
Surkov S. S., Martynyuk O. M., Drozd O. V., Drozd M. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 125–134

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Information systems and technology

125

DOI: https://doi.org/10.15276/aait.07.2024.9

UDC 004.75

A model and method for enhancing the efficiency of processing

operation queues at maximum server equipment load
Sergii S. Surkov1)

ORCID: http://orcid.org/0000-0001-9224-7526; k1x0r@ukr.net. Scopus Author ID: 57103247200

Oleksandr M. Martynyuk1)

ORCID: http://orcid.org/0000-0003-1461-2000; anmartynyuk@ukr.net. Scopus Author ID: 57103391900

Oleksandr V. Drozd1)

ORCID: http://orcid.org/0000-0003-2191-6758; drozd@ukr.net. Scopus Author ID: 55388226700

Myroslav O. Drozd1)

ORCID: https://orcid.org/0000-0003-0770-6295; myroslav.drozd@opu.ua. Scopus Author ID: 56667174000
 1) Odessa Polytechnic National University, 1, Shevchenko Ave. Odessa, 65044, Ukraine

ABSTRACT

Existing solutions aimed at preventing excessive parallelization, reducing processing times, and forecasting load accuracy in

operation queues were analyzed. Subsequently, a new model and method designed to enhance the efficiency of processing operation

queues, particularly when operating at maximum server equipment load, were evaluated against traditional methods. These methods,

including sequential execution, maximal, and constrained parallelism, were assessed. The new method uses two strategies: ‘first-in,

first-out’, useful because parallelism does not guarantee sequential order of results, and maximizing equipment utilization for optimal

performance. Utilizing the new adaptive monitoring model based on linear regression, the new method achieves operation execution

times comparable to sequential execution and total execution times similar to those achieved with constrained parallelism.

Constrained parallelism, although it reduces resource conflicts compared to maximal parallelism, still increases the processing time

of each operation, emphasizing the importance of balancing the number of parallel operations with the available system resources.

We estimated the complexity of the new model using asymptotic complexity and analyzed it with multi-server queueing models

under conditions of both limited and unlimited parallelism. Two series of experiments were carried out for the comparative analysis

of a new method for managing loads in operation queues versus traditional approaches. Additionally, the potential for resource

flexibility in load management within digital infrastructures is highlighted.

Keywords: Load management; operation queues; digital infrastructure; data processing; parallelism; resource optimization;

equipment load forecasting; processing efficiency; operation distribution methods; system performance; minimization of processing

time

For citation: Surkov S. S., Martynyuk O. M., Drozd O. V., Drozd M. O. “A model and method for enhancing the efficiency of processing

operation queues at maximum server equipment load”. Applied Aspects of Information Technology. 2024; Vol. 7 No. 2: 125–134.

DOI: https://doi.org/10.15276/aait.07.2024.9

INTRODUCTION

At the core of modern digital infrastructure,

servers and their collective counterparts, server

clusters, play a pivotal role. They maintain

continuous operations across various online

platforms, whether handling online financial

transactions, enabling e-commerce, or supporting

social interactions on networks, their performance is

vital for ensuring a seamless user experience [1].

Cloud providers like Amazon Web Services [2]

and Google Cloud [3] actively use mechanisms to

ensure server resilience during peak loads. A key

method is dynamic resource scaling [4]. If the load

on the server environment reaches a threshold value,

such as 80 %, the system automatically creates and

activates additional virtual machine instances,

© Surkov S., Martynyuk O., Drozd O., Drozd M., 2024

placing them on different physical servers to balance

incoming traffic.

With cloud platforms operational, the

likelihood of service interruptions is significantly

reduced, they maintain consistent and efficient

service performance regardless of the workload.

Modern servers [5] are equipped with

specialized tools for executing resource-intensive

tasks, such as graphics rendering, video processing

[6, 7], [8], large data analysis, and artificial

intelligence-based [9] tasks. When faced with high

loads or the need to process a vast amount of data,

the challenge of handling a large number of

accumulated operations can arise. Operation queue

management systems are used to optimize this

process and ensure effective execution of operations

that can run in parallel [10] and are independent of

each other.

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/deed.uk)

https://doi.org/

Surkov S. S., Martynyuk O. M., Drozd O. V., Drozd M. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 125–134

126 Information systems and technology

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Optimal operation execution time not only

accelerates data processing but also ensures a

comfortable user interaction. When equipment is

underutilized, server response time decreases,

improving system performance. Failing to utilize

equipment to its full potential effectively equates to

resource wastage. The seamless operation of any

digital platform heavily relies on the strategic

allocation of resources and maintaining servers at

optimal performance levels.

For stable operation queues, systematic work on

forecasting and regulating peak loads is necessary.

Running applications on an overloaded server can

lead to reduced quality of service (QoS). Adapting

queues to diverse operational environments demands

not only careful handling but also ongoing

adjustments as conditions evolve. To ensure that all

aspects of computer engineering, particularly queue

management, function without disruption, regular

research and study are essential.

1. LITERATURE REVIEW AND PROBLEM

STATEMENT

Machine learning methods can achieve high

accuracy in forecasting load levels for new

operations in the queue. However, their significant

requirement for computing resources is a notable

drawback.

The migration of virtual machines between

physical servers, activated when these servers

become overloaded [11], necessitates the

identification of an optimal server for resource

allocation. The main benefit is handling various

types of operations using multiple VMs. However, it

has limitations such as the uneven distribution of

resources among virtual machines and the need to

transfer VMs between servers when their resource

demands exceed the physical capacities available.

Furthermore, transferring VMs from one physical

server to another requires significant central

processor unit (CPU), graphical processor unit

(GPU), disk, and network resources.

A discrete-time queuing model [12] for a

production system bottleneck addresses the issue of

energy waste in manufacturing systems. An analysis

of production system performance was conducted by

varying arrival intensity and service rates to reduce

energy consumption while maintaining production

efficiency. Emphasis is placed on assembly lines

where different operation types can be executed on

specific equipment.

A model for calculating local ratings [13] and

controlling price levels based on the current service

system rating was analyzed through a

multidimensional Markov chain. In this approach,

the global rating system is problematic because it is

formed externally to the provider, and the precise

mechanism of its formation remains largely

unknown. Additionally, the formation of prices for

operations and server ratings is problematic as it

merges different types of loads into a single metric

for both the server and operations, and prices may be

calculated during server overload.

The data processing on a server encompasses

data transfer, storage, computation, and

authentication. The adoption of chunking

authentication techniques facilitates a marked

increase in the speed of data verification while

concurrently preventing system overload. In the

context of data transfer, the HyperText Transport

Protocol (HTTP/1.0) protocol processes each request

as a separate connection. With the introduction of

HTTP/1.1[14], it became possible to handle multiple

requests within a single connection. However, with

the launch of HTTP/2.0 [15, 16], an innovative

mechanism was implemented – “multiple data

streams within a single connection”, which enhances

performance and optimizes data transmission.

In our scenario, all servers are capable of

handling operations of various types [17, 18], [19],

which are typically not small in scale. Additionally,

there is no need for separate environments for

different types of operations. Thus, we need to

employ a strategy of fully loaded servers, maximize

server utilization, and minimize energy

consumption.

Despite the availability of existing methods and

approaches, there are issues that remain regarding

the non-overloading of equipment and the resources

required for the implementation of the models and

methods themselves. The unconstrained parallelism

and heavy methods lead to increased computational

resource usage and longer processing times for

operations in the queue.

Thus, there is a need to develop new models

and methods that are lightweight and do not cause

excessive parallelism on the equipment.

2. PURPOSE AND OBJECTIVES OF THE

STUDY

Our goal is to reduce the processing time of

operations in the queue. To achieve this, we need to

mitigate excessive parallelization by developing a

new model which improves the accuracy of

forecasting equipment load and a method that

manages the operations.

To achieve the goal, the following tasks are

established:

Surkov S. S., Martynyuk O. M., Drozd O. V., Drozd M. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 125–134

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Information systems and technology

127

1. Develop a model and method for the

dynamic regulation of operations in the operation

queue.

2. Evaluate the complexity of the new model

using Big-O notation and assess the new method

using the known M/M/с model.

M/M/c is a queueing model with a Poisson arrival

process, exponential service times, and c parallel

servers. Big-O notation describes the upper limit of

an algorithm's complexity in terms of input size.

3. Conduct an experiment to practically

evaluate the new model and method.

The main contribution of this study is the

development of these new approaches, which

achieve the goal and improve system resilience and

adaptability during periods of high demand.

3. METHODOLOGY OF RESEARCH

An analytical review of existing load

management solutions utilizing operational queues

has been performed. Building on the analytical

review, a new model and method were developed

using an advanced adaptive monitoring based on

linear regression.

The new and model and method utilize system

parameters such as CPU and GPU load during the

collection of operation statistics, as well as in

determining whether to execute a new operation.

Persistent connections, such as HTTP/2 and

HTTP/3, are used to queue operations. These

connections remain active during long waits in the

event of queue overload, sending ping frames as

heartbeats to maintain the connection when a new

operation enters the queue.

Additionally, a stack of operation results with

buffered outputs is employed in case of using a

FIFO strategy. After the operation is completed, it is

removed from the stack. Furthermore, if a

disconnect occurs, the result of the operation is

saved locally and returned to the client upon

reconnection.

To build the model, data arrays are saved after

each operation execution. Median values of sorted

arrays are used to trim extremely large and small

data points. The arithmetic means is calculated,

which serves as a linear regression. The root mean

square deviation is computed to determine the

accuracy of the model for a specific operation.

The new model and method were assessed for

complexity using Big-O notation, where each

calculation step of the model is analyzed, and for

execution using the known M/M/c model to evaluate

the new method.

An experiment was conducted to compare

various strategies: single-task execution, maximum

parallelization, and optimized resource utilization.

Key indicators such as resource utilization,

execution times and total time were analyzed.

4. MODEL OF DYNAMIC REGULATION OF

OPERATIONS IN THE OPERATION QUEUE

In modern digital infrastructure, the number of

interactive processes and data streams is constantly

increasing. Maintaining system stability and

reliability becomes increasingly challenging when

managing loads that fluctuate significantly. For

optimal resource allocation, it’s crucial to have

instruments that allow us to predict system load one

step ahead.

A model based on linear regression, aimed at

adaptive real-time system monitoring, has been

further developed. The model differs from the

existing ones by binding each operation with a key.

The key is generated using arguments such as the

type of operation, its complexity, associated

metadata, and estimated data size, through a function

defined by the user of the system.

Each operation in the model is associated with a

key and consists of an array of values, each

corresponding to the load level of a specific type,

such as central processing unit (CPU) loads,

graphics processing unit (GPU) loads, and network

data transmission speeds, among others. To ensure

the accuracy and relevance of the information, the

array of values is cleared after each computational

cycle, thus eliminating the possibility of their reuse

in subsequent calculations.

To achieve the most accurate and reliable

results, the optimal condition occurs when only a

single operation is processed in the queue at any

given time. This condition may be established in a

controlled environment at the initial stage of the

study or manifest during standard operation.

The process initiates by calculating the

expected load level (μ) for each individual operation.

Subsequently, based on the collected information,

the aggregate expected load level for the entire set of

operations is calculated.

The model assumes maintaining the load level

μ at a relatively stable level, considering that most

operations are characterized by a constant load for

most of the time. This is achieved through the

definition of function f, which links the key to a

calculated set of pairs.

Each pair consists of an expected load level and

its type, as shown in formula (1):

Surkov S. S., Martynyuk O. M., Drozd O. V., Drozd M. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 125–134

128 Information systems and technology

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 (1)

where key is a string identifying the set of loads;

is expected load level; – type of the load level,

which is used in the method; n is the total number of

pairs in the set associated with a specific key.

The model is formed through the calculation

and verification of for each key. The expected

load levels are calculated and verified to ensure

their correspondence with the actual parameters of

system operation.

The input data for the model consist of pairs in

the following format for each key, as shown in

formula (2):

 (2)

where is represents the array of raw load levels

collected from the execution of operations for each

type ti.

Each computational cycle involves calculating

 for each . For clarity in this text, will be

referred to as A, as .

To minimize the impact of extremely large or

small values and to select the most suitable data set,

the median of the sorted data array is used.

The median calculation is performed according

to formula (3), which contributes to the stability of

the result against deviations:

 (3)

where M is the median of the array A; k is the

position of the median in the array.

To determine the expected system load, which

is represented by a line with the minimum mean

square error, data filtering is first performed,

excluding significantly high and low values. This is

achieved by defining μ as the arithmetic mean of the

filtered data set.

Data filtering is carried out according to

formula (4):

 (4)

where ρ is the proportional range around the median,

expressed as a percentage.

Then, μ is calculated, which represents the

mean value of the array .

This mean value is used to construct a linear

regression line, reflecting the overall behavior of the

data set, as shown in formula (5):

 (5)

To verify the calculated μ value associated with

f: key and type of load, the mean square error is

compared to the product of the maximum

permissible relative error and the expected load

level. This ensures that the calculated μ is

sufficiently precise for predicting future loads.

This comparison is carried out according to

formula (6):

(6)

where A is the source array; is an element within

the array A; ε is the user-defined maximum relative

standard deviation error applicable across the entire

dataset, expressed as a percentage.

If the computed load level closely aligns with

the anticipated linear trend, no adjustment of the

model key is necessary.

Based on these metrics, high accuracy and

responsiveness in identifying high-load states are

achieved, leading to reduced delays and accelerated

response times, optimizing overall system

performance.

5. METHOD OF DYNAMIC REGULATION OF

OPERATIONS IN THE OPERATION QUEUE

To improve efficiency, a specialized method of

resource distribution has been proposed to

dynamically regulate operations within the queue.

The new method uses two sub-strategies: first-in

first-out (FIFO), which is particularly useful as

parallelism does not guarantee the sequential order

of results, and maximizing equipment utilization to

optimize performance. In the FIFO strategy,

operations maintain maximal equipment utilization

through parallel processing. To facilitate this, an

internal mechanism caches the results of completed

operations, storing them until they can be returned in

FIFO order.

The new method consisting of the following

steps:

1. Extracting an array of values using a

generated key (see formula 1) in the context of the

model for adaptive monitoring and managing the

load of operation queues in real-time.

2. Assessing system load parameters based on

monitoring results;

3. Summing current system load indicators

with the array extracted from the model and

comparing with maximum possible values.

4. Temporarily suspending the execution of

operations in the queue upon detecting that

established load limits have been exceeded.

5. When choosing a strategy for maximum

equipment utilization, upon completing an operation

Surkov S. S., Martynyuk O. M., Drozd O. V., Drozd M. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 125–134

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Information systems and technology

129

in the queue, either an operation is selected for

which there are enough free equipment resources.

When creating methods for the dynamic

management of data streams within operation

queues, it is important to consider previous

approaches, such as the method developed in

references [20, 21], which analyzes the impact of

load modes on system memory, focusing on

simulating high-load situations and measuring

memory usage. The new method, in the comparison

to the original one, reduces excessive parallelization,

improves forecasting accuracy of system loads and

eliminates the necessity to measure metrics in a

constrained environment. These enhancements are

possible due to the implementation of a dynamic

regulation model in the operation queue.

6. ASSESSMENT OF THE COMPLEXITY OF

THE NEW MODEL

Each operation in the system is characterized by

an array of real numbers, which reflects various

types of system load. For each type of load, the first

step is to calculate the expected load level μop for an

individual operation. This process includes quick

sorting the array, iterating through it for data

filtering, calculating the mean μ, and determining the

root mean square error. Similar steps are taken to

determine the overall expected load level.
The complexity of calculating the expected load

level for an operation can be expressed by the
formula (7):

(7)

where k is the number of operations; ni is the number

of readings in the i-th operation.

To assess the overall complexity of the model,

we use the following formula (8):

(8)

Here, n represents the total number of different

types of operations, and nj denotes the number of

types of loads for each operation.

7. ANALYSIS OF M/M/с MODELS UNDER

CONDITIONS OF LIMITED AND UNLIM-

ITED PARALLELISM

To evaluate the proposed method, the M/M/c

model was selected, which is classical in queueing

theory. This model is described as a system with

“Poissonian arrivals, exponential service times, and

c servers”. In the context of M/M/c theory, key

performance indicators are the average response

time and the number of operations in the system.

The M/M/c model accounts for the random intensity

of arrivals and exponentially distributed processing

[22, 23] times, thus assessing the customer's waiting

time in the queue, which makes it relevant for

analyzing performance in operation queues with

parallelism [24].

The M/M/c model comprises:

M is distribution of time between arrivals

(between two consecutive clients) follows an

exponential law.

M is service time also follows an exponential

law.

c is number of service channels (CPU/GPU

cores).

Within the context of the M/M/c model in

queueing theory, two approaches are considered: the

traditional model without parallelism constraints and

the adapted model with parallelism constraints.

The waiting time in the queue Wq for the M/M/c

model is calculated as shown in formula (9):

(9)

where λ is arrival rate (requests per unit time); μ is

service rate per handler (requests per unit time);

 – the load level of the system.

In the method of dynamic operation queue

management, targeted control of the λ parameter

through the restriction of parallelism leads to

reduced processing time for each operation.

Preventing excessive parallelism not only improves

processing speed by reducing resource conflicts but

also enhances the stability and predictability of

system during peak loads. Unlike the traditional

M/M/c model, where an increase in the number of

parallel operations could lead to overload and

increased waiting time, the new approach ensures

more efficient and balanced use of equipment

resources, leading to improved overall system

response time [25, 26].

8. VIDEO CONVERSION OPERATIONS - AN

EXAMPLE OF ADAPTIVE SYSTEM MONI-

TORING MODEL

To demonstrate the adaptive system monitoring

model, the process of converting video and audio

files is used. In this process, video files are

converted from 4K to resolutions of 1080p, 720p,

and 480p, and audio files from FLAC to MP3

format. Such preprocessing avoids the need for

instantaneous conversion when reducing quality

Surkov S. S., Martynyuk O. M., Drozd O. V., Drozd M. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 125–134

130 Information systems and technology

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

during online streaming and ensures efficient media

content management. Before entering the processing

queue, each uploaded video [27] and audio file

undergoes authentication on the server using our

chunking model and method [28], ensuring efficient

data authenticity verification.

Conversion operations are implemented using

gstreamer [29], which meets the requirements of a

real project and includes hardware video encoding

and decoding, as well as audio transcoding.

For example, the g streamer commands for such

operations are as follows:

For video:

gst-launch-1.0 -e \

filesrc location='/some/path/input.mkv' \

! matroskademux ! h264parse ! avdec_h264 \

! videoconvert ! videoscale ! \

'video/x-raw,width=1280,height=720' ! \

vtenc_h265 ! h265parse ! matroskamux ! \

filesink location='/some/path/output.mkv'

For audio (FLAC to MP3):

gst-launch-1.0 \

filesrc location='/some/path/input.flac' \

! flacparse ! flacdec ! audioconvert \

! lamemp3enc bitrate=320 target=1 \

quality=2 ! id3v2mux ! filesink \

location='/some/path/output.mp3'

The experimental results obtained from this

model on a MacBook Pro 2021 16" with an M1 Pro

processor showed the following load indicators: for

the video conversion operation – [GPU: 98.2 %,

CPU: 34.21 %], and for the audio encoding operation

(FLAC to MP3) – [GPU: 0 %, CPU: 9.5%].

9. PRACTICAL COMPARISON OF LOAD

MANAGEMENT METHODS IN OPERATION

QUEUES

A demonstration experiment aimed at the

comparative analysis of a new method for managing

loads in operation queues versus traditional

approaches uses the “Big Buck Bunny” [30] video at

1080p resolution and a FLAC audio track, both

under Creative Commons license, as materials.

There are two series of the experiment: the first with

a video length of 10 minutes 35 seconds, and the

second – 5 minutes 8 seconds, where the second

video is a trimmed version of the first to the

specified time.

The analysis methodology covers the following

load management strategies:

1. Sequential execution: Processing one

operation at a time without parallelism.

2. Maximum parallelism: Implementation

without load management, which can lead to system

overload[31].

3. Limited parallelism: Considering the

overloaded GPU level, affecting execution time.

4. New method: Application of FIFO and

maximum load strategies.

The results of the experiments are shown in

Table 1 and Table 2, corresponding to durations of 5

minutes 8 seconds and 10 minutes 35 seconds,

respectively. These durations reflect different

segments of the “Big Buck Bunny” video used to

test the load management methods under varying

conditions.

Table 1. Results of load management experiments

using the first 5 minutes 8 seconds of the

“Big Buck Bunny” Video
Type Average

video

conv. time

(s)

Average

audio

conv.

time (s)

Total

execution

time

(s)

Sequential

Execution

59.71 7.95 676.12

Maximal

Parallelism

623.72 14.97 623.79

Overloaded

Level

111.24 8.37 606.39

New Method 60.2 7.9 602.4

 Source: compiled by the authors

Table 2. Results of load management experiments

using the full 10 minutes 35 seconds of the

“Big Buck Bunny” Video

Type Average

video

conv.

Time (s)

Average

audio

conv.

time (s)

Total

execution

time (s)

Sequential

Execution

123.02 7.9 1331.44

Maximal

Parallelism

1283.01 16.14 1283.21

Overloaded

Level

239.26 8.2 1271.78

New Method 122.62 7.9 1226.24

 Source: compiled by the authors

The analytical evaluation included measuring

the average time for video and audio conversion, as

well as the total execution time of a queue consisting

of ten video and audio operations alternating with

each other. Key evaluation criteria were the total

execution time of all operations and the time

efficiency of each operation.

The sequential execution method demonstrated

the minimal average processing time for audio and

video. However, the strategy without load

Surkov S. S., Martynyuk O. M., Drozd O. V., Drozd M. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 125–134

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Information systems and technology

131

management showed the longest total execution time

due to the increased duration of each individual

operation, which can be inefficient for the rapid

delivery of video content to the end user.

Using maximum parallelism, it was observed

that the duration of a single video conversion

operation matched the total experiment time, leading

to a significant increase in waiting time, which is

undesirable from a user service perspective.

Setting a strict limit on the number of parallel

operations led to a doubling of the average video

conversion time compared to sequential execution,

while the audio processing time was comparable to

sequential execution, indicating insufficient

optimization in the use of equipment resources.

Excessive parallelism led to a proportional

increase in operation execution time. This was

especially noticeable in the maximum parallelism

strategy, where the total time increased due to the

time spent switching between tasks.

With the application of the new method, almost

identical audio and video execution times were

achieved as with sequential execution, with

minimized total execution time and nearly maximum

equipment load.

The new model and method achieve the shortest

operation execution times while simultaneously

reaching peak equipment load. Importantly, these

efficiencies contributed to a significant reduction in

total execution time – 10.9 % in the first series of

experiments and 7.9 % in the second series,

compared to sequential execution.

The implementation of this model helps to

reduce the time of individual operations without

increasing the total processing time, with a noted

decrease of 0.7 % compared to the baseline of

limited parallelism in the series of experiments.

10. DISCUSSION

There are multiple approaches with the aim of
preventing excessive parallelism in operation queues
on server equipment.

An approach using AI-based models and
methods demonstrates the same accuracy in
forecasting system load. However, unlike the new
model and method, these approaches require
significant computational resources.

An approach for migrating virtual machines
(VMs) between physical servers was proposed.
Multiple VMs running on a single physical server is
a common situation for hosting providers. However,
it is better to avoid this approach as it necessitates
complex methods and does not enable efficient
resource management.

Methods employing Markov chains with
machine learning use a single parameter to evaluate
operations, which is applied to operations with
varying loads. The overhead for such methods
should be considerable.

Lower overhead and higher forecasting
accuracy are achieved by the new model and
method. A unique feature is the manual separation
of operations by keys on the operation server, which
is not considered a drawback since real operations
have their endpoints for each operation.

RESUME

In the context of this research, studies and
evaluations of various methods for managing loads
in operation queues were conducted, with particular
attention given to comparing modern approaches
with traditional methods in the context of digital
infrastructure and data processing. There were
assessed the efficacy of various load management
strategies, including sequential execution, maximum
and limited parallelism, alongside the newly
developed model and method.

The scientific novelty lies in the new model and
method, based on system monitoring and linear
regression, distinguished by the use of operations by
keys and the ability to achieve the research goal of
processing operations in the queue. The new load
management method delivers operation execution
times similar to sequential execution and cuts the
total execution time down to what you'd see with
limited parallelism. Experiments confirmed that with
the application of this method, the total execution
time of operations is reduced by 10.9 % and 7.9 % in
various test scenarios compared to sequential
execution. Limited parallelism reduces the risk of
resource conflicts unlike maximum parallelism, but
it also reduces the processing time of each task and
enhances the efficiency of resource use.

The new strategies – FIFO and “maximizing
equipment utilization” – not only improve the
efficiency of operation processing but also offer
enhanced flexibility in resource utilization.

In the future we plan to refine our model and
method to dynamically adjust the number of active
servers, with the goal of optimizing energy
efficiency by maximizing the load on the fewest
possible servers. The practical applicability of the
new model and method is planned to be tested on
real company servers in a production environment.

ACKNOWLEDGEMENT

We express our gratitude to Oleksandr Drozd,
whose contributions and unique perspectives on
technological solutions have profoundly influenced
our work. His dedication to mentorship has not only

Surkov S. S., Martynyuk O. M., Drozd O. V., Drozd M. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 125–134

132 Information systems and technology

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

shaped our professional paths but also left a lasting
legacy of wisdom that will forever resonate in our
hearts.

We are equally grateful to our colleagues for
their unwavering support and for fostering such an
inspiring atmosphere.

REFERENCES

1. Surkov, S. & Martynyuk, O. “Authentication and request processing model in high load modes for
IoT components”. Proc. IntelITSIS 2021: Intelligent Information Technologies & Systems of Information
Security. 2021; 2853: 1–12, https://www.scopus.com/authid/detail.uri?authorId=57103247200.

2. “Amazon Web Services. AWS documentation”. – Available from:
https://aws.amazon.com/documentation. – [Accessed: Dec. 2023].

3. “Google Cloud. Google cloud documentation”. – Available from: https://cloud.google.com/docs.
[Accessed: Oct. 2023].

4. Chaturvedi, A., Sengar, P. & Sharma, K. “Horizontal dynamic resource scaling by measuring the
impacts of scheduling interval in cloud computing”. Proceedings of International Conference on
Communication and Artificial Intelligence. 2021. p. 529–537. DOI: https://doi.org/10.1007/978-981-33-
6546-9_50.

5. Romankevich, V. A., Morozov, K. V., Feseniuk, A. P., et al. “On evaluation of reliability increase
in fault-tolerant multiprocessor systems”. Applied Aspects of Information Technology. 2024; 7: 81–95. DOI:
https://doi.org/10.15276/aait.07.2024.7.

6. Kavitha, P. “Digital image and video processing: Algorithms and applications”. Journal of
Electrical Systems. 2024; 20: 1390–1396. DOI: https://doi.org/10.52783/jes.1516.

7. Mashtalir, S. V. & Lendel, D. P. “Video fragment processing by Ky Fan norm”. Applied Aspects of
Information Technology. 2024; 7: 59–68. DOI: https://doi.org/10.15276/aait.07.2024.5.

8. Romankevych, V. O., Mozghovyi, I. V., Serhiienko, P. A., et al. “Decompressor for hardware
applications”. Applied Aspects of Information Technology. 2023; 6: 74–83.
DOI: https://doi.org/10.15276/aait.06.2023.6.

9. Wirtz, B. W., Weyerer, J. C. & Geyer, C. “Artificial intelligence and the public sector – applications
and challenges”. International Journal of Public Administration. 2019; 42 (7): 596–615,
https://www.scopus.com/record/display.uri?eid=2-s2.0-85050557949&origin=resultslist.
DOI: https://doi.org/10.1080/01900692.2018.1498103.

10. “Swift Dev. Team. The swift programming language (Swift 5.9): Concurrency”. – Available from:
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/concurrency. – [Accessed:
Sep. 2023].

11. Kushchazli, A., Safargalieva, A., Kochetkova, I., et al. “Queuing model with customer class
movement across server groups for analyzing virtual machine migration in cloud computing”. Mathematics.
2024; 12: 1–19, https://www.scopus.com/authid/detail.uri?authorId=57279747300.
DOI: https://doi.org/10.3390/math12030468.

12. Wojciech, K. & Iwona, P. “A discrete-time queueing model of a bottleneck with an energy-saving
mechanism based on setup and shutdown times”. Symmetry. 2024; 16: 1–6,
https://www.scopus.com/authid/detail.uri?authorId=6507209963.
DOI: https://doi.org/10.3390/sym16010063.

13. D’Apice, C., Dudin, A., Dudina, O., et al. “Analysis of queueing system with dynamic rating-
dependent arrival process and price of service”. Mathematics. 2024; 12: 1–10,
https://www.scopus.com/authid/detail.uri?authorId=7006796728.
DOI: https://doi.org/10.3390/math12071101.

14. Fielding, R. & Reschke, J. “Hypertext transfer protocol (HTTP/1.1): Message syntax and routing,
IETF RFC 7230”. – Available from: https://tools.ietf.org/html/rfc7230. – [Accessed: Sep. 2023].

15. Belshe, M. & Peon, R. “Hypertext transfer protocol version 2 (HTTP/2), IETF RFC 7540”. –
Available from: https://tools.ietf.org/html/rfc7540. – [Accessed: Oct. 2023].

16. Bishop, M. “Hypertext transfer protocol version 3 (HTTP/3), IETF RFC 9114”. – Available from:
https://datatracker.ietf.org/doc/html/rfc9114. – [Accessed: Nov. 2023].

17. The, V. T., Tien, N. T. K. & Thanh, T. K. “A survey on deep learning based face detection”. Applied
Aspects of Information Technology. 2023; 6: 201–212. DOI: https://doi.org/10.15276/aait.06.2023.15.

18. Mashtalir, S.V. & Nikolenko, O.V. “Data preprocessing and tokenization techniques for technical
Ukrainian texts”. Applied Aspects of Information Technology. 2023; 6: 318–326.
DOI: https://doi.org/10.15276/aait.06.2023.22.

Surkov S. S., Martynyuk O. M., Drozd O. V., Drozd M. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 125–134

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Information systems and technology 133

19. Hlukhov, V. S. & Sydorko, D. S. “Algorithms and software for verification of scientific and
technical text documents”. Applied Aspects of Information Technology. 2023; 6: 304–317.
DOI: https://doi.org/10.15276/aait.06.2023.21.

20. Surkov, S. “Reduction of the impact of critical modes for authorization protocols for large requests
in operation queue enviroment”. Applied Aspects of Information Technology. 2020; 3 (3): 145–153.
DOI: https://doi.org/10.15276/aait.03.2020.3.

21. Surkov, S. S. “Comparison of authorization protocols for large requests in the operation queue
environment”. Herald of Advanced Information Technology. 2020; 3 (3): 163–173. DOI:
https://doi.org/10.15276/hait.03.2020.5.

22. Shajil, A. & Srinivasa, K. “SWOT analysis of parallel processing APIs-CUDA, OpenCL, OpenMP
and MPI and their Usage in Various Companies”. International Journal of Applied Engineering and
Management Letters. 2023. p. 300–319. DOI: https://doi.org/10.47992/IJAEML.2581.7000.0206.

23. Nashma, T., Zryan, N., Subhi, Z., et al. “Optimizing time consumption for smartphone-based
distributed parallel processing system”. Passer Journal of Basic and Applied Sciences. 2024; 6: 254–265.
DOI: https://doi.org/10.24271/psr.2024.188570.

24. Xiang, H., Yuan, Y., Sheng, M., et al. “Optimizing the parallelism of communication and
computation in distributed training platform”. Springer, Singapore. 2024. p. 340–359.
DOI: https://doi.org/10.1007/978-981-97-0834-5_20.

25. Raghav, M. “Low latency systems for parallel processing and programmable logic in GPUs and
FPGAs”. 2023. p. 1–8. DOI: https://doi.org/10.13140/RG.2.2.16359.01443.

26. Kappes, G. & Anastasiadis, S. “A family of relaxed concurrent queues for low-latency operations
and item transfers”. ACM Transactions on Parallel Computing. 2022. p. 1–37.
DOI: https://doi.org/10.1145/3565514.

27. Sheremet, O. I., Sadovoi, O. V., Harshanov, D. V., et al. “Efficient face detection and replacement
in the creation of simple fake videos”. Applied Aspects of Information Technology. 2023; 6: 286–303.
DOI: https://doi.org/10.15276/aait.06.2023.20.

28. Surkov, S. S. “Model and method of chunk processing of payload for HTTP authorization
protocols”. Proceedings of 2020 IEEE 15th International Conference on Advanced Trends in
Radioelectronics, Telecommunications and Computer Engineering (TCSET). Slavske: Ukraine. 2020. p.
317–321, https://www.scopus.com/authid/detail.uri?authorId=57103247200.
DOI: https://doi.org/10.1109/TCSET49122.2020.235447.

29. GStreamer Dev. Team. “GStreamer: Open source multimedia framework”. – Available from:
https://gstreamer.freedesktop.org. – [Accessed: Dec. 2023].

30. “Blender Foundation. About Big Buck Bunny”. – Available from: https://peach.blender.org/about/. –
[Accessed: Nov. 2023].

31. “Apple Dev. Team. Grand Central Dispatch”. – Available from: https://github.com/apple/swift-
corelibs-libdispatch. – [Accessed: Nov. 2023].

Conflicts of Interest: the authors declare no conflict of interest

Received 12.02.2024

Received after revision 09.04.2024

Accepted 10.05.2024

DOI: https://doi.org/10.15276/aait.07.2024.9

УДК 004.75

Модель та метод для підвищення ефективності обробки черг опе-

рацій при максимальному завантаженні серверного обладнання

Сурков Сергій Сергійович1)

ORCID: http://orcid.org/0000-0001-9224-7526; k1x0r@ukr.net. Scopus Author ID: 57103247200

Мартинюк Олександр Миколайович1)

ORCID: http://orcid.org/0000-0003-1461-2000; anmartynyuk@ukr.net. Scopus Author ID: 57103247200

Surkov S. S., Martynyuk O. M., Drozd O. V., Drozd M. O. / Applied Aspects of Information Technology

 2024; Vol.7 No.2: 125–134

134 Information systems and technology ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Дрозд Олександр Валентинович1)

ORCID: http://orcid.org/0000-0003-2191-6758; drozd@ukr.net. Scopus Author ID: 55388226700

Дрозд Мірослав Олександрович1)

ORCID: http://orcid.org/0000-0003-0770-6295; myroslav.drozd@opu.ua. Scopus Author ID: 56667174000
1) Національний університет «Одеська політехніка», проспект Шевченка, 1. Одеса, 65044, Україна

АНОТАЦІЯ

Було проведено аналіз існуючих рішень з метою запобігання надмірній паралелізації, скорочення часу обробки та

точного прогнозування навантаження в чергах операцій. Потім було оцінено нову модель та методику, розроблені для

підвищення ефективності обробки черг операцій, особливо при максимальному навантаженні серверного обладнання, у

порівнянні з традиційними методами. Ці методи, включаючи послідовне виконання, максимальну та обмежену

паралелізацію, були оцінені. Новий метод використовує дві підстратегії: ‘перший прийшов-перший пішов’, яка особливо

корисна, оскільки паралелізм не гарантує послідовного порядку результатів, і максимізацію використання обладнання для

оптимізації продуктивності. Завдяки новій адаптивній моделі моніторингу, що базується на лінійній регресії, новий метод

досягає часу виконання операцій, порівнянного з послідовним виконанням, і загального часу виконання, подібного до

обмеженої паралелізації. Обмежена паралелізація, хоча й зменшує конфлікти за ресурси порівняно з максимальною

паралелізацією, все ж збільшує час обробки кожної операції, що підкреслює важливість балансування кількості паралельних

операцій з наявними ресурсами системи. Комплексність нової моделі була оцінена за допомогою асимптотичної складності

та проаналізована за допомогою моделі масового обслуговування з паралельними каналами в умовах обмеженої та

необмеженої паралелізації. Було проведено дві серії експериментів для порівняльного аналізу нового методу управління

навантаженнями в чергах операцій у порівнянні з традиційними підходами. Додатково підкреслюється потенціал гнучкого

використання ресурсів у управлінні навантаженнями в цифрових інфраструктурах.

Ключові слова: управління навантаженнями; черги операцій; цифрова інфраструктура; обробка даних; паралелізація;

оптимізація ресурсів; прогнозування завантаження

ABOUT THE AUTHORS

Sergii S. Surkov - PhD Student, Department of Computer Intellectual Systems and Networks. Odessa Polytechnic National

University, 1, Shevchenko Ave. Odessa, 65044, Ukraine

ORCID: http://orcid.org/0000-0001-9224-7526; k1x0r@ukr.net. Scopus Author ID: 57103247200
Research field: Parallel computing in digital infrastructures; resource allocation algorithms; real-time queue management

systems; performance prediction and system efficiency; authorization protocols

Сурков Сергій Сергійович - аспірант кафедри Комп’ютерних інтелектуальних систем та мереж. Національний

університет «Одеська політехніка», проспект Шевченка, 1. Одеса, 65044, Україна

Oleksandr M. Martynyuk - PhD, Associate Professor, Department of Computer Intellectual Systems and Networks. Odessa

Polytechnic National University, 1, Shevchenko Ave. Odessa, 65044, Ukraine

ORCID: https://orcid.org/0000-0003-2366-1920; anmartynyuk@ukr.net. Scopus Author ID: 57103391900
Research field: Behavioral testing of computer systems; formal verification and recognizing of digital systems; artificial

intelligence

Мартинюк Олександр Миколайович - кандидат технічних наук, доцент кафедри Комп’ютерних інтелектуальних

систем та мереж. Національний університет «Одеська політехніка», проспект Шевченка, 1. Одеса, 65044, Україна

Oleksandr Va. Drozd - Doctor of Engineering Sciences, Professor, Department of Computer Intellectual Systems and

Networks. Odessa Polytechnic National University, 1, Shevchenko Ave. Odessa, 65044, Ukraine

ORCID: https://orcid.org/0000-0001-8305-2217; drozd@ukr.net. Scopus Author ID: 55388226700
Research field: Testing and diagnosis of computer systems; arithmetical foundations of computer systems; computer

systems and components

Дрозд Олександр Валентинович - доктор технічних наук, професор кафедри Комп’ютерних інтелектуальних

систем та мереж. Національний університет «Одеська політехніка», проспект Шевченка, 1. Одеса, 65044, Україна

Myroslav O. Drozd - PhD, Associate professor, Information Systems Department. Odessa Polytechnic National University,
1, Shevchenko Ave. Odessa, 65044, Ukraine

ORCID: https://orcid.org/0000-0003-0770-6295; myroslav.drozd@opu.ua. Scopus Author ID: 56667174000

Research field: On-line testing and circuit checkability in the digital component of safety-related systems

Дрозд Мирослав Олександрович - кандидат технічних наук, доцент кафедри Інформаційних систем.

Одеський національний політехнічний університет, проспект Шевченка, 1. Одеса, 65044, Україна

