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ABSTRACT

Depth maps are essential in applications such as robotics, augmented reality, autonomous vehicles, and medical imaging,
providing critical spatial information. However, depth maps from sensors like time-of-flight (ToF) and structured light systems often
suffer from low resolution, noise, and missing data. Addressing these challenges, this study presents an innovative method to refine
depth maps by integrating high-resolution color images. The proposed approach employs both hard- and soft-decision pixel
assignment strategies to adaptively enhance depth map quality. The hard-decision model simplifies edge classification, while the
soft-decision model, integrated within a Markov Random Field framework, improves edge consistency and reduces noise. By
analyzing discrepancies between edges in depth maps and color images, the method effectively mitigates artifacts such as texture-
copying and blurred edges, ensuring better alignment between the datasets. Key innovations include the use of the Canny edge
detection operator to identify and categorize edge inconsistencies and anisotropic affinity calculations for precise structural
representation. The soft-decision model introduces advanced noise reduction techniques, improving depth map resolution and
preserving edge details better than traditional methods. Experimental validation on Middlebury benchmark datasets demonstrates that
the proposed method outperforms existing techniques in reducing Mean Absolute Difference values, especially in high-upscaling
scenarios. Visual comparisons highlight its ability to suppress artifacts and enhance edge sharpness, confirming its effectiveness
across various conditions. This approach holds significant potential for applications requiring high-quality depth maps, including
robotics, augmented reality, autonomous systems, and medical imaging. By addressing critical limitations of current methods, the
study offers a robust, versatile solution for depth map refinement, with opportunities for real-time optimization in dynamic
environments.
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INTRODUCTION, FORMULATION OF THE virtual elements with real-world environments. They

PROBLEM allow systems to perceive spatial relationships,
creating immersive and interactive virtual spaces
that transform entertainment, education, and
training. Similarly, autonomous vehicles depend on
depth maps for safety and functionality [2].

They provide the spatial data necessary for
obstacle detection, scene interpretation, and path
planning, ensuring reliable operation in complex and
variable environments.

Beyond navigation and interactivity, depth
maps are crucial in three-dimensional reconstruction
and modeling. They enable the creation of precise
models of objects and environments, serving
industries such as gaming, architecture, and cultural
heritage preservation.

These models facilitate realistic renderings,
design optimization, and the digital preservation of
© Kondratyev S., Antoshchuk S., historically significant sites and artifacts. In medical

Hodovychenko M., 2024 imaging, depth maps enhance visualization

Depth maps are a cornerstone of modern
technology, providing spatial information critical for
understanding and interacting  with  three-
dimensional environments. Their importance spans a
diverse range of applications, from robotics and
automation to advanced imaging and modeling [1].
In robotics, depth maps enable machines to perceive
their surroundings with precision, facilitating tasks
such as navigation, object recognition, and
manipulation in dynamic environments. This
capability is fundamental for the development of
autonomous systems and industrial automation,
where spatial awareness is paramount.

In augmented and virtual reality, depth maps
enhance user experience by accurately blending
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techniques and enable the reconstruction of
anatomical  structures,  supporting  accurate
diagnostics and surgical planning.

Depth maps also play a vital role in surveillance
and security systems, aiding in object tracking and
identification under challenging conditions such as
low light or crowded scenes. Their ability to provide
depth information adds an extra layer of reliability to
systems requiring robust performance in real-world
settings.

Modern methods for generating depth maps can
be broadly categorized into passive and active
approaches. Passive methods rely on analyzing two-
or multi-view color images using stereo
correspondence algorithms. These techniques,
extensively studied over the past decades, estimate
depth values based on either local or global image
processing [3].

Local methods are characterized by higher
computational speed due to their independent
processing of each pixel, but they often exhibit
lower accuracy compared to global approaches,
which optimize depth values for the entire scene
simultaneously. The primary limitations of passive

methods include difficulties in handling low-
textured regions and challenges arising from
occlusions.

In contrast, active methods employ specialized
depth sensors that enable depth map generation at
frame rates comparable to those of color cameras.
The most widely used active depth sensing
technologies include time-of-flight (ToF) sensors
and structured light sensors (Fig. 1) [4].

ToF sensors calculate depth by measuring the
phase shift between emitted and reflected infrared
light, but they often produce noisy depth maps with
low resolution. Structured light sensors project an
infrared pattern onto the scene, which is then
analyzed to compute depth, offering higher
resolution. However, depth maps obtained through
this method frequently suffer from artifacts such as
“holes”, caused by occlusions, low surface
reflectivity, or distortions in the projected pattern [5].

The common challenges associated with depth
maps include low resolution, noise, and missing data
in certain areas. These deficiencies can be partially
mitigated through enhancement methods that
leverage color images, which provide additional
structural information about the scene. The strong
correlation between texture and depth distribution
allows for significant improvements in the quality of
depth maps. Consequently, integrating depth data
with color imagery represents a promising avenue
for advancing depth sensing technologies.

Fig. 1. Color image and depth map, obtained with

structured light sensor
Source: compiled by the [4]

Thus, the purpose of this study is to develop a
method for depth maps refinement using color
images. The proposed approach integrates depth data
with color imagery to enhance the quality of depth
maps and fill missing regions.

1. LITERATURE REVIEW

Depth map enhancement is a complex task
encompassing two primary objectives: increasing
spatial resolution (super-resolution) and restoring
missing data (depth completion). These objectives
are particularly relevant for data obtained using ToF
sensors and structured-light sensors.

Super-resolution aims to improve the spatial
resolution of depth maps, a critical requirement for
applications demanding high-precision visualization.
Depth completion, on the other hand, focuses on
addressing areas with missing depth data, which are
typical in real-world scenarios [6].

Despite their differing goals, these tasks share a
common foundation and can be unified under a
single formulation. Modern methods, independent of
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external datasets, leverage the principle of joint
analysis of edges in depth maps and corresponding
color images. This approach utilizes the additional
information provided by the texture of the color
image to refine the structure of the depth map [7].

The methods addressing these challenges are
broadly classified into two categories: filter-based
methods and optimization-based techniques.

Filter-based methods are efficient due to their
localized nature. One of the pioneering works in this
area is the joint bilateral upsampling technique
proposed in [8]. This method uses high-resolution
color images to refine the edges of low-resolution
depth maps through bilateral filtering techniques.

Subsequently, the approach was improved in
[9], where the traditional separation of color space
and spatial distances was replaced with a unified
geodesic space, leading to enhanced results. Another
work [10] proposed an iterative method based on
cost volumes, which involves multiple depth
candidates. Each candidate is refined using joint
bilateral upsampling.

An important contribution was made in [11],
where the authors introduced guided filtering, which
models a linear relationship between the output
image and the guiding image. This method assumes
that edges in the output are present only when edges
exist in the input.

Further advancements were achieved in [12],
which introduced a weighted mode filtering method
based on a joint histogram of depth candidates. This
method minimizes the L1 norm, making it more
robust to outliers compared to L2 norm
minimization. The authors of [13] proposed trilateral
filtering, which incorporates local gradient
information of depth maps, providing a significant
advantage over bilateral upsampling.

The method proposed in [14] employs an
onion-peeling filtering procedure to consider local
depth gradients for super-resolution. However, all
filter-based methods are limited in their ability to
suppress noise due to the localized nature of their
solutions.

Optimization-based approaches, in contrast to
filter-based methods, are more robust to noise and
can model more complex dependencies. One of the
earliest works in this domain was presented in [15],
where depth map super-resolution was formulated as
a multi-label optimization problem, solved using
Markov Random Fields.

The approach was refined in [16], where a more
adaptive data term tailored to the characteristics of
depth maps was introduced. Another work [17]
proposed dynamic Markov Random Fields,

extending traditional spatial Markov Random Fields
by incorporating temporal information. This
significantly improved the accuracy and robustness
of super-resolution in dynamic scenes.

Further advancements were introduced in [18],
which included non-local regularization using edge,
gradient, and segmentation information extracted
from high-resolution color images.

An innovative contribution was made in [19]
where the authors applied generalized second-order
smoothness constraints guided by an anisotropic
diffusion tensor derived from color images.

The authors of [20] proposed an auto-regressive
model that creates a predictor for each pixel based
on local correlations in the initial depth map and
non-local similarities in registered high-quality color
images. In [21], a robust M-estimator-based
regularization term was developed, enabling the
method to account for inconsistencies between depth
maps and color images.

Thus, the quality of edges in low-resolution
depth maps can be significantly enhanced by
leveraging additional information from the
corresponding edges in color images. This approach
is based on the assumption of a strong correlation
between the edge structures in the color image and
the depth map. However, this assumption does not
always hold true, as substantial discrepancies
between the two can often be observed [22].

The improper utilization of guiding information
provided by the color image may result in two
primary issues: texture-copying artifacts and blurred
edges on the depth map.

Texture-copying artifacts occur when inherently
smooth regions in the depth map are misinterpreted
as textured due to the presence of corresponding
textures in the color image. Conversely, blurred
edges typically arise when relatively homogeneous
regions in the color image align with areas in the
depth map that exhibit strong gradients [23].

Previously proposed methods aimed at
improving depth maps have sought to balance the
contributions of the original depth map and the
corresponding color image. However, these methods
have significant limitations. The  primary
shortcoming is their inability to explicitly evaluate
edge inconsistencies between the depth map and the
color image. This lack of evaluation restricts the
ability to adaptively regulate the influence of
guiding information from the color image during the
depth map refinement process [24].

To address these limitations, an advanced depth
map enhancement method has been developed,
incorporating mechanisms for assessing edge
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discrepancies through both hard and soft decision
strategies. These approaches enable more precise
control over the integration of edge information
from the color image, -effectively mitigating
common errors such as texture copying or edge
blurring [25].

The proposed method is grounded in a
comprehensive analysis of the relationship between
the edge structures of the depth map and the color
image. This allows for a substantial improvement in
the accuracy and quality of the resulting depth maps.
By adopting an adaptive approach that accounts for
both local and global scene characteristics, this
method represents a significant advancement in the
development of more robust and versatile algorithms
for depth map enhancement.

2. PROPOSED METHOD

To evaluate edge inconsistency between a low-
resolution depth map and a high-resolution color
image, it is necessary to consider several key aspects
that determine the accuracy and reliability of such an
analysis.

First and foremost, for a precise measurement
of the inconsistency between the depth edge map
and the color edge map, their resolutions must be
unified.  This  requirement arises  because
discrepancies in resolution make it challenging to
accurately align the structures and positions of the
edges. In this context, the depth map, which may
have lower resolution or missing regions, must be
pre-interpolated to match the resolution of the color
image. This interpolation can be performed using
either regular methods (grid-based) or irregular
methods (considering spatial distribution of the
data), ensuring uniform resolution before edge
detection [26].

A fundamental characteristic underlying this
analysis is the structural similarity between the color
image and the corresponding depth map. This
similarity becomes particularly evident when
comparing their binary edge maps, which capture
the primary contours and boundaries of objects. The
proposed method is based on evaluating the
inconsistency between the binary edge maps
generated separately from the color image and the
depth map.

To detect edges in the coarsely interpolated
depth map and the corresponding color image, the
Canny edge detection operator is employed. This
operator is widely recognized for its ability to
extract clear and stable edges, even in the presence
of noisy data. However, due to the low resolution or
noise in the depth map, the detected edges may shift
from their actual positions. This introduces

additional challenges when comparing these edges
with the registered edges from the high-resolution
color image [27].

Based on the analysis of such deviations,
inconsistent edges in the depth map can be
categorized into two types. The first type includes
edges degraded by coarse interpolation, which can
be refined using guiding information from high-
resolution color edges. The second type represents
true inconsistencies, stemming from fundamental
differences between the depth map and the color
image.

2.1. Hard-decision pixel assignment

An effective approach for classifying these
types of inconsistencies is the hard-decision method,
which definitively assigns each edge pixel to one of
these categories. Inspired by the principles of error
correction coding, where the number of errors must
remain below a threshold to allow successful
correction, the following strategy is proposed: if the
displacement between an edge in the depth map and
the nearest edge in the color image is below a
predefined threshold, the edge is considered
degraded due to interpolation. Otherwise, it is
classified as a true inconsistency.

This approach not only simplifies the analysis
process but also provides a more robust mechanism
for managing edge information, enabling effective
correction and refinement of the depth map using
high-quality ~ color data.  Furthermore, the
adaptability of this methodology enhances its
applicability across a wide range of tasks related to
image processing and depth data analysis.

Target  function. In  accordance  with
Hammersely-Clifford theorem [28], target function
for depth map super-resolution could be calculated
as:

MI
= arg min 2 EXH (my,, vy)
mreM
vREV (1)
+ fz Z f}dHr(mk;ml),
k lENg
He(my, vi) = Imy — vy, (2)
H,.(my, m;) = |my —my, (3)

where M’ is depth map; V is perceived values of
depth attribute; k, [ are pixels of refined depth map;
v Is perceived depth attribute of pixel p; N is
surrounding pixels of pixel p; H, represents the data
component that reflects the consistency between the
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refined depth attribute and the perceived values; H,
represents the regularization component that
promotes a piecewise smooth solution and
discourages differing depth assignments among
adjacent pixels; ¢ is utilized to balance the influence
of the data component and the regularization
component; £¥ is confidence of perceived vy; &f is
anisotropic affinity of k,l which incorporating the
proposed hard-decision pixel assignment.

Outliers Discovery. Depth values observed for
pixels located at depth edges in low-resolution depth
maps are unreliable. This unreliability arises due to
the blurring effect caused by the mixing of depth
values from two distinct layers. Such distortions
make these values unsuitable for inclusion in the
construction of the data term, as they significantly
reduce the accuracy of the model.

In the proposed approach, the Canny edge
detection operator is employed to identify edges in
the low-resolution depth map. This operator has
proven to be an effective tool for detecting edges,
even in low-quality input data. By analyzing
gradients, it enables the identification of key object
boundaries, which, in this context, serve as
indicators of unreliable pixels.

To designate pixels located on edges, a binary
variable &¥ is introduced. The value of this variable
is determined as follows: if a pixel k is classified as
an edge pixel, & is assigned a value of 0, indicating
its exclusion from the data term. Conversely, if the
pixel does not belong to an edge, ¥ is set to 1,
allowing the pixel to be included in the data
component construction process.

This proposed method effectively excludes
pixels with unreliable depth values, minimizing the
influence of artifacts and distortions typically
associated with blurred edge regions. As a result, it
enhances the accuracy of depth map processing and
analysis. Furthermore, the use of the Canny operator
provides a straightforward yet effective procedure
for edge detection, making this approach applicable
to a wide range of tasks in image processing and
depth data analysis.

Anisotropic Affinity obtaining. For each pixel [
situated near pixel k, the anisotropic affinity &X¢,
which quantifies the relationship between the pixel
pair k, L, is computed based on the values of {}‘ and

E}. These values are influenced by the structural
attributes of the pixels within the color image and
the coarsely interpolated depth map, and their
determination follows the rules outlined below:

1) if pixel k is consistently positioned either on
an edge or within a homogeneous region in both the
color image and the coarsely interpolated depth map,

it is presumed that the color distribution aligns with
the depth distribution in the vicinity of k. In such
cases, {f is derived using a weighting function
proposed in the joint bilateral upsampling technique
[29], which evaluates the influence of guidance
provided by the color image. This condition is
referred to as “Color-guided”, highlighting the
coherence between the two data sources;

2) when pixel k lies on an edge in the color
image but not on the coarsely interpolated depth
map, a search window is established on the depth
map. If edges are found within this search window,
E}’f is categorized as “Color-guided”. Otherwise, this
situation is interpreted as genuine edge
inconsistency. Since pixel k resides in a uniform
region of the depth map, f}‘ is assigned a high value
to suppress discrepancies in label assignments
between neighboring pixels. This scenario is
identified as “Uniform region” signifying the
steadiness of depth information in the area;

3) if pixel k is located on an edge in the
coarsely interpolated depth map but not in the color
image, a search window is defined on the color
image. Should edges be present within this window,
&k is classified as “Color-guided”. Otherwise, this
condition is regarded as a true edge inconsistency;

4) since pixel k is positioned near depth edges,
&k is assigned a low value to encourage distinct
label assignments for neighboring nodes. This case
is referred to as “Edge-adjacent” emphasizing the
importance of accommodating local variations in
depth.

This methodology for computing pixel affinities
takes into account the local traits of depth data and
its alignment with color information, facilitating a
more precise and flexible model design.
Consequently, it ensures a detailed and reliable
representation in the processing of depth data for
applications in computer vision. As derived from the
analysis presented, E}‘ and f} are calculated as
follows:

(Al
| e 2 ,Color — guided
(G} _ ) _ALdm
S50 = { e 2 ,Edge — adjacent (4)

ALY,
e o2 ,Uniformregion,
where AL,; is the brightness difference between
pixels k and [; AL, =1 and AL;, = 254.

Due to the symmetrical relationship between
pixels k and [ in the analyzed pair, the value of &,
representing their mutual correlation, is derived
based on £f and &}. Specifically, if £f and ¢} yield
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the same classification, &' can be determined
unequivocally, removing any chance of ambiguity.
Moreover, according to the definitions of the
categories, it is evident that if E}‘ is categorized as a

“Uniform region”, 5} cannot fall into the «Edge-

adjacent» category, and vice versa. This mutual
exclusion guarantees consistency in the attributes of
neighboring pixels and avoids contradictions during
processing.

In more complex scenarios, when &F s
classified as “Color-guided” and E} belongs to a
different category, this indicates that pixel [ is
situated near an edge, either on the color image or on
the depth map. Under these circumstances, the value
of &' should be determined by ¢/, allowing the
approach to consider local scene characteristics and
maintain precision in edge handling.

For better understanding and analysis, all
possible cases are outlined in Table 1. The table’s
first column and row enumerate the possible sets of

values for £f and &, respectively.
For each specified combination of ¢f and &f,
the corresponding value of &f' is listed within the

table. This representation provides a clear
framework for determining pixel pair correlations,
enhancing the comprehensibility of the methodology
and ensuring accuracy in depth data analysis.

Table 1. Evaluation of £§' value based on &§
and &} values

Value of ¢/
k -
Value of §¢ “Color- | “Edge- | “Uniform
guided” | adjacent” | region”
w P “Color- “Edge- | “Uniform
Color-guided guided” | adjacent” | region”
“E i . “Edge- “Edge-
Edge-adjacent adjacent” | adjacent”
o .| “Uniform “Uniform
Uniform region c e
region region

Source: compiled by the authors

By implementing a structured process for
classifying and defining the values of &X', this
method offers flexibility in handling various pixel
types, making it a robust and adaptable solution for
applications involving image processing and depth
map evaluation.

2.2. Soft-decision pixel assignment

approach that utilizes a soft-decision
inconsistency measurement.

This method allows for a more accurate and
quantitative evaluation of the inconsistency between
depth edges and their corresponding color edges,
which is essential for improving the precision of
depth data processing.

The proposed approach is integrated into a
Markov Random Field framework, which
demonstrates a significantly stronger capability in
reducing texture-copying artifacts and maintaining
the integrity of depth edges compared to its hard-
decision counterpart.

A major motivation for adopting this improved
method is the inherent limitations of multi-label
optimization using graph cut algorithms, which often
fail to achieve an exact global minimum.
Additionally, depth values are typically stored in
millimeters as continuous floating-point values:

edge

MI
= arg min z H, (mye, vi.)
A= (5)
FED D e H (memy),
k lENg
He(my, vi) = (my, — vg)?, (6)
H,(my, my) = (my, — my)>. (7

where &f' is calculated using the suggested soft-
decision edge inconsistency measurement.

The key differences between the proposed
model and the one outlined in the previous section
are as follows:

1) assuming Gaussian noise in the original
low-resolution depth map, the data component and
regularization component are formulated using a
guadratic function rather than absolute values. This
modification results in improved noise reduction
performance and significantly enhances the overall
guality of depth map refinement;

2) unlike the hard-decision method, which
suffers from limited accuracy in edge classification,
the proposed approach employs a soft-decision
measurement. The affinities used in the
regularization term are calculated using this soft-
decision edge inconsistency measurement, allowing

Given the shortcomings of the edge for adaptive consideration of local edge variations
inconsistency measurement technique based on and a more precise modeling of the interplay
hard-decision, this section introduces an enhanced between depth and color data. A detailed
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explanation of this method and its implementation is
provided in the subsequent subsections.

This innovative approach greatly enhances the
scope of depth map analysis and processing,
ensuring more accurate artifact suppression and
superior preservation of structural scene details. It
represents a significant step forward in developing
adaptive methodologies capable of effectively
handling diverse types of depth data in computer
vision and image processing tasks.

The assessment of discrepancies between the
edge map of a color image and the edge map of a
depth map can be framed as a bidirectional
evaluation of edge map quality.

However, in previous researches, the
conventional method for analyzing the quality of
edge maps involves measuring the positional offset
of each edge pixel relative to its location on a
reference map. The scenario under consideration
here differs significantly.

In the context of depth map refinement, edge
pixels on the depth edge map and their
corresponding pixels on the color edge map, which
theoretically should coincide in position, often
display deviations. These deviations may result from
pre-processing  operations, such as  coarse
interpolation (as discussed previously), or from
noise introduced by depth sensors.

Consequently, assessing inconsistency based on
positional differences of paired edge pixels, as
employed in traditional edge quality evaluation
methods [30], is not feasible in this case.

Instead, the proposed approach to measuring
edge inconsistency focuses on analyzing the
structural similarity of edge maps.

This methodology considers not only the local
structure formed by neighboring regions around
each pixel but also the global arrangement of the
entire edge map.

This enables a more precise evaluation of edge
alignment in scenarios where simple positional
comparisons of edge pixels are insufficient for
accurate analysis.

To simplify the explanation, the method is
described in terms of a reference edge map and a
target edge map. For every edge pixel on the
reference map, the approach identifies the best
match on the target map within a specified
neighborhood around the corresponding position.

This implies that if the edges in the color map
and the depth map are well-aligned, the
displacement of matched edge pixels will remain
within a small range.

Additionally, it is important to account for not
only the magnitude of the displacement but also its
direction and the uniformity of displacements among
all matched edge pixels in a local region [31].

As such, the proposed approach not only
captures a more accurate representation of the
alignment between edge maps but also incorporates
both local and global structural context.

This makes it a more robust solution for
analyzing and enhancing depth data in the presence
of noise or pre-processing artifacts.

3. EXPERIMENTAL RESULTS

For the experimental evaluation of the proposed
method, datasets from the Middlebury benchmark
were used [32]. As an additional challenge, a
degradation model based on the downsampling
method was applied.

The Mean Absolute Difference (MAD) metric
was employed as a measure to evaluate the accuracy
of the constructed depth map. Mean Absolute
Difference refers to a statistical measure that
calculates the average of the absolute differences
between corresponding elements in two datasets. It
is often used to quantify the overall error or
deviation between predicted and observed values or
between two images in image processing.

Mathematically, it is expressed as:

N
1
MAD = N-lei - yil, (8)
=

where N is the number of elements in the datasets;
x; and y; are the corresponding elements from the
two datasets.

The proposed method demonstrates the lowest
Mean Absolute Difference in most scenarios.

For the challenging case of 16x super-
resolution, where the coarsely upsampled depth map
introduces substantial errors affecting the quality of
the depth edge map, the proposed method achieves
the best results in 3 out of 4 cases.

This highlights the robustness of the proposed
method to variations in the quality of the depth edge
map.
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Table 2. Experimental results of the proposed method and peer methods

Dataset

Method Book Moebius Dolls Reindeer

2x | 4x 8x | 16x | 2x | 4x | 8x | 16x | 2x | 4x | 8x | 16x | 2x | 4x | 8x | 16x
AR 0.13(0.21|0.36 | 0.78(0.13|0.23|0.42|0.83|0.22|0.35|0.52|0.82|0.23|0.42|0.62 | 1.12
Guided 0.23/0.36|059|1.15(0.24|0.39|0.61|1.17|0.29|0.36|0.57|1.15|0.43|0.56|0.89|1.82
JBU 0.18/0.37|10.75|158(0.19|0.38|0.77 | 1.48 | 0.22 | 0.40 | 0.76 | 1.48 | 0.28 | 0.52 | 1.02 | 1.90
TGV 0.20(0.28|0.43]0.84{0.21|0.30|051{0.89|0.23]|0.35[{0.72|2.21|0.33|0.51|1.05|3.07
Bicubic 0.1410.30|1061|1.16(0.14|0.32|0.61|1.15|0.22|0.38|0.68|1.20|0.32|0.57|1.01|1.89
MLS 0.1710.28|10.47|1.18|0.16 | 0.26 | 0.51 | 0.94 | 0.25| 0.38 | 0.62 | 0.99 | 0.34 | 0.65 | 0.77 | 1.45
Method-H 0.15/0.28|10.49|0.93(0.17|0.32|0.64|1.19|0.19|0.38|0.74 | 1.45|0.23|0.42 | 0.77 | 1.52
Method-S 0.10/0.20|0.37|0.74(0.11|10.21{0.39|0.81 | 0.12 | 0.26 | 0.49 | 0.83| 0.14| 0.31 | 0.56 | 1.10

Source: compiled by the authors

Fig. 2 presents a visual comparison of depth

maps for 8x upscaling. From the visual analysis of

the highlighted area, it can be concluded that the AR

c

blurred edges,

Fig. 2. Visual comparison of depth maps:

a - source image; b — real depth map; ¢ — method AR; d — proposed method
Source: compiled by the authors

method suffers from texture-copying artifacts and
whereas the proposed method
significantly reduces such artifacts.
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CONCLUSIONS

The study presented a novel approach for
refining depth maps obtained from depth sensors,
addressing common challenges such as noise, low
resolution, and missing data. Through a
comprehensive  analysis  and  experimental
evaluation, several key conclusions were drawn.

The proposed method effectively leverages
high-resolution color images to enhance the quality
of depth maps. By integrating depth and color
information, the method mitigates artifacts such as
texture-copying and blurred edges, ensuring
improved depth map fidelity.

A significant innovation of the method is its
ability to evaluate edge inconsistencies between
depth maps and corresponding color images. By
employing both hard- and soft-decision pixel
assignment strategies, the approach adapts to local
and global scene characteristics, resulting in more
accurate and robust depth map refinement.

The soft-decision model, integrated within a
Markov Random Field framework, demonstrated
superior performance in preserving structural details
and suppressing artifacts compared to traditional

hard-decision methods. This advancement is crucial
for maintaining the integrity of depth edges in noisy
environments.

Extensive experiments using datasets from the
Middlebury benchmark confirmed the method's
efficacy. The proposed approach consistently
outperformed peer methods in reducing Mean
Absolute Difference, particularly in challenging
scenarios requiring significant upscaling of depth
maps.

The refinement techniques introduced in this
study are applicable across diverse domains,
including robotics, augmented reality, autonomous
systems, and medical imaging. By enhancing the
precision and reliability of depth maps, the proposed
method contributes to advancing technologies
dependent on accurate three-dimensional spatial
data.

In conclusion, the research addresses critical
limitations of existing depth sensing and refinement
techniques, offering a robust and versatile solution
for depth map enhancement. Future work may
explore further optimization and real-time
applications in dynamic environments.
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AHOTALISA

Kaptu ruOuHM MaroTh BaXIIMBE 3HAUEHHS U1 TAKUX 3aCTOCYBaHb, SIK POOOTOTEXHiKa, JOMOBHEHA PEabHICTh, ABTOHOMHI
TPaHCIOPTHI 3acO0M Ta MeIWYHA Bi3yasi3allis, HaJal4d KPUTHYHO BaXKIHMBY MPOCTOPOBY iH(popMmaiito. OfHAK KapTH TIHOHHH,
OTpHMaHi 3a JOMOMOrO0 TaKHX JATYHKIB, SIK AaT4uky 4acy noiboTy (ToF) i cucteMu cTpyKTypOBaHOrO CBIiTIIA, YaCTO CTPAKIAIOThH
BiJl HU3bKOI PO3/IIIBHOI 3[JATHOCTI, IyMY 1 TPOMYIIEHNX AaHUX. J[Jist BUPIMICHHs IUX MPoOJieM Y IIbOMY JOCHI/PKEHHI MPEACTaBICHO
iHHOBALlIfHMI METON YTOYHEHHs KapT TIMOMHM HULIXOM iHTerpamil KOJbOPOBHX 300paKeHb BHCOKOI PO3MiIBHOI 3AaTHOCTI.
3ampornoHOBaHMUIA MTiIXi[] BAKOPHCTOBYE SIK )KOPCTKI, Tak i MSIKi CTpaTerii po3moIiiy miKCceiB A aalTHBHOTO MMOKPAIIEHHS SIKOCTI
KapTu rMOuHN. MoJielnb 3 )KOPCTKHUM PIIlIeHHSIM CIIpoIye Kiacu(ikallito KpaiB, TOI K MOJENb 3 MSIKMM PillIeHHSIM, IHTerpoBaHa B
paMkax Teopii BUMaaKoBHX moiiB MapKoBa, TOKpaIIye y3roHKeHICTh KpaiB i 3MEHIIIye mIyM. AHaI3yl0ud pO301XKHOCTI MiX KpassMu
Ha KapTax MIMOUHU Ta KONBOPOBUX 300pakeHHIX, METO e()eKTUBHO YCYBa€ Taki apTe(akTH, K KOMIIOBAHHS TEKCTYpPU Ta PO3MHUTI
Kkpai, 3a0e3medyroud Kpaile y3ro[keHHs Mik Habopamu ganumx. KiiodoBi iHHOBaIii BKIIOYAIOTH BHKOPHUCTAHHS OIepaTopa
BusiBIieHHs KpaiB KenHi [uis BusiBIeHHs 1 Kiacuikarlii HeBiAMOBIAHOCTEH KpaiB Ta OOYMCIICHHS aHI30TPOIMHOI CIIOPiJHEHOCTI ISt
TOYHOT'O CTPYKTYPHOT'O Mpe/CTaBiIeHHs. Mozelb 3 M'IKHUM MPUHHATTSAM pillieHb BIIPOBA/DKYE MEPEJOBI METOAM 3MEHILICHHS LIyMY,
MTOKPAIYIOYH PO3IUTBHY 3/1aTHICTh KapTH TIHOMHY 1 30epirarodn aetai KpaiB Kpaie, HiX TpaauliiHi Metoau. ExcnepumeHTanbpHa
nepeBipka Ha eTaJoHHHX Habopax manmx Middlebury memoHCTpye, 110 3ampONOHOBAHUI METOA IEPEBEpINye ICHYIOUI METOIH y
3MEHIIICHHI 3HAYeHb CEPEHbOI a0COTIOTHOI Pi3HMII, OCOOIIMBO Y CICHAPISX 3 BHCOKAM MaclITaOyBaHHSAM. Bi3yanbHe MOpiBHSIHHS
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I AKPECITIOE HOT0 3/1aTHICTh MPHUAYIIYBATH apTehakTH 1 MiABHILYBATH Pi3KiCTh KpaiB, IO MiATBEPDKYE HOro e(heKTUBHICTD y Pi3HUX
ymoBax. Llefi minxim mMae 3HaYHMII MOTEHMiaJN UIS 3aCTOCYBaHb, IO MOTPEOYIOTh BHCOKOSKICHHX KapT INIHOMHM, BKJIIOYAIOUH
pOOOTOTEXHIKY, JOMMOBHEHY PEAbHICTh, aBTOHOMHI CHCTEMH Ta MEAUYHY Bi3yami3amio. Y CyBalouy KPUTHYHI OOMEKEHHS iCHYIOUNX
METO/IiB, HOCIHIPKEHHSI IPONOHYe HaAiliHe, YHiBepcaJbHE PIlIeHHS Ul YTOYHEHHS KapT TIMOWHH 3 MOXIMBOCTSIMU ONTHMI3allii B
peaNbHOMY Yaci B AMHAMIYHHX CEpeOBHINAX..

Kurouosi cioBa: xaptu rimbus; 3D-pexoHcTpyKIis; 00poOka 300paKeHb; NPOCTOPOBHI aHANI3 JaHWX, YTOYHEHHS JaHHX;
CEHCOpHA Bi3yallizallisi; BHSBJICHHS KpaiB, 3MCHIICHHS IIyMYy; BHMIPIOBAaHHS TJIMOWHH; OOYMCIIOBANIGHA Bi3yallizallis; JIOTIOBHEHA
pEaNbHICTh; aBTOHOMHI CHCTEMH
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