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ABSTRACT

Facial recognition technology plays a pivotal role in various domains, including security systems, entertainment, and identity ver-
ification. However, the low probability of identifying a person by face can have negative consequences, highlighting the need for the
development and improvement of face recognition methods. The object of research is the face recognition process, with the subject of
the research being a mathematical model for face recognition. One common approach in pattern recognition is using decision rules
based on prediction ellipsoid. A significant challenge in its application is ensuring that the data conforms to a multivariate normal
distribution. However, real-world data often doesn't adhere to this assumption, leading to reduced recognition probability. Therefore,
there's a necessity to enhance mathematical models to accommodate such deviations. Another factor that can impact the outcome is the
selection of different distribution quantiles, such as those from the Chi-square and F-distribution. For large datasets, the utilization of
Chi-square and F-distribution in prediction ellipsoids typically results in similar probabilities, but there are data for which this is not the
case and the application of prediction ellipsoids with different quantiles of the distributions gives different results. This study investi-
gates the application of prediction ellipsoids in facial recognition tasks using different normalization techniques and distribution quan-
tiles. The purpose of the work is to improve the probability of face recognition by building a ten-variate prediction ellipsoid for nor-
malized data with different quantiles of distributions. We conducted experiments on a dataset of facial images and constructed predic-
tion ellipsoids based on the Chi-square and F-distribution, utilizing both univariate and multivariate normalization techniques. Our
findings reveal that normalization techniques significantly enhance recognition accuracy, with multivariate methods, such as the ten-
variate Box-Cox transformation, outperforming univariate approaches. Furthermore, prediction ellipsoids constructed using the Chi-
square distribution quantile generally exhibit superior performance compared to those constructed using the F-distribution quantile.
Future investigations could explore the efficacy of alternative normalization techniques, such as the Johnson transformation, and ana-
lyze the construction of prediction ellipsoids with alternative components of the ellipsoid equation.
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INTRODUCTION This decision rule determines how the facial
features of an individual are assigned to predefined
categories or classes within the system.

One of the main challenges in current methods
of face recognition is the assumption that the data
follows a multivariate normal distribution. However,
this is often not the case, as real data can have a non-
Gaussian distribution. This can lead to errors in the
face recognition process. Therefore, there is a need
to develop mathematical models that can account for
deviations from the normal distribution of data.

The object of study is the face recognition pro-
cess, which consists of several key steps: image
preprocessing, feature extraction, and pattern recog-
nition [2], which uses mathematical models to de-
© Prykhodko S., Trukhov A, 2024 termine which individual the feature vector matches.

Facial recognition is a rapidly growing technol-
ogy that has many applications in various domains
such as computer vision, security systems, and oth-
ers. It is a technique that automatically recognizes
individuals by analyzing their unique facial features,
such as the shape of the eyes, nose, mouth, and other
attributes. Facial recognition technology is constant-
ly evolving and improving, resulting in higher accu-
racy and enabling new possibilities for its use in
different aspects of life [1].

The performance and reliability of facial recog-
nition systems depend largely on the specific deci-
sion rule that is used for the recognition process.
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The subject of study is a mathematical model
for face recognition. One of the common methods in
pattern recognition is to construct decision rules
based on prediction ellipsoids.

The purpose of the work is to improve the
probability of face recognition by building a ten-
variate prediction ellipsoid for normalized data with
different quantiles of distributions.

ANALYSIS OF LITERARY DATA

Traditionally, face recognition systems have
commonly employed classification techniques, aim-
ing to assign input face images to predefined catego-
ries, such as linear discriminate analysis [3, 4], sup-
port vector machine [5], and principal component
analysis combined with face recognition by using K-
Nearest-Neighbor [6] and neural networks [7], in-
cluding convolutional neural networks [8].

However, these methods are ineffective in
situations where there are only representatives of
one class. To overcome this limitation, the one-class
classification approach has emerged [9]. This
method, similar to anomaly detection, focuses on
learning representations of a single class, usually the
target one, without explicit knowledge of other
classes, treating representatives of these other
classes as anomalies.

Within the realm of one-class classification,
both prediction ellipsoid [10] and neural network-
based methods [11, 12] stand out as popular choices.
Prediction ellipsoid methods offer simplicity in
implementation and provide interpretability that
facilitate result interpretation. In contrast, neural
network-based approaches, while powerful, often
lack transparency in their decision-making process,
making it challenging to discern the factors
influencing classification outcomes.

A prediction ellipsoid is a region in multivariate
space within which future observations are expected
to fall with a certain level of confidence. The center
of the ellipsoid is the mean vector, and the size and
orientation of the ellipsoid are determined by the
covariance matrix and the confidence level [13].

Face recognition is facilitated by the prediction
ellipsoid, which delineates the allowable space for
each class, containing elements within the same
class while excluding those from other classes. The
left part of the equation represents the squared Ma-
halanobis distance (SMD), a measure of how far a
point is from the mean, considering the covariance
structure of the data. Constructing a prediction ellip-
soid involves calculating SMD for each observation,
and determining critical values from the Chi-square

or F-distribution based on the desired confidence
level and number of dimensions [14].

Therefore, the probability that a point lies in-
side the ellipsoid is equal to the probability that the
SMD is less than or equal to a constant. This con-
stant can be derived from the quantile of the Chi-
square or F-distribution for a given confidence level.
The value of the SMD follows a Chi-squared distri-
bution with k degrees of freedom, where k is the
number of characteristics [15]. In this case, the pre-
diction ellipsoid has a form:

(x-X)'s{(x-X)=1}, (1)

where
S =%ZN1(XI.—>_<XX,. —i)[ .

Prediction ellipsoids can also be constructed us-
ing the squared Mahalanobis distance and the F-
distribution. The F-distribution is a ratio of two in-
dependent Chi-square distributions, divided by their
degrees of freedom. The value of the constant is then
given by a formula that involves the F-distribution
[16]:

k!N2 —1!

(X_X)TSQ(X_X): N(N—k)

Fynvka- (2

The creation of the ellipsoid is based on the
presumption that the data conforms to a multivariate
normal distribution [17]. The Mardia test [18] is
used to check whether the data deviate from
normality. Among the data that may deviate from
Gaussian distribution are the facial metric samples
examined in this study. To address practical chal-
lenges associated with the Mahalanobis distance
when dealing with non-Gaussian data, normalization
techniques are employed. These techniques facilitate
problem resolution for data with multivariate distri-
butions departing from normality [19].

Among the most widely used data normaliza-
tion techniques are categorized into two main types:
univariate and multivariate transformations. Uni-
variate transformations, while simpler to apply,
overlook the correlations between features, often
resulting in inferior outcomes. Examples include the
univariate logarithmic transformation and the uni-
variate Box-Cox transformation (BCT) [20]. On the
other hand, the multivariate Box-Cox transfor-
mation, although more complex to implement, tends
to yield superior results. A distinctive aspect of this
study is the novel application of multidimensional
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normalization transformation in the realm of face
recognition.

When dealing with large datasets, both the Chi-
square and F-distribution tend to approach the nor-
mal distribution due to the central limit theorem. As
a result, their behavior becomes increasingly similar,
leading to comparable probabilities when construct-
ing prediction ellipsoids. This phenomenon occurs
because the Chi-square distribution is derived from
the sum of squared standard normal variables, while
the F-distribution arises from the ratio of two inde-
pendent Chi-square variables [21]. In practice, re-
searchers often observe converging results between
the two distributions when analyzing large datasets,
making them interchangeable in many cases for
constructing prediction ellipsoids

Nevertheless, in practice, there are cases when
the application of different quantiles of the distribu-
tions for construction prediction ellipsoids gives
different results, so it makes sense to check this and
compare the results of the application of the predic-
tion ellipsoids for normalized data based on Chi-
square and F-distributions.

FORMAL PROBLEM STATEMENT

Suppose given the original data sample set of
the ten geometrical facial features the multivariate
distribution for which is not Gaussian. Suppose that
there are bijective ten-variate normalizing transfor-

mation \yz{\py,\ul,wz,...,\ulo}T of non-Gaussian
random vector X = {Xl,XZ,...,XIO}T to Gaussian

random vector Z = {Zl AT }T is given by:

Z=vy(X). 3)
and the inverse transformation for (1)
X =y (2). 4)

It is required to build the prediction ellipsoid
for normalized data using the Chi-squared distribu-
tion, based on (1):

(z-2)'s7(z-Z)=+2. (5)

and using F-distribution, based on (2):

_ _ 2_
(z-2) s7(z- )=%gv—_;%Fk,N_k,a, ©)

where:
1 N

S, =N§1(zi—2)(zi—Z)T.

Also, it is required to develop the decision rules
for face recognition based on equations (5), (6), and
the transformations (3) and (4) and compare the
results.

MATERIALS AND RESEARCH METHODS

To generate feature vectors, a custom Python
script was developed utilizing the Dlib computer
vision framework [22]. Upon identifying a face
within the source image, the script executes a series
of image manipulation procedures, including facial
cropping and alignment to standardize eye-level
positioning. These preprocessing techniques aim to
mitigate distortions arising from variations in facial
orientation [23]. Finally, the script extracts a collec-
tion of attributes from the aligned facial image, with
each attribute representing the pixel-based distance
between predefined facial landmarks provided by
the Dlib library.

Fig. 1. Distances between facial landmarks used

for feature vector creation
Source: compiled by the authors

After reviewing the referenced studies [24, 25],
researchers identified 17 significant facial land-
marks. Utilizing the pixel distances between these
landmarks (Fig. 1), a 10-feature vector was con-
structed. Symmetrical distances were averaged, is
crucial as human faces exhibit inherent symmetry.
This process consolidates information from corre-
sponding points on both sides of the face, enhancing
robustness to variations like lighting and facial ex-
pressions

To address facial position variations in images
and differences in camera-to-face distances, a nor-
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malization process is implemented by dividing each
feature by the eye-to-eye distance [26, 27]. The de-
scription of the obtained vector is shown in

Table 1.

Table 1. Description of the feature vector

Equation Description

Average distance from eyes to

! (vi+v2)l2d nose midpoint

Average distance from eyes to

2 (v3+v4)2d mouth center

Average distance from eyes to

3 | (v5+v6)/2d eyebrow center

Average distance from eye-

4| vTHvB)2d |y s to nose apex

Average distance from eye

5 | (v9+v10)/2d
corners to nose apex

6 vil/d Inter-eyebrow distance

7 vi2/d Nose to mouth midpoint dis-
tance

8 v13/d Mouth corner distance

9 v14/d Nose edge distance

10 v15/d Mouth to chin distance

Source: compiled by the authors

A dataset sourced from reference [28] compris-
ing 200 photographs for each of the two persons was
selected. Out of these, 100 photos were allocated for
constructing a prediction ellipsoid to recognize the
first person, while the remaining 300 were designat-
ed for testing purposes. Consequently, 400 feature
vectors, each comprising 10 elements, were ac-
quired, with one vector corresponding to each photo.

The mean vector of samples

)_(z{)_(l,)_(z,...,)_(lo}T of the first person to build

the prediction ellipsoid is represented as: X =
{0.6330; 1.1629; 0.3010; 0.6259; 0.2994; 0.3670;
0.3015; 0.8011; 0.3584; 0.6290}.

Additionally, the covariance matrix of the sam-
ple is presented in Table 2, while Table 3 delineates
the characteristic ranges.

The Mardia test was employed to evaluate the
deviation of the multivariate data distribution from
normality. This test relies on analyzing the multivar-
iate skewness 1 and kurtosis B, of the dataset, serv-
ing as metrics for gauging the extent of deviation
from the normal distribution.

These parameters are computed using the fol-
lowing formulas:

B, =%AN _N{(X,. —X)ngg(xj —X)F,

i=1 j=l1

(7

Br = % i{(x./ -XJ'sy (Xj _i)}z : (8)

j=1

As per the Mardia test, the multivariate distri-
bution of the obtained sample is deemed non-
Gaussian. This determination is based on the test
statistic for multivariate skewness NBi/6, which
stands at 289.20, surpassing the Chi-Square distribu-
tion quantile of 277.77 for 220 degrees of freedom
and a significance level of 0.005. Conversely, the
test statistic for multivariate kurtosis B», measuring
122.35, does not exceed the Gaussian distribution
quantile of 127.97. This reference value corresponds
to a mean of 120, a variance of 9.6, and a signifi-
cance level of 0.005. Consequently, there arises a
necessity to implement a normalizing transformation

3).

Table 2. The covariance matrix of the initial sample

0.00101 | 0.00089 | -0.00060 | -0.00006 | -0.00012 | -0.00011 | -0.00052 | 0.00001 | 0.00034 | -0.00113
0.00089 | 0.00200 | 0.00000 | 0.00026 | -0.00016 | 0.00006 | 0.00052 | -0.00004 | 0.00046 | 0.00024
-0.00060 | 0.00000 | 0.00111 | 0.00047 | 0.00001 | 0.00019 | 0.00071 | -0.00009 | -0.00009 | 0.00121
-0.00006 | 0.00026 | 0.00047 | 0.00039 | -0.00003 | 0.00017 | 0.00031 | -0.00027 | -0.00006 | 0.00034
-0.00012 | -0.00016 | 0.00001 | -0.00003 | 0.00008 | 0.00002 | 0.00003 | 0.00000 | -0.00010 | 0.00008
-0.00011 | 0.00006 | 0.00019 | 0.00017 | 0.00002 | 0.00073 | 0.00027 | 0.00003 | -0.00002 | 0.00002
-0.00052 | 0.00052 | 0.00071 | 0.00031 | 0.00003 | 0.00027 | 0.00119 | -0.00015 | -0.00007 | 0.00149
0.00001 | -0.00004 | -0.00009 | -0.00027 | 0.00000 | 0.00003 | -0.00015 | 0.00276 | 0.00100 | 0.00129
0.00034 | 0.00046 | -0.00009 | -0.00006 | -0.00010 | -0.00002 | -0.00007 | 0.00100 | 0.00104 | 0.00016
-0.00113 | 0.00024 | 0.00121 | 0.00034 | 0.00008 | 0.00002 | 0.00149 | 0.00129 | 0.00016 | 0.00416
Source: compiled by the [28]
Table 3. Ranges of characteristics of the initial sample
1 2 3 4 5 6 7 8 9 10
Min | 0.55734 | 1.07032 | 0.23998 | 0.57780 | 0.27292 | 0.31088 | 0.22610 | 0.69870 | 0.29332 | 0.46811
Max | 0.70846 | 1.28726 | 0.39580 | 0.66983 | 0.32167 | 0.43156 | 0.39956 | 1.00075 | 0.46041 | 0.80951
Source: compiled by the [28]
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The Box-Cox transformation is a statistical tech-
nique designed to stabilize variance and bring a da-
taset into closer alignment with the assumptions of
normality, especially when dealing with skewed data.

This univariate transformation targets a single
variable or univariate data, employing the formula
[29]:

zj:x(xj)z{(th'j_lj/kf’xfio; ©)

m(x,f 2, =0

J

It is particularly advantageous when addressing
issues like heteroscedasticity or non-normality in the
dataset. The selection of the optimal value of A is a
crucial step, often accomplished through optimiza-
tion techniques like maximum likelihood estimation
or cross-validation. Once the optimal A is deter-
mined, the transformation is applied to the original
data, resulting in a new dataset that better adheres to
the assumptions of normality and homoscedasticity.

In the context of the original BCT, a univariate
transformation is performed with a single parameter
A, applied element-wise to a vector. In the case of
multivariate data, this transformation is typically
applied k times as a univariate mapping to each col-
umn, each with its unique A value from k-variate
vector © = {Aj, Ay, ..., Ac}. The determination of the
optimal A is a critical step, aiming to bring the distri-
bution of the transformed output value as close as
possible to a normal distribution.

Maximum likelihood estimation stands out as a
popular method for finding this optimal A value [30]:

l(x)=—ﬁh1§w+(k—l)§m(m.(10)

2 i=1 i=1

The multivariate BTC extends the concept of
the univariate BCT to accommodate multiple varia-
bles or multivariate data. The multivariate BTC
method employs a separate transformation parameter
for each variable in the dataset. This approach al-
lows for tailoring the transformation to the charac-
teristics of each variable individually. When the
variables are transformed to achieve joint normality,
they tend to exhibit approximate linear relationships,
remain constant in conditional variance, and approx-
imate marginal normality in distribution. In the con-
text of using a multivariate BCT, the components of
the transformation vector Z are defined as (9).

For the multivariate Box-Cox transformation,
the likelihood function is:

Following the implementation of normalizing
transformations, a prediction ellipsoid is constructed
using (5):

(Z_Z)TSEI (Z—Z): %10, 0.005 - (12)

The critical value of the Chi-square distribution
corresponding to a significance level of 0.005 and 10
degrees of freedom is determined to be 25.19.

Based on (6), a ten-variate prediction ellipsoid
was constructed utilizing the F-distribution:

-7 s7z-2)- -1

N(N k)" 10900005 (13)

The critical value of the F-distribution corre-
sponding to a significance level of 0.005, 10, and 90
degrees of freedom is determined to be 2.77. The
right side of the equation is 30.77.

NORMALIZATION OF THE TRAINING
SAMPLE AND CONSTRUCTION OF
PREDICTION ELLIPSOIDS

The initial sample undergoes a univariate BCT.
Upon solving the task using the maximum likelihood
method of the logarithmic function (10), obtained
the following parameter estimates: 711 =1.7451,

A A A

Ay =-4.5493, Ay =-0.7145, Ay =0.3643,

As =5.1055, i =-0.8785, A, =-0.4222,

hg = 27221, ko =-1.8611, A, = 1.0102.
Following the application of the univariate
Box-Cox transformation using components (9),
where each element of vector Z is computed inde-
pendently of the others, a sample was derived where

the vector of means Z:{ZI,ZQ,...,ZIO}T is Z =
{-0.31461; 0.10718; -1.92555; -0.43103; -0.19545;
-1.62004; -1.57614; -0.31836; -3.16345; -0.37015}.
Additionally, the covariance matrix of the sample is
presented in Table 4, while Table 5 delineates the
characteristic ranges.

The normalized sample, achieved through the
application of the univariate BCT, does not deviate
from the multivariate normal distribution. This is
evident as the test statistic for multivariate skewness
NBi/6 measures 276.51, falling below the critical
threshold of 277.77. Similarly, the test statistic for
multivariate kurtosis B2 registers at 120.4, remaining
below the critical value of 127.97.

The initial sample undergoes the ten-variate

k N N BCT. Upon solving the task using the maximum
1(x,0)= 2(7» j _I)Z]n(xji)_?hl[det(sz)]- (11)  likelihood method of the logarithmic function (11),
7= =l obtained the following parameter estimates:
Ay =-0.5799, Ay =-0.9732, Ay =0.4871,
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Ay =2.888, s =4.0714, Ly =-0.231, A, =0.087,

hg =-1.2973, ho =-1.1866, i,y = 1.3321.
Utilizing the ten-variate Box-Cox transfor-

mation to normalize the initial sample using compo-

nents (9), the sample was derived where the vector

of means Z= {Z,ZZ,...,Z]O}T is Z = {-0.31461;
0.10718; -1.92555; -0.43103; -0.19545; -1.62004;
-1.57614; -0.31836; -3.16345; -0.37015}. Addition-
ally, the covariance matrix of the sample is presented
in Table 6, while Table 7 delineates the characteristic
ranges.

Following the normalization of data using both
univariate and multivariate Box-Cox transfor-
mations, ten-variate ellipsoids were constructed ac-
cording to using (12) and (13). Subsequently, a

computer program was developed to execute exper-
iments based on the constructed models. This pro-
gram was developed using the Python programming
language.

Based on decision rules (1, 2, 12, 13), eight
prediction ellipsoids were created for both non-
normalized and normalized data using logarithmic
transformation [28], univariate, and multivariate
Box-Cox transformations with Chi-square and F-
distribution quantiles.

A comparative analysis was conducted using a
test set consisting of 300 images, where 100 photo-
graphs belong to person 1, for which prediction el-
lipsoids were build, and 200 are photographs of an-
other person.

Table 4. The covariance matrix of the sample normalized through the univariate
Box-Cox transformation (BCT)

0.00051 | 0.00027 | -0.00329 | -0.00006 | 0.00000 | -0.00054 | -0.00197 | 0.00006 | 0.00437 | -0.00080
0.00027 | 0.00035 | -0.00016 | 0.00014 | 0.00000 | 0.00022 | 0.00115 | -0.00006 | 0.00294 | 0.00005
-0.00329 | -0.00016 | 0.06670 | 0.00489 | 0.00000 | 0.00923 | 0.02936 | -0.00234 | -0.01845 | 0.00937
-0.00006 | 0.00014 | 0.00489 | 0.00070 | 0.00000 | 0.00149 | 0.00234 | -0.00085 | -0.00193 | 0.00046
0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | -0.00001 | 0.00000
-0.00054 | 0.00022 | 0.00923 | 0.00149 | 0.00000 | 0.03103 | 0.00950 | 0.00025 | -0.00533 | 0.00025
-0.00197 | 0.00115 | 0.02936 | 0.00234 | 0.00000 | 0.00950 | 0.03558 | -0.00250 | -0.01137 | 0.00810
0.00006 | -0.00006 | -0.00234 | -0.00085 | 0.00000 | 0.00025 | -0.00250 | 0.01315 | 0.03704 | 0.00273
0.00437 | 0.00294 | -0.01845 | -0.00193 | -0.00001 | -0.00533 | -0.01137 | 0.03704 | 0.34189 | 0.00232
-0.00080 | 0.00005 | 0.00937 | 0.00046 | 0.00000 | 0.00025 | 0.00810 | 0.00273 | 0.00232 | 0.00412

Source: compiled by the authors

Table 5. Ranges of characteristics of the sample normalized through the univariate BCT

1 2 3 4 5 6 7 8 9 10
Min | -0.36642 | 0.05845 | -2.48076 | -0.49720 | -0.19561 | -2.03872 | -2.06852 | -0.60754 | -4.72990 | -0.53009
Max | -0.25900 | 0.15013 | -1.31438 | -0.37285 | -0.19527 | -1.24335 | -1.12041 | 0.00075 | -1.73859 | -0.19029
Source: compiled by the authors
Table 6. The covariance matrix of the sample normalized through the ten-variate BCT
0.00436 | 0.00134 | -0.00233 | -0.00006 | -0.00001 | -0.00080 | -0.00323 | 0.00007 | 0.00616 | -0.00204
0.00134 | 0.00106 | -0.00002 | 0.00008 | 0.00000 | 0.00017 | 0.00112 | -0.00004 | 0.00281 | 0.00013
-0.00233 | -0.00002 | 0.00374 | 0.00036 | 0.00000 | 0.00115 | 0.00381 | -0.00035 | -0.00198 | 0.00192
-0.00006 | 0.00008 | 0.00036 | 0.00007 | 0.00000 | 0.00023 | 0.00038 | -0.00018 | -0.00027 | 0.00012
-0.00001 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | -0.00002 | 0.00000
-0.00080 | 0.00017 | 0.00115 | 0.00023 | 0.00000 | 0.00846 | 0.00270 | 0.00012 | -0.00122 | 0.00009
-0.00323 | 0.00112 | 0.00381 | 0.00038 | 0.00000 | 0.00270 | 0.01047 | -0.00090 | -0.00277 | 0.00378
0.00007 | -0.00004 | -0.00035 | -0.00018 | 0.00000 | 0.00012 | -0.00090 | 0.00705 | 0.01390 | 0.00175
0.00616 | 0.00281 | -0.00198 | -0.00027 | -0.00002 | -0.00122 | -0.00277 | 0.01390 | 0.08567 | 0.00116
-0.00204 | 0.00013 | 0.00192 | 0.00012 | 0.00000 | 0.00009 | 0.00378 | 0.00175 | 0.00116 | 0.00305
Source: compiled by the authors
Table 7. Ranges of characteristics of the sample normalized through the ten-variate BCT
1 2 3 4 5 6 7 8 9 10
Min | -0.69589 | 0.06576 | -1.02852 | -0.27523 | -0.24437 | -1.34124 | -1.39454 | -0.45651 | -2.76948 | -0.47758
Max | -0.38152 | 0.22388 | -0.74583 | -0.23742 | -0.24319 | -0.92748 | -0.88171 | 0.00075 | -1.27277 | -0.18419
Source: compiled by the authors
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The final evaluation of the model's quality in
face recognition task should consider not only indi-
vidual metrics but also their alignment with specific
requirements and the application context. Currently,
there is no universal set of metrics suitable for all
scenarios. Therefore, it is recommended to carefully
select and combine metrics, considering the task's
specificity, to obtain the most comprehensive and
relevant assessment of the model's performance.

Three important metrics were used to evaluate
the quality of recognition of the created models: the
probability of recognizing person 1 (PRP), type II
errors, and accuracy.

PRP measures how accurately the model recog-
nizes the face for which the corresponding predic-
tion ellipsoid was built.

Type Il errors allow evaluation of the probabil-
ity with which the model mistakenly identifies an-
other person as the one for whom the prediction
ellipsoid was built. For example, if the prediction
ellipsoid is created for person A, but the model mis-
takenly recognizes person B as person A, this is
considered a type II error. Minimizing such errors is
important for increasing the model's reliability.

Accuracy is a general metric that evaluates the
proportion of correct predictions made by the model.
To assess accuracy, the ratio of the number of correct
predictions to the total number of predictions is
used.

The results of applying prediction ellipsoids to
non-normalized and normalized data using the loga-
rithm, univariate BCT, and ten-variate BCT with
different quantiles of the distributions are shown in
Table 8.

As it is evident from Table 8, the best accuracy
has the application of prediction ellipsoid for nor-
malized data based on ten-variate BCT with Chi-
square quantile.

DISCUSSION AND FUTURE RESEARCH

When utilizing the Chi-square distribution
quantile for constructing prediction ellipsoids, a
consistent enhancement in accuracy is observed
across all normalization techniques compared to
non-normalized data. This underscores the pivotal

role of normalization in augmenting recognition
performance. Notably, the most substantial accuracy
improvement, reaching 97.333 %, is achieved with
the application of ten-variate BCT normalization.
This underscores the effectiveness of multivariate
normalization techniques in enhancing recognition
accuracy when employing the Chi-square distribu-
tion.

In contrast to the Chi-square distribution, the F-
distribution quantile yields diverse outcomes across
various normalization techniques. While certain
techniques exhibit improved accuracy compared to
non-normalized data, others display a decrease in
accuracy. Intriguingly, the highest PRP of 100% is
attained when applying the F-distribution with nor-
malized data. However, for specific normalization
techniques, the F-distribution might not yield signif-
icant enhancements in recognition accuracy, as the
accuracy of application univariate BCT reached the
lowest value, even compared with the non-
normalized data. The best accuracy for the predic-
tion ellipsoid with the quantile of F-distribution was
obtained by applying it to the normalized data using
the logarithm and the ten-variate BCT.

Across both distribution quantiles, it is evident
that normalization techniques, particularly multivar-
iate methods like the ten-variate BCT, consistently
contribute to improved recognition accuracy in
comparison to non-normalized data. The selection of
the distribution quantile significantly influences the
efficacy of normalization techniques on recognition
accuracy. While the Chi-square distribution general-
ly leads to improved accuracy, the impact of the F-
distribution varies depending on the normalization
technique.

The selection of distribution quantiles can vary
depending on the field of application. In the enter-
tainment industry, opting for the F-distribution is
sensible because prioritizing the recognition of per-
son 1 outweighs the concern for type II errors. Con-
versely, in security system development, minimizing
type II errors is crucial, and this objective is
achieved by using the Chi-square quantile.

Table 8. Comparison of the results

Quantiles Metrics Non-normalized, % | Log, % | Univariate BCT, % | Ten-variate BCT, %
PRP 92 95 94 97
Chi-square Type II errors 4.5 5.5 5.5 2.5
Accuracy 94.333 94.667 94.333 97.333
PRP 99 100 100 100
F-distribution | Type II errors 6.5 6.5 10 6.5
Accuracy 95.333 95.667 93.333 95.667

Source: compiled by the authors
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Overall, the prospect of further research in faci-
al recognition and prediction ellipsoid construction
is promising. Applying other multivariate normaliza-
tion techniques, such as the Johnson transformation,
holds promise for advancing research in facial
recognition and prediction ellipsoid construction.
Furthermore, focusing on the right part of the predic-
tion ellipsoid represents a valuable avenue for future
research. This could involve exploring methods for
ellipsoid parameters or developing novel approaches
for identifying and prioritizing key facial features.
By addressing these challenges and exploring new
methodologies, it is possible to create more effective
and reliable facial recognition systems with broader
applications in various domains.

CONCLUSIONS

Normalization enhances recognition accuracy,
across both Chi-square and F-distribution quantiles,
normalization techniques consistently lead to im-
proved recognition accuracy compared to non-
normalized data. This underscores the importance of
normalization in enhancing the effectiveness of pre-
diction ellipsoids for facial recognition tasks.

Multivariate normalization outperforms uni-
variate. The results indicate that multivariate nor-
malization techniques, such as the ten-variate Box-
Cox transformation, consistently yield better

recognition accuracy compared to univariate
normalization methods. This suggests that capturing
relationships between multiple facial features en-
hances the probability of face recognition as a result
of application prediction ellipsoids.

Chi-Square  distribution  outperforms  F-
distribution. Generally, prediction ellipsoids con-
structed using the Chi-square distribution quantile
exhibit better recognition accuracy compared to
those constructed using the F-distribution quantile.
This suggests that the Chi-square distribution may
be more suitable for facial recognition tasks, espe-
cially in scenarios where minimizing type Il errors is
crucial.

Further investigation is required to understand
the underlying factors contributing to the observed
differences in recognition accuracy. Future research
could explore additional normalization techniques,
and model parameters to optimize the recognition
probability of prediction ellipsoids for facial recog-
nition tasks.
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AHOTAIIISA

TexHomnorist po3mi3HaBaHHsI OOJIMYYS BiAirpae KIIOYOBY POJb Y Pi3HHUX cdepax, BKIIOYAIOUN CUCTEMH OE3NeKH, po3Bary Ta Iie-
peBipky ocodu. OmHak HU3bKa HMOBIPHICTH iEHTH(IKALIT JIOIMHU 32 OOMMYYAM MOYKE MAaTH HETaTWBHI HACIIJIKH, IIO MiIKPECITIOE
HEOOXiTHICTE PO3pPOOKH Ta BIOCKOHAIEHHS METOMIB po3mi3HaBaHHS oOmmy4usi. O0’€KTOM MOCHiKEHHS € IMpoIec PO3IMiZHaBaHHI
o0y Ysl, MPeIMETOM AOCIIDKEHHs] € MaTeMaTHYHa MOJENb Po3Mi3HaBaHHS 00nmuyys. OZHUM i3 HOIIMPEHUX MiAXOAIB y PO3Ii3Ha-
BaHHI 00pa3iB € BUKOPUCTAHHS MIPABHJ NPUHHSTTS PillleHb Ha OCHOBI €JIIIcoiqa MpOrHO3yBaHHS. 3HAYHOIO MPOOIEMOIo B HOro 3a-
CTOCYBaHHI € 3a0e3IedeHHs TOro, o0 AaHi BiMOBiaNM 6ararToBUMipHOMY HOpMalbHOMY po3nonury. OqHak JaHi pealbHOTO CBITY
YacTO HE BIiANOBINAIOTH L[bOMY NPUIYIICHHIO, IO MPU3BOIUTH [0 3HWKEHHS HMOBIPHOCTI pO3Mi3HABaHHs. TakUM YHHOM, iCHYE
HEOOXiJHICTh BIOCKOHAJICHHS] MaTeMaTHYHUX MOJEJeH AJIs BpaxyBaHHS TaKUX BiIXHJICHb. [HIINM (akTopoM, sSKHil MOXKE BIUTHHYTH
Ha pe3ynbTat, € BHOIp pi3HUX KBaHTWIIIB PO3MOILTY, Hampukiay Xi-kBaapar i F-posmomimy. [ BenuKuX HAOOPIB JaHUX BHKOPHC-
TaHHs KBaHTHIIB Xi-kBajapara i F-posmoziny B ernincoifax MporHo3yBaHHs 3a3BHYail PU3BOIUTH 10 OAHAKOBHX PE3YINBTATIB PO3IIi-
3HaBaHHs, aJie € JIaHi, A IKUX Le He TakK, i 3aCTOCYBaHHS €JINCOIiB MPOTHO3YBaHHS 3 PI3HUMH KBAHTWIISIMH PO3IIOALTIB A€ Pi3Hi
pe3ynbratu. Y 1bOMY JOCII/DKSHHI JAOCIIDKYETHCS 3aCTOCYBAaHHs €JINCOINIB MepeadaueHHs] B 3ajadax po3Mi3HaBaHHS 00MMYYs 3
BHKOPHCTAHHSAM PI3HHX METOMAIB HOpMali3allii Ta KBaHTWIIIB pO3Moairy. MeToro poOOTH € IiABUIIEHHS HMOBIPHOCTI PO3Mi3HABAHHS
00IMYYs IUIIXOM TOOYI0BH JIECATUBHMIPHOTO €JIICOia MPOrHO3YBaHHS [UIsi HOPMAJIi30BaHUX AaHMX 3 PI3HUMH KBaHTHIISIMH PO3-
noniniB. Mu npoBesy eKCrepuMeHTH 3 HabopOoM JTaHUX 300paXkeHb 00NMNYYs Ta HOOYAyBaIN EJINCOIAN POrHO3YBaHHS Ha OCHOBI Xi-
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kBazpar i F-po3noniny, BUKOPHCTOBYIOUH SIK OJHOBHUMIpHI, TaK i OararoBUMipHi MeToan HopMmadizawii. Haii BUCHOBKH MOKa3yloOTh,
0 METOJY HOpMaJIi3allil 3HaYHO IiJBHUINYIOTh TOYHICTH PO3ITi3HABAHHS, IIPH I[bOMY 0araToBHMIpHI METOIH, TaKi K IeCATHBUMIpHE
neperBopeHHs bokca-Kokca, nmepeBepiryroTs ogHOBUMIpHI Higxoau. Kpim Toro, enincoinn NporHo3yBaHHs, MOOYIOBaHi 3 BUKOPHUC-
TaHHSAM KBaHTHJIS PO3MOAUTY Xi-KBapat, 3arajioM JEMOHCTPYIOTh Kpally WMOBIPHICTh PO3Mi3HaBaHHS MOPIBHSHO 3 €INICOiaMH,
o0yTOBaHUMH 3 BUKOPHCTAaHHAM KBaHTHIA F-posnoniny. Iomambmni goCHikeHHS MOXKYTh TOCTIIUTH €(EeKTHBHICTh 3aCTOCYBaHHS
IHIIMX METOAIB HOpMaJi3alil, TaKUX sSIK epeTBopeHHs [PKOHCOHa, 1 IpoaHalizyBaTH MOOYIOBY €JIICOIAIB IPOTHO3YBaHHS 3 aJIbTep-
HaTUBHUMHU KOMIIOHCHTaMH PiBHAHHS €Jincoiga.
Knrwwuoei cnosa: Po3mizHaBaHHS 00aM44sl; 6araToBUMIpHUI HOpMaJbHUH posnofin; Xi-kBaapar; F-po3noain; enincoin
IIPOTHO3YBaHHs; HOpMaJli3alisl JaHuX; epeTBopeHHs bokca-Kokca
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