena and
environmental impacts [7], diagnosing diseases in
humans and animals [8], camera surveillance,
distance measurement and object detection in robots
[9], and for successful classification of gas mixtures
using various gas sensors [10].

Recently, modern spectral analysis methods
have gained considerable interest, especially due to
the integration of machine learning, which
contributes to increasing the accuracy and
automation of data processing. Deep learning (DL)

is a powerful tool for spectral classification and
modeling [11, 12], but it requires large amounts of
data and has problems with the interpretation of
results [13]. Support vector methods (SVM) are
effective for analyzing NIR spectra, although their
accuracy depends on the choice of kernel function
and regularization parameters [14]. The article [15]
provides selected references discussing the
application of artificial intelligence (Al) in analytical
chemistry and molecular spectroscopy, as well as
examples of its use for various vibrational
spectroscopy methods, such as Raman, infrared (FT-
IR), near-infrared (NIR) and ultraviolet-visible (UV-
Vis) spectroscopy.

Convolutional neural networks (CNNSs) are
widely used for automatic processing of spectra
without prior training [16, 17], although their
effectiveness in dynamic spectral analysis is limited.
Combining CNNs with dimensionality reduction
methods improves the accuracy of classification of
complex spectral data, in particular for the detection
of illegal substances [18]. CNNs are also effective in
parallel processing and optimization of spectral
algorithms, which contributes to improving the
accuracy of calculations and diagnostics [19]. The
use of CNN spectral analysis via the Laplacian
graph allows for improved image segmentation.
Neural networks are also successfully used to assess
the quality of alpha spectra, which is important for
the detection of contaminants in the working
environment [20]. One-dimensional CNNs are used
in LWIR spectroscopy and Raman spectroscopy,
providing noise immunity [21], and optimized
hybrid models (CNN+LSTM) can improve the
accuracy and adaptability of spectroscopic studies
[22]. Creating a universal synthetic dataset for
testing machine learning models is key to evaluating
their effectiveness [21]. Studies have confirmed that
nonlinear activation functions, in particular RelLU,
play an important role in classification, while
additional architectural complications, such as
residual blocks, do not always improve the result.
Despite the high accuracy (>98 %), peak overlap and
intensity variations remain problematic, which
requires further research. Also interesting is the
approach to numerical modeling of electron kinetics
in plasma based on the Boltzmann equation [23],
where plasma parameters are calculated at different
E/N, which is key for the optimization of plasma
chemical reactors and controlled synthesis of zinc
nanostructures.

Literature analysis has shown that the use of
neural networks in spectral analysis significantly
improves the capabilities of data processing and
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interpretation. However, there are still a number of
unresolved problems in spectroscopic analysis. The
development of universal models that can adapt to
changing measurement conditions without loss of
accuracy is relevant [21]. An important task remains
to improve the interpretability of deep neural
networks, which complicates their use in scientific
and industrial applications [24]. Optimization of
CNN architecture for spectral data analysis,
especially at low signal intensity or significant noise
levels, requires further research [25]. In addition, the
combination of neural networks, interferometric
methods and adaptive spectral models can
significantly improve the analysis of complex
multicomponent mixtures [22]. The possibility of
using graph methods to optimize the topology of
neural networks, which could increase the speed and
accuracy of calculations, has not been sufficiently
explored [19]. Further research should focus on
improving machine learning algorithms  for
spectroscopic analysis, which will increase their
robustness to noise and experimental artifacts [26].

For data analysis, [27] was used, which covers
methods for processing, cleaning, and analysis using
Python, in particular the Pandas, NumPy, and
IPython libraries. In [28] investigated the
effectiveness of visualization libraries, comparing
them in terms of functionality and convenience. The
most popular are Matplotlib, Seaborn, and Plotly,
which provide a wide range of capabilities for
creating static and interactive graphs.

GOAL AND RESEARCH OBJECTIVES

The main task is to develop a model for
analyzing multicomponent gas mixtures based on
their spectral characteristics in the infrared range.

The aim of the research is to develop a
combined model for spectral light flux analysis that
combines physical modeling of spectral absorption
of gases with machine learning methods. This
provides increased accuracy in determining the
concentration of components in multicomponent gas
mixtures and allows adaptive adjustment of analysis
parameters depending on the measurement
conditions

The main objectives include:

» development of a combined spectral model
based on Gaussian and Lorentzian profiles for
modeling the spectral light flux in multicomponent
mixtures;

* implementation and training of neural
networks for predicting the parameters of gas
mixtures;

* implementation of the model algorithm and
the corresponding software implementation;

* testing the system to assess its stability under
various conditions.

2. MAIN RESEARCH RESULTS
2.1. Overview of mathematical models

There are several mathematical models [29, 30]
that can be used for modeling and optimization in
gas analysis. First of all, this is a model for infrared
analysis (IR analysis) [31]. This model describes the
ratio of light fluxes in the working and reference
channels for analyzing the concentration of
components of a gas mixture.

The basic equation for the ratio of light fluxes
has the form:

O°
— =K, 1
o 1)

where CDf’ is luminous flux in the working channel;

CI)ir is the luminous flux in the reference channel;

K is a constant that ensures the same sensitivity for
all components.

Next, we determine the flux through the optical
path, according to the formula:

@, (1) = D, (1) exp(—X;KiL), )

where ®o()) is intensity of the radiation source; X;
is concentration of the i-th gas in the optical channel,
Ki is absorption coefficient of the i-th gas; L is
optical path length.

Finally, we determine the concentration through
the ratio of the fluxes:

X, :iln[ﬂj. (3)
KL (@7

The next approach is a model for
interferometric analysis [32]. This model describes
the shift of the interference fringe as a function of
the refractive index of the gas.

The formula for the optical path of the
interferometer is:
2d
A:7(ng_n0)v (4)

where A is interference band shift; d is the thickness
of the working cell; 4 is the wavelength; ng is the
refractive index of the gas; ng is the refractive index
in the air.

Next, we determine the refractive index due to
the gas concentration by the formula:

Ng=No +aXi (5)
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where o is proportionality coefficient for the i-th

gas; Xi is the concentration of the i-th gas.

There is considerable interest in improving the
sensitivity of the IR analyzer. To achieve the same
sensitivity for all components, the method of
negative gas filtration is used.

The optimal concentration in the filter is
determined by the formula:

1 6)

KL, In( o, ]
®f

where X: is concentration of the i-th gas in the filter;
L¢ is the length of the filter cell.
Another approach is to solve the sensitivity
equation for multicomponent mixtures.
In this case, the basic formula has the form:
0D

S=—=®,K.Lexp(—K, XL 7
ax 0" i p( [ | ) ()

X, =

where S is sensitivity of the device to changes in the
concentration of the i-th gas.
Finally, we will consider an approach based on
the optimization of the spectral filter for IR analysis.
In this approach, the basic formula is:

A A
j AA)r(A)dA = j AAr(A)dA  (@®)
A A

where Ai(4), Aj(2) are absorption functions of the i-th
and j-th gases; 7(A) is spectral filter pass function;

[41, A2] are limits of the working spectral range.

All the models considered above can be adapted
depending on the specific experimental conditions
and instrument parameters.

2.2. Mathematical description of the model

In this work, a system was developed for
complex theoretical modeling of gas mixture
analysis. It includes calculation of the light flux
through the optical channel, the ratio of light fluxes
for different components, and also optimization of
filter concentration for sensitivity equalization. The
developed theoretical model belongs to IR-analysis,
since its main goal is to study the spectral absorption
of gases depending on the wavelength 1. The model
uses Gaussian and Lorentzian profiles to describe
the resonant absorption peaks, which are
characteristic of gas molecules in the infrared range.

Prediction neural networks is also
implemented.

It should be noted that interferometric analysis
is not suitable for describing this model, since it
does not take into account changes in the phases of
light waves. Also, the model is not an example of
sensitivity optimization, since it is not aimed at
increasing the accuracy of sensors. It does not apply
to spectral filtering, since it does not deal with the
selection or optimization of the transmission of
certain wavelengths. Thus, the model is a classic
example of infrared spectral analysis, which is based
on the physical principles of light absorption by gas
molecules. Let us dwell in more detail on the
implementation of the model.

As the main component, a model of the spectral
absorption coefficient of gases is used, which allows
us to evaluate how different components of the
mixture absorb light at different wavelengths.

It is implemented according to the formula for
the absorption coefficient and is based on a

combination of Gaussian and Lorentzian profiles:

using

K(ﬂ)=05 Agexp(_(ﬂ_jo)z Al (9)

J T
RNy

O

where Ag and A, are the amplitudes of the Gaussian

and Lorentzian components; A is the central
wavelength; o is the width of the spectral peak.

Next, the spectral light flux model is combined,
which is used to calculate the spectral light flux
passing through the gas mixture. The main function
of this part is to show how the concentration of
gases and their absorption coefficient affect the
spectral distribution of the light flux.

The intensity of the light flux through the gas
mixture is defined as:

(1) =D0 exp(—X K(2) L), (10)

where @ is the initial light intensity; X is the gas
concentration; K(2) is the absorption coefficient; L is
the optical path length.

The next step is to add a model of the light flux
ratio, which is used to assess the effect of gas
absorption in the working channel, compared to
clean air in the reference channel and is determined
by the formula:

R(ﬂ,) — CI)Working (ﬂ’)

It reflects the behavior of the light flux after passing () (11)
through the gas mixture, taking into account the reference

intensity inversion to match the experimental data.
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Next, the filter optimization for sensitivity
equalization is added, which uses the above formula
for determining the gas concentration in the filter
and provides the same sensitivity for different
components. The use of a gas filter in the model is
confirmed by formula (6). The main function of this
filter is to equalize the sensitivity of the analysis,
minimizing the difference in absorption for different
components of the gas mixture.

The formula for determining the optimal gas
concentration in the filter is:

1
Xﬁlter =
K-L- In(RIarget)

where Riarget IS the target ratio of light fluxes.

Finally, prediction using neural networks is
implemented. The neural network uses the
wavelength 4 and the spectral absorption coefficient
K(4) as input features for training. The output is the
predicted intensity of the light flux.

(12)

2.3. Algorithm of the model operation

The algorithm of the operation is shown in
Fig. 1.

The model operation begins with the input
parameters, which include A, X, L and spectral
absorption parameters Aq, A, Ao, o for each
component. Next, the absorption coefficient K(4) is
calculated, which is modeled as a combination of
Gaussian and Lorentzian profiles according to
formula (9). The program is implemented by the

functions gaussian_profile(lambda_range,
lambda_0, amplitude, width);
lorentzian_profile(lambda_range, lambda_0,

amplitude, width); combined_profile(lambda_range,
lambda_0, amplitude, width). This allows us to
accurately describe the spectral features of the gas
mixture and take into account real experimental
dependencies.

Based on the calculated absorption coefficient,
the spectral light flux through the gas mixture is
calculated according to the Bouguer-Lambert-Beer
law according to formula (10), which takes into
account the influence of the gas concentration and
the optical path length on the total signal intensity.
Software  implemented by the  function
light_flux_spectral(X, K _func, L, lambda_range).
After that, the ratio of light fluxes in the working
and reference channels is calculated according to
formula (11), which allows estimating the influence
of the gas mixture on the total intensity.

Software not implemented by a separate
function, but the ratio is calculated as:

K_ratio = Phi_working / Phi_reference

INPUT PARAMETERS

¥

CALCULATION OF
THE ABSORPTION
COEFFICIENT K(4)

v

CALCULATION
OF THE LIGHT FLUX (%)

¥

CALCULATION OF THE RATIO
OF LIGHT FLUXESR(%)

Is Optimization Needed?

\

OPTIMIZATION OF
GAS CONCENTRATION

NEURAL -~
NETWORKTRAINING [~

¥

LIGHT FLUX PREDICTION

1

RESULTS VISUALIZATION

Fig. 1. Model operation algorithm

Source: compiled by the author

If the flux ratio does not correspond to the
specified parameters, the gas concentration in the
filter is optimized according to formula (12), which
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allows ensuring uniform sensitivity of the analysis.
Software implemented by the function in the code
optimize_filter_concentration(K, L, target_ratio).
The optimized parameters are passed to the next
stage of the algorithm, which consists in training a
neural network to predict the spectral light flux.

The input data is Xwain=[4 K(4)], and the output
data is Yirain=® (7).

The MLPRegressor neural network performs
training:

13 \2
L:_Z(yi_yi) . (13)
N =

We see that the training is carried out by
minimizing the mean square error between the
calculated and real values, which allows the model
to adapt to changing spectral parameters. After
training, the network is used to predict the spectral
light flux, which allows us to obtain an estimate of
the parameters of the gas mixture even in the case of
incomplete or noisy data.

Programmatically implemented by functions in
the MLPRegressor code from the sklearn library (a
neural network that is trained on data to model
predicted values). For training -
nn_model fit(X_train, Y_train), and for prediction —
nn_model.predict(X_train). The results are limited
by realistic limits np.clip().

Finally, the prediction results are analyzed and
visualized for comparison with experimental and
theoretical data. In case of significant discrepancies
between the predicted and experimental values, the
model can be retrained by adjusting the input
parameters or updating the training sample.

2.4. Description of the neural network

The final stage of the combined model is the
use of a multilayer perceptron (MLP) to solve the
regression problem. The choice of MLP as the basic
architecture is justified by the fact that this network
is well suited for regression problems and can
approximate complex nonlinear dependencies
between input parameters and spectral light flux.

The neural network receives model data as
input, calculated using physical formulas (9)-(11).
This allows the network to be trained to find
dependencies between gas mixture parameters and
spectral light flux. The use of model data at the
training stage is justified by the fact that they
provide a wide range of parameters, including
limiting cases that may be difficult to access in real
experiments. However, in the end, the neural

network works with real data, so during testing it is
intended to use both model and experimental values.
This makes it possible to adjust the model and adapt
it to the features of real measurements.

2.5. Neural
optimization

network training and

The neural network training process included
preparing a dataset containing experimental spectral
characteristics of gases, normalizing input
parameters, and dividing the sample into training
and test. For training, the Adam optimizer with
adaptive learning rate selection was used, as well as
a loss function to minimize the deviation between
predicted and actual values. The cross-validation
provided generalization of the model and prevented
overtraining.

To optimize the model, a series of numerical
experiments were conducted with different neural
network configurations, which are presented in
Table 1. The selected range of neural network
parameters is justified by the specifics of spectral
analysis of gas mixtures and the need to achieve a
balance between accuracy, performance, and model
stability. The number of hidden layers and neurons
in the layers varies between 2-4 layers and 64-256
neurons, which allows finding a compromise
between the generalization ability of the model and
its computational complexity. A smaller number of
layers speeds up training, but may not be sufficient
for accurate recognition of spectral patterns, while a
larger number of layers and neurons improve the
representation of complex spectral dependencies, but
increases the risk of overtraining.

The activation functions ReLU, Tanh, and
Sigmoid are chosen to take into account different
features of spectral data. ReL.U is effective for deep
networks, Tanh works well with normalized data,
and Sigmoid provides a nonlinear transformation
with probabilistic interpretation. Adam was used for
optimization.

The number of epochs in the range of 1000-
2500 was determined experimentally, since a
sufficient number of iterations is required for
accurate learning, but too large a value can cause
overtraining. The batch size of 32-128 provides an
optimal balance between the learning speed and the
quality of gradient updates, where smaller batches
allow better adaptation to local data features, and
larger ones ensure the stability of the learning
process.
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Table 1. Tested neural network configurations

Number Number of Activation o Number Model
N. of neurons per function Optimizer of accuracy
layers layer epochs (%)
1 2 64 RelLU Adam 1000 92.5
2 3 128 RelLU Adam 2000 94.3
3 3 256 Tanh Adam 2000 91.7
4 4 128 RelLU SGD 2500 88.2
5 2 256 RelL U Adam 1500 95.1
6 3 128 Sigmoid Adam 2000 89.8
7 2 64 RelLU RMSprop 1500 90.6

Source: compiled by the authors

Thus, the selected parameters allow achieving
the optimal ratio between performance, accuracy and
speed of the model in the spectral analysis of gas
mixtures. Based on the results obtained, the optimal
parameters were determined that provide the best
balance between accuracy and performance. The
optimal option is a model with three hidden layers
and 128 neurons in each, the ReLU activation
function and the Adam optimizer, which provides
high accuracy (94.3 %). Increasing the number of
neurons and layers after this level does not provide
significant improvement, and the use of alternative
activation functions, such as Tanh or Sigmoid,
slightly reduces accuracy.

In the proposed model, the problem of limited
data is solved by using synthetic data for initial
training of the neural network. The physical model
of spectral absorption allows generating a large set
of training data covering different gas
concentrations, wavelengths and optical parameters.
This allows providing the necessary variety of input
characteristics and compensating for the lack of real
experimental measurements. Synthetic data are
generated based on physical equations describing the
spectral absorption of gases, according to formulas
(2) and (9). The expansion of synthetic data for the
neural network is carried out by varying the gas
concentration, optical path length and temperature
shifts within the limits of real experimental
conditions. Adding random noise simulates
experimental errors, increasing the stability of the
model. Generation of mixed spectra by linear
combination of components allows  better
recognition of the contribution of each gas. After
training on synthetic data, the model is retrained on
real spectra, which adapts it to the characteristics of
the sensors and experimental conditions. This
approach ensures high accuracy and stability of the
neural network even with a limited amount of
experimental data.

DISCUSSION OF RESULTS

A significant part of scientific works is devoted
to obtaining experimental data that require
theoretical modeling and optimization [33, 34], [35,
36], [37]. In [33], it is proposed to improve
interferometric methods of gas analysis by switching
to measuring frequency shifts, which increases
accuracy and sensitivity. Work [34] describes optical
correlation methods for analyzing gas mixtures, in
particular, the use of a Fabry-Perot interferometer as
a correlation mask, which is discussed in detail in
[35]. In [36], infrared and interferometric methods of
gas analysis are investigated, device schemes and
methods for increasing selectivity with an error of
up to 10 %. Article [37] is devoted to the
metrological support of gas analyzers with an open
cell, in particular, calibration methods that minimize
measurement errors.

Work [36] was chosen to test the system on
experimental data. The validation of the research
results was carried out by comparing theoretical,
experimental and predicted data for the analysis of
spectral light flux through multicomponent gas
mixtures. Theoretical models built on the basis of
Gaussian and Lorentzian profiles were checked for
compliance with experimental absorption spectra for
CH4 and CsHs. The combined model demonstrated
the ability to accurately reflect the position and
width of the absorption peaks, which confirms its
effectiveness for modeling real physical processes.

Prediction using neural networks was tested by
training on theoretical and experimental data, after
which the models were used to predict the spectral
light flux. The predicted results were consistent with
the experimental data, demonstrating the ability of
neural networks to take into account key
characteristics of spectral absorption.

The developed system can be used for the
analysis of gas mixtures in laboratory and industrial
conditions. Testing at different gas concentrations
and optical path lengths showed that the model
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remains stable and adaptive to changes in external
parameters. This indicates its versatility and
practical value in the tasks of environmental
monitoring, industrial control and scientific research.
The graph of the dependence of the normalized light
flux of CH4 on the gas concentration and optical
path length is shown in Fig. 2. It shows how
changing this parameter affects the measurement
results.
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Fig. 2. Dependence of CHj4 light flux on

concentration and optical path length
Source: compiled by the author

Regarding the accuracy of the simulation, a
graph of the model accuracy versus gas
concentration and optical path length was plotted,
which is shown in Fig. 3. The graph shows that at
low concentrations (X<1 %) the model demonstrates
high accuracy of over 90 %, since weak absorption
provides a stable signal. With increasing
concentration to X>3 %, the accuracy decreases due
to saturation effects, which makes it difficult to
distinguish gas components. Similarly, at short
optical path lengths (L<0.3 m), the accuracy remains
high, since absorption is insufficient for significant
signal losses, while at long optical paths (L>0.7 m)
the model loses accuracy due to excessive
absorption, which leads to a decrease in the intensity
of the light flux and loss of information. Optimal
conditions for the model operation are observed at
gas concentrations within X=1-2 % and a length
L~0.3-0.6 m, which provides a balance between
sensitivity and measurement accuracy.

To assess the accuracy of the regression model,
two main metrics were chosen, namely RMSE (root
mean square error) and R? (coefficient of
determination). RMSE shows the average deviation
of the predicted values from the actual ones in the
same units as the input data, and R? demonstrates
how well the model explains the variability of the
data. A wvalue close to 1 means a high
correspondence between the model predictions and
the experimental data. The evaluation results showed

a high efficiency of the neural network in
reproducing the experimental data. The obtained
value of the coefficient of determination R?=0.9957
indicates a high correspondence of the model to the
experimental data, which confirms its accuracy in
predicting the spectral luminous flux. Low values of
RMSE=0.01997 demonstrate minimal errors
between the predicted and actual values, which
makes the proposed model suitable for the analysis
of multicomponent gas mixtures. Thus, the results
confirm that the developed neural network can be
effectively used for spectroscopic analysis,
providing high accuracy and stability when changing
the parameters of the gas mixture.

5 4 93.6

@
o
[N}

Gas Concentration X (%)
Model Accuracy (%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Optical Path Length L (m)

Fig. 3. Model accuracy on gas concentration
and optical path length

Source: compiled by the author

Regarding the validation of the accuracy of the
model on experimental data, the concentration of
methane and propane was calculated using the
Bouguer-Lambert-Beer equation (Table 2). From the
table, we see that the concentration of CH, varies
within 100-475 %. This indicates the need to correct
the absorption coefficients or take into account
additional factors (for example, intermolecular
interactions). The concentration of CsHg in some
cases exceeds the physically possible values
(>900%), which may indicate an error in
determining the absorption coefficients or the
influence of other gases in the mixture. For a more
accurate analysis, it is necessary to take into account
calibration  coefficients, take into account
nonlinearities in spectral absorption, or apply
corrective functions of the neural network.

The main results of the model are displayed in a
graph showing the values of the spectral luminous
flux. Fig. 4 presents the experimental data,
combined calculated and predicted spectral luminous
flux for comparison of their values.
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Table 2. Results of gas mixture analysis and concentration calculation

Wavelength (M) D measured, CH. Kcns XcH. (%) D measured, C:H Kcns Xc:Hs (%)
3.1*10° 0.95 0.20 102.59 0.85 0.15 433.38
3.2*10° 0.80 0.25 357.03 0.65 0.20 861.57
3.3*10° 0.70 0.30 475.57 0.50 0.28 990.21
3.4*10°° 0.85 0.22 295.49 0.70 0.23 620.30
3.5%10° 0.90 0.18 234.13 0.80 0.19 469.78

Source: compiled by the authors.
1.0
0.8 : ! , e o e e e s s e e
é 0.6
0.4 1
=== CH4 Flux (Experimental)
C3H8 Flux (Experimental)
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—+= CH4 Flux (Predicted)
—-- C3HS8 Flux (Predicted)
3 a 5 6 7 8

Wavelength (m)

le—6

Fig.4. Experimental vs combined model vs predicted spectral light flux
Source: compiled by the author

In graph 4, the series of curves Combined
Model is the result of physical and mathematical
modeling of the luminous flux, which takes into
account the spectral absorption of gases according to
the corresponding equation (9) taking into account
the combination of Gaussian and Lorentzian
profiles; and Predicted is the output of the MLP
regression algorithm, which, based on model or
experimental data, predicts the value of the luminous
flux.

Thus, the graph displays three main series of
data for each of the gases CH4 and C3Hs depending
on the wavelength 1. The experimental data are
represented by dashed lines and show the decrease
in the intensity of the luminous flux in the
corresponding spectral regions. This indicates the
absorption of light by gases in the wavelength
ranges of 3.3 um for CHs and 3.4 um for CsHs.

The data have smooth declines, reflecting the
physical properties of gas molecules. The combined
model, shown in solid lines, combines Gaussian and
Lorentzian profiles. It allows for both narrow peaks
(characteristic of a Lorentzian profile) and broader
spectral features (corresponding to a Gaussian
profile). This provides a better agreement with the
real physical characteristics of spectral absorption.
The profiles are inverted to reflect the decrease in
light intensity due to absorption, and they generally
agree well with the experimental data. The predicted
data, shown in dotted lines, were obtained using a
neural network. The input data for the network were
the wavelength and the combined model. The
predicted values generally reproduce the main trends
of the experimental data, including the position and
width of the peaks. This indicates that the model has
successfully learned to capture the key features of
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the dependence of the luminous flux on wavelength.
Overall, the graph demonstrates the consistency of
the combined model and predicted data with
experimental data  [36], confirming their
effectiveness in describing and predicting the
behaviors of the luminous flux in the spectral
absorption regions.

Overall, the experimental data show an accurate
distribution of absorption in gases, the theoretical
model helped to better understand the physical basis
of the experiment, and the neural network
successfully reproduced the main trends, which
indicates its effectiveness in predicting the behavior
of the luminous flux under similar conditions. The
graph demonstrates how different approaches —
experimental, theoretical, and machine learning —
complement each other to better analyze the
absorption process.

CONCLUSIONS

The developed model for the analysis of gas
mixtures using neural networks and combined
spectral models demonstrates an  effective
combination of machine learning methods and
classical physical models. The use of artificial
intelligence algorithms allowed to increase the
accuracy of determining the concentrations of
components in spectral analysis, which is confirmed
by low RMSE values and a high coefficient of
determination R*= 0.9957.

Additionally, the neural network configuration
was optimized to achieve the best balance between
prediction accuracy and calculation speed. Analysis
of different architectures allowed determining
effective parameters, such as the number of hidden
layers, the dimension of neurons and regularization
methods. This allows increasing the performance of
the model while maintaining high accuracy, which is
critically important for its use in large data analysis
systems.

The use of deep neural networks in spectral
analysis of gas mixtures opens up new opportunities
for automation, processing of large data sets and
increasing the adaptability of algorithms to changing
environmental conditions. The developed system
integrates  signal  processing  methods and
optimization approaches to improve spectral
identification, which makes it promising in the field
of information technology, in particular in
environmental monitoring, industrial automation and
intelligent sensor systems.

The practical significance of the work lies in
the possibility of implementing the presented
methodology in intelligent data analysis systems
used for air quality control, monitoring of
production processes and ensuring safety in industry.
Further research can be focused on optimizing the
architecture of neural networks, expanding the set of
input parameters and is integrating the developed
technology with distributed computing systems to
increase the performance of real-time analysis.
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BJOCKOHQJICHHX IMAXO/IB, IO MOETHYIOTh (i3MUHE MOJENIOBAHHA Ta METOAW INTYYHOTO IHTENEKTy. BukopucTaHHS HEHpOHHUX
MEpEeX y CIIEKTPAIbHOMY aHaNi31 JO3BOJSE IiJBHIIUTH TOYHICTH Ta CTIHKICTh PO3PAXyHKIB 32 3MIHHUX YMOB €KCIIEPUMEHTY, IO
BKa3ye Ha akKTyalbHICTh poOoTH. MeTol0 AOC/iIaKeHHsI € po3poOKka KOMOIHOBAHOI MOAENI aHali3y CHEKTPAIBHOTO CBITIOBOTO
MIOTOKY, sIKa MOEAHYE (hi3UIHEe MOAECIIOBAHHS CIEKTPAIFHOIO TIOTJIMHAHHS Ta3iB 13 METOJaM1 MAIIMHHOTO HaBuaHHS. lle 3abe3nedye
IIiIBUILEHY TOYHICTh BU3HAYEHHS KOHIIEHTpaLii KOMITOHEHTIB y 0araTOKOMITOHEHTHHX Ta30BHX CyMIIIaX Ta J03BOJISIE aJalTHBHO
KOPHT'YBaTH IapaMeTpH aHali3y 3aJie)KHO BiJI YMOB BHMIPIOBaHHS. 3alpOIIOHOBAHO IHTErpOBaHY METOIMKY, IO BKIIOYAE
MOJZIEITIOBAHHS CHEKTPAIFHOTO CBITJIOBOTO IOTOKY HAa OCHOBI I'ayCOBHX Ta JIOPEHLIBCHKUX NPO]ITiB IOTINHAHHS, BUKOPHUCTAHHSI
piBasiHb Byrepa-JlamGepra-bepa i BU3HaueHHST KOHICHTpALi ra3iB, a TAKO)K HaBYaHHS HEWPOHHOI MEpeXi /Ul MPOrHO3YBaHHS
CBITJIOBOT'O TIOTOKY. JIJI51 OIIHKK TIPOYKTHBHOCTI PO3pPO0JICHOI MOJIEIIi TIPOBEICHO CEPIF0 YMCEIBHUX SKCIIEPUMEHTIB 3 BapilOBAaHHIM
rapaMeTpiB Mepexi Ta onTuMizamielo KoHgirypamii. OTpuMani pe3yJbTaTH MiITBEPIWIM BHCOKY e(eKTHBHICTH Mozeni, IO
BiZJOOpakeHO y BUCOKOMY 3HaueHHI KoedilieHTa feTepMiHalii Ta HU3bKUX 3HAaYE€HHSIX CepeIHbOKBaApaTHIHOI MOMIIIKH. [IpoBeneHo
TECTYBaHHS MOJICIIi TPH 3MiHI KOHIIGHTpAIii ra3iB Ta JOBKUHHA ONTUYHOTO MUISAXY, IO MiATBEPIUIO 11 CTaOUIBHICTH 1 3IaTHICTH JI0
amanrarii. JlocmipKeHHs MoKas3aio, 0 ONTHMalbHa KOHQITyparis HefipomMepeki BKIIOYAae TPH MPHUXOBaHI MAapH 3 ONTHMAIIBHOIO
KiJIBKICTIO HEHpOHIB, 1m0 3abe3nedye OalaHC MK TOYHICTIO Ta e(eKTHBHICTIO. BHKOpHCTaHO BUINpsAMIIEHY JIiHIHHY aKTHUBAILHHY
¢yHKIiI0 Ut craburbHOI 301KHOCTI, a IS ONTUMI3allii Bar — aJalnTHBHHH METOJ CTOXaCTHYHOI'O TPAJi€HTHOrO CIYCKY, IO
TIOKpAIlye TPOAYKTUBHICTh. 3ampoONOHOBAHA METOAMKA IO€THAHHA (I3MYHOrO MOJETIOBAaHHS Ta MAIIMHHOTO HABYAHHS
3a0e3redye BUCOKY TOYHICTD aHaNi3y T'a30BHX CyMillleil Ta CTiHKICTh /10 Bapiamiif 30BHIIHIX yMoB. HaykoBa HOBH3HA J1OCITiUKEHHS
MOJISAITaE 'y 3aCTOCYBaHHI KOMOIHOBAHOTO TMiJIXOAIYy, IO JO3BOJISIE aJaNTyBaTH MOJENb IO HIMPOKOrO Jiara3oHy CHEKTpalbHUX
xapaktepucTHK. [IpakTrdHa 3HAYYIIICTh POOOTH MONATAE Y MOMKIJIUBOCTI 3aCTOCYBaHHSI pO3pOOJICHOT METOIMKHU ISl IPOMHCIIOBOTO
KOHTPOITIO, €KOJIOT1YHOTO MOHITOPHHTY Ta Ja00paTOpHUX JOCII/PKEHB, 3a0€3Meuyrour HaliifHUH IHCTPYMEHT JUIsl aHaIli3y CKJIaTHHUX
ra3oBHX CyMillIeH.
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