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ABSTRACT 

 
The work is devoted to the problem of evaluating the reliability increase of a fault-tolerant multiprocessor system by adding an 

extra processor to the system. It is assumed that the behavior of the modified system in the failure flow, in the case of the extra 
processor failure, does not differ from the behavior of the original system. The article describes both k-out-of-n systems, and more 
complex ones, including hierarchical systems. An important feature of the proposed approach is that it involves the preliminary 
calculation of some additional auxiliary values that do not depend on the reliability parameters of the added processor. Further, the 
reliability increase is assessed by substituting these parameter values into basic expressions, which simplifies the selection of the 
optimal processor from the available set, sufficient to achieve the required level of system reliability, or confirms the impossibility of 
this. The proposed approach is compatible with any methods of calculating the reliability parameters of fault-tolerant multiprocessor 

systems but is particularly relevant for methods based on statistical experiments with models of system behavior in the failure flow, in 
particular, such as GL-models, due to the significant computational complexity of such calculations. In addition, for the simplest cases 
considered, k-out-of-n systems with identical processors, a simple expression is proposed for an approximate estimate of the ratio of 
failure probabilities of the original and modified systems. The higher the reliability of the system processors, the higher the accuracy of 
such an assessment. Examples are given that prove the practical correctness of the proposed approaches. The calculation of the 
reliability system parameters, as well as auxiliary expressions, was based on conducting statistical experiments with corresponding 
GL-models. 
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INTRODUCTION 

In the modern world, automation tools are 

increasingly being employed to manage various tasks 
[1, 2]. On the one hand, this allows relieving 

individuals from the need to perform repeatable 

routine tasks. On the other hand, automation 
overcomes human factors, such as reaction/decision-

making speed, the amount of information perceived 

per unit of time, inattentiveness, fatigue, dependence 
on physical and psychological states, and so on. 

Moreover, in some cases, the presence of a person 
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directly at the site of facility or the organization of 

remote control is either undesirable or impossible. 

Management of such objects can be 
implemented using control systems (CS). For 

control systems of especially critical objects, or the 

so-called Critical Application or Safety-Related 

Systems [3, 4], [5], increased requirements for 
reliability are being put forward, because the failure 

of such systems can lead to significant material 

losses, threaten human health and life, etc. 
In addition, since control algorithms for control 

systems are often quite complex and require 

significant computing resources, it is advisable, 

considering the above, to build such control 
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systems on the base of fault-tolerant multiprocessor 

systems (FTMS) [6, 7].Fault-tolerant multiprocessor 

systems consists of several (sometimes dozens, 

hundreds, or even thousands) processors and is 

capable of continuing full-fledged operation if some 

of them fail [8]. 

One of the tasks faced by the developer of a 

fault-tolerant multiprocessor system is to assess the 

reliability parameters of the developed system (for 

example, the probability of failure-free operation) 

[9], particularly to verify its accordance with 

specified requirements. Among FTMS, there are so-

called basic systems, which remain operational 

exactly until a certain number of (any) their 

processors fail. Estimating the reliability parameters 

of such systems is quite simple, and there are several 

methods available for solving this task [10, 11], [12, 

13], [4, 15], [16, 17], [18, 19]. 

It should be noted that the structure of an FTMS 

is often highly diverse, primarily due to the presence 

of multiple different buses, sensors, and other 

devices. In addition, such a system may contain 

different processors that have different (not always 

compatible) instruction sets, performance levels, 

reliability parameters, etc. The behavior of these 

FTMS in the event of failures may differ from basic 

systems, sometimes quite significantly. Calculating 

the reliability parameters of such (non-basic) systems 

is significantly more complex, and the corresponding 

calculation methods are often oriented towards 

systems with special architectures (for example 

[20-48], etc.). 

Universal methods for calculating the reliability 

parameters of such complex FTMS may, for 

instance, be based on conducting statistical 

experiments with models reflecting the system's 

response to the occurrence of failures. As such 

models, for both basic and non-basic systems, can be 

efficiently employed models known as GL-models 

[16, 17], [18], which combine the properties of 

graphs and Boolean functions. 

As a result of the evaluation, it may be found 

that the reliability parameters of the developed 

system do not meet the specified requirements, or the 

requirements for a previously developed system may 

change towards increased reliability. In such a case, 

the developer needs to modify the system in a way to 

make it compliant with the requirements. Sometimes 

(especially if the required reliability is almost 

achieved), adding a single processor may be 

sufficient for this. However, the developer needs to 

understand what this processor should be (in terms of 

reliability) and where exactly in the system (e.g., in 

which subsystem) it should be added. 

FORMULATION OF THE PROBLEM 

It should be noted that the accuracy of 

estimating reliability parameters using the 

aforementioned approaches, which are based on 
conducting statistical experiments, depends, in 

particular, on the number of experiments conducted 

and often proves to be a resource-intensive 
procedure [49]. Therefore, the pursuit of an optimal 

system modification through direct calculation of 

reliability parameters for each variant in practice 

may be deemed excessively intricate and unfeasible. 
Thus, the actual problem is to estimate the 

increase in reliability parameters (in particular, the 

probability of failure-free operation) of a system 
when an extra processor is added to it without the 

need to estimate these parameters for the modified 

system as a whole (this holds particular significance 
for non-basic systems). This work is devoted to 

solving this problem. 

CONCEPTS AND DEFINITIONS 

In the number of various fault-tolerant 
multiprocessor systems, it is essential to distinguish 

those that are resistant to failures of no more than m out 

of n of any of their processors, which are among the 
simplest, at least from the point of view of analyzing 

their reliability. Such systems, which are also called 

basic or m-out-of-n systems, will be denoted by 

K(m, n). 
Real systems, especially control systems, are not 

always basic. In other words, they are resistant only to 

some failures of a certain multiplicity, but not to other 
failures of the same number of processors. Such 

systems are called non-basic. These include, in 

particular, systems such as consecutive k-out-of-n [20-
27], consecutive k-within-m-out-of-n [28, 29], [30], 

consecutive k-out-of-r-from-n [31, 32], m-consecutive-

k-out-of-n [27, 33], [34, 35], [36] (n, f, k) [37, 38], [39], 

<n, f, k> [27, 38], [39], consecutive-(k, l)-out-of-n [40], 
m-consecutive-k,l-out-of-n [41, 42], [43, 44], kc-out-of-

n [38], (r, s)-out-of-(m, n) [45, 46], [47], consecutive-kr-

out-of-nr [48] as well as many hierarchical systems [50, 
51], [52, 53]. 

An FTMS consists of processors, each with certain 

reliability parameters, such as the probability of 
uninterrupted operation and the probability of failure, 

denoted as pi and qi, respectively, where i is the ordinal 

number of the processor (i = 1, 2, ..., n, with n being the 

number of processors in the system). The probability of 
uninterrupted operation and failure of the system S as a 
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whole is denoted as P(S) and Q(S), respectively. 

BASIC SYSTEM WITH SIMILAR (I.I.D.) 

PROCESSORS 

First, let us consider the simplest case: system S is 

a basic K(m, n), and processors are identical. But more 

importantly, their reliability parameters are identical, 

meaning, ∀𝑖 = 1, 2, . . . , 𝑛, 𝑝𝑖 = 𝑝, 𝑞𝑖 = 𝑞. Then, 
q = 1 – p. 

Let us compare the reliability of the initial 

system with the reliability of the system with an 
extra processor, assuming that the second one will 

also stay basic K(m + 1, n + 1). The difference 

between these quantities in certain papers is termed 

incremental reliability [10]. We will assume that a 
processor identical to the processors of the original 

system is used, i.e. pn+1 = p, qn+1 = q. We will denote 

the modified system as S ← p. 
For comparison, we will use the equation  

𝜈 =
1−𝑃(𝑆)

1−𝑃(𝑆←𝑝)
, i.e. the ratio of the probability of 

failure of the original system to the probability of 
failure of the modified system. To calculate the exact 

value of ν, it is enough to calculate the values P(S) 

and P(S ← p). Recall that the original system S is 
basic K(m, n), i.e. remains functional exactly until no 

more than m of n processors have failed. Let us 

denote 𝛶𝑖,𝑛 – the probability of exactly i of n 

processors failing.  

It is easy to notice that 𝛶𝑖,𝑛 = 𝐶𝑛
𝑖 𝑝𝑛−𝑖𝑞𝑖. In this 

case, the probability of failure-free operation of the 

original system can be calculated according to the 

formula: 

𝑃(𝑆) = ∑ 𝛶𝑖,𝑛

𝑚

𝑖=0

= ∑ 𝐶𝑛
𝑖 𝑝𝑛−𝑖𝑞𝑖

𝑚

𝑖=0

= 

= 𝑝𝑛−𝑚 ∑ 𝐶𝑛
𝑖 𝑝𝑚−𝑖𝑞𝑖

𝑚

𝑖=0

. 

Similarly, the modified system 

S ← p is basic K(m + 1, n + 1) and stays functional 

whilst no more than m + 1 of n + 1 its processors fail. 
Thus, the probability of its fault-free operation: 

𝑃(𝑆 ← 𝑝) = ∑ 𝛶𝑖,𝑛+1

𝑚+1

𝑖=0

= ∑ 𝐶𝑛+1
𝑖 𝑝𝑛+1−𝑖𝑞𝑖

𝑚+1

𝑖=0

= 

= 𝑝𝑛−𝑚 ∑ 𝐶𝑛+1
𝑖 𝑝𝑚+1−𝑖𝑞𝑖

𝑚+1

𝑖=0

. 

In practice, value m often is not very big  

(𝑚 ≪ 𝑛), therefore, the calculation of presented 

expressions is a relatively simple task. However, 

when calculating the value ν, one of the problems 

may be the limited accuracy of floating-point 

numbers. The point is that the values P(S) and 
P(S ← p) are usually very close to 1. This problem 

can be solved, in particular, with the use of libraries 

of long arithmetic and representation of  p and q as 

fractions, i.e. ratios of integers, namely 𝑞 =
𝑎

𝑑
, and 

𝑝 =
𝑏

𝑑
= 1 − 𝑞 == 1 −

𝑎

𝑑
=

𝑑−𝑎

𝑑
, i.e. b = d – a. Then 

𝑃 = 𝑝𝑛−𝑚 ∑ 𝐶𝑛
𝑖 𝑝𝑚−𝑖𝑞𝑖𝑚

𝑖=0 =
𝑏𝑛−𝑚 ∑ 𝐶𝑛

𝑖 𝑏𝑚−𝑖𝑎𝑖𝑚
𝑖=0

𝑑𝑛 , 

𝑃′ = 𝑝𝑛−𝑚 ∑ 𝐶𝑛+1
𝑖 𝑝𝑚+1−𝑖𝑞𝑖𝑚+1

𝑖=0 =  

=
𝑏𝑛−𝑚 ∑ 𝐶𝑛+1

𝑖 𝑏𝑚+1−𝑖𝑎𝑖𝑚+1
𝑖=0

𝑑𝑛+1 . 

Thus, 

𝜈 =
1 − 𝑃

1 − 𝑃′
=

1 −
𝑏𝑛−𝑚 ∑ 𝐶𝑛

𝑖 𝑏𝑚−𝑖𝑎𝑖𝑚
𝑖=0

𝑑𝑛

1 −
𝑏𝑛−𝑚 ∑ 𝐶𝑛+1

𝑖 𝑏𝑚+1−𝑖𝑎𝑖𝑚+1
𝑖=0

𝑑𝑛+1

= 

=

𝑑𝑛 − 𝑏𝑛−𝑚 ∑ 𝐶𝑛
𝑖 𝑏𝑚−𝑖𝑎𝑖𝑚

𝑖=0
𝑑𝑛

𝑑𝑛+1 − 𝑏𝑛−𝑚 ∑ 𝐶𝑛+1
𝑖 𝑏𝑚+1−𝑖𝑎𝑖𝑚+1

𝑖=0

𝑑𝑛+1

= 

=
𝑑𝑛+1−𝑑𝑏𝑛−𝑚 ∑ 𝐶𝑛

𝑖 𝑏𝑚−𝑖𝑎𝑖𝑚
𝑖=0

𝑑𝑛+1−𝑏𝑛−𝑚 ∑ 𝐶𝑛+1
𝑖 𝑏𝑚+1−𝑖𝑎𝑖𝑚+1

𝑖=0

. 

In one way or another, the presented formulas 
remain quite complex, especially for human 

perception. Fortunately, in the case of small values of 

q, which usually happens in practice, the approximate 
value of ν can be obtained using a much simpler 

formula. 

Theorem. For q → 0 the value of the ratio  

𝜈 =
1−𝑃(𝑆)

1−𝑃(𝑆←𝑝)
≈

𝑚+2

𝑞(𝑛+1)
, i.e. lim

𝑞→+0

1−𝑃(𝑆)

1−𝑃(𝑆←𝑝)
=

𝑚+2

𝑞(𝑛+1)
. 

Proof. Basic K(m, n) system S fails if and only if 
more than m (out of n) arbitrary processors have 

failed in it, or, in other words, no more than n – m – 1 

processors remain operational.  

Thus, probability of such system to fail, 
Q(S) = 1 – P(S) can be evaluated using next 

equation: 

𝑄(𝑆) = ∑ 𝐶𝑛
𝑖 𝑝𝑖𝑞𝑛−𝑖𝑛−𝑚−1

𝑖=0 = 𝑞𝑛 ∑ 𝐶𝑛
𝑖 𝑟𝑖𝑛−𝑚−1

𝑖=0 , 

where 𝑟 =
𝑝

𝑞
. 

Similarly, basic K(m + 1, n + 1) system S ← p 

fails, when more than m + 1 (of n + 1) its processors 

have failed, or, in other words, no more than  

n – m – 1 processors remain operational.  
Thus, probability of such system to fail 

Q(S ← p) = 1 – P(S ← p) can be evaluated using 

next equation:  
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𝑄(𝑆 ← 𝑝) = ∑ 𝐶𝑛+1
𝑖 𝑝𝑖𝑞𝑛−𝑖+1

𝑛−𝑚−1

𝑖=0

= 

= 𝑞𝑛+1 ∑ 𝐶𝑛+1
𝑖 𝑟𝑖

𝑛−𝑚−1

𝑖=0

. 

Let us remember, that 𝑟 =
𝑝

𝑞
=

1−𝑞

𝑞
=

1

𝑞
− 1, i.e. 

when q → +0 (it is obvious that the probability of 
failure of the processor q ≥ 0), r → +∞. Then 

𝑄(𝑆)

𝑄(𝑆 ← 𝑝)
=

𝑞𝑛 ∑ 𝐶𝑛
𝑖 𝑟𝑖𝑛−𝑚−1

𝑖=0

𝑞𝑛+1 ∑ 𝐶𝑛+1
𝑖 𝑟𝑖𝑛−𝑚−1

𝑖=0

= 

=
𝑞𝑛

𝑞𝑛+1
∙

∑ 𝐶𝑛
𝑖 𝑟𝑖𝑛−𝑚−1

𝑖=0

∑ 𝐶𝑛+1
𝑖 𝑟𝑖𝑛−𝑚−1

𝑖=0

= 

=
1

𝑞
∙

∑ 𝐶𝑛
𝑖 𝑟𝑖𝑛−𝑚−1

𝑖=0

∑ 𝐶𝑛+1
𝑖 𝑟𝑖𝑛−𝑚−1

𝑖=0

. 

Lets notice, that  

lim
𝑟→+∞

∑ 𝐶𝑛
𝑖 𝑟𝑖𝑛−𝑚−1

𝑖=0

∑ 𝐶𝑛+1
𝑖 𝑟𝑖𝑛−𝑚−1

𝑖=0

=
𝐶𝑛

𝑛−𝑚−1

𝐶𝑛+1
𝑛−𝑚−1 = 

=

𝑛!
(𝑛 − 𝑚 − 1)! ⋅ (𝑚 + 1)!

(𝑛 + 1)!
(𝑛 − 𝑚 − 1)! ⋅ (𝑚 + 2)!

= 

=
𝑚+2

𝑛+1
. 

Thus, when q → 0 it is true that 

∑ 𝐶𝑛
𝑖 𝑟𝑖𝑛−𝑚−1

𝑖=0

∑ 𝐶𝑛+1
𝑖 𝑟𝑖𝑛−𝑚−1

𝑖=0

≈
𝑚+2

𝑛+1
. 

Meaning, 
𝑄(𝑆)

𝑄(𝑆←𝑝)
≈

1

𝑞
∙

𝑚+2

𝑛+1
≈

𝑚+2

𝑞(𝑛+1)
. ∎ 

We will also calculate the increase in the 

probability of a fault-free operation of the system, 

i.e. ∆𝑃(𝑆 ← 𝑝) =  𝑃(𝑆 ← 𝑝) − 𝑃(𝑆), assuming, that 

values ν and P(S) are known. Let us remember, that 

𝜈 =
1−𝑃(𝑆)

1−𝑃(𝑆←𝑝)
, i.e. 1 − 𝑃(𝑆 ← 𝑝) =

1−𝑃(𝑆)

𝜈
, 

then 𝑃(𝑆 ← 𝑝)  =
𝑃(𝑆)−1

𝜈
+ 1.  

Thus, 

∆𝑃(𝑆 ← 𝑝) =  𝑃(𝑆 ← 𝑝) − 𝑃(𝑆) = 

=
𝑃(𝑆)−1

𝜈
+ 1 − 𝑃(𝑆) = 

𝜈−1

𝜈
⋅ (1 − 𝑃(𝑆)) = 

=
𝜈−1

𝜈
⋅ 𝑄(𝑆) = (1 −

1

𝜈
) ⋅ 𝑄(𝑆). 

Assuming 𝜈 ≈
𝑚+2

𝑞(𝑛+1)
 and substituting it into 

the above expression above, we get 

∆𝑃(𝑆 ← 𝑝) = (1 −
1

𝜈
) ⋅ 𝑄(𝑆) ≈ 

≈ (1 −
1

(
𝑚 + 2

𝑞(𝑛 + 1))
) ⋅ 𝑄(𝑆). 

Simplifying this expression, we are left with 

∆𝑃(𝑆 ← 𝑝) ≈ (1 −
𝑞(𝑛 + 1)

𝑚 + 2
) ⋅ 𝑄(𝑆). 

BASIC SYSTEM WITH DIFFERENT 

PROCESSORS 

Let us consider a more complicated case: system S 

is basic K(m, n), however, its processors are not 
necessarily the same, i.e. the probabilities of their 

failure-free operation (or failure) may differ from each 

other. It is possible to calculate the probability of 
failure-free operation of the system P(S), using any of 

the known methods (for example, [10, 11], [12, 13], 

[14, 15], [16]). Let us also review the S+ system 

containing the same processors as the original one and 
differing from it only in that it has 1 higher degree of 

fault tolerance, i.e. is basic basic K(m + 1, n). For such a 

system, the probability of fault-free operation can be 
calculated in a similar way P(S+). 

Next, let us assume that an extra processor with 

the probability of failure-free operation was added to 

the system pn+1 and the probability of failure 
qn+1 = 1 – pn+1. The state of this processor in the 

failure flow will be denoted as xn+1, where 1 

corresponds to its operational state, and 0 – to 

failure. Let us denote the resulting system as 
S← pn+1. 

According to the formula of total probability: 

𝑃(𝑆 ← 𝑝𝑛+1) = 𝑃(𝑆 ← 𝑝𝑛+1|𝑥𝑛+1=0) × 

× 𝑃(𝑥𝑛+1 = 0) + 𝑃(𝑆 ← 𝑝𝑛+1|𝑥𝑛+1=1) × 

× 𝑃(𝑥𝑛+1 = 1) = 𝑃(𝑆 ← 𝑝𝑛+1|𝑥𝑛+1=0) × 

× 𝑞𝑛+1 + 𝑃(𝑆 ← 𝑝𝑛+1|𝑥𝑛+1=1) ⋅ 𝑝𝑛+1, 

(1) 

where 𝑥𝑛+1 = 1 is the event meaning that the extra 

processor is operational, and 𝑥𝑛+1 = 0 is not 

operational. 

In case an extra processor fails, the behavior of 
such a system in the failure flow will not differ from 

the behavior of the original system S, i.e.,  

𝑃(𝑆 ← 𝑝𝑛+1|𝑥𝑛+1=0) = 𝑃(𝑆). If it is true, then its 

behavior in the failure flow will correspond to the 

behavior of the system S+, because an extra 
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processor will be able to compensate for an 

additional failure among the processors of the 

original system, i.e. 𝑃(𝑆 ← 𝑝𝑛+1|𝑥𝑛+1=1) = 𝑃(𝑆+).  

Thus: 

𝑃(𝑆 ← 𝑝𝑛+1) = 𝑞𝑛+1𝑃(𝑆) + 𝑝𝑛+1𝑃(𝑆+) = 
= (1 − 𝑝𝑛+1)𝑃(𝑆) + 𝑝𝑛+1𝑃(𝑆+) = 

= 𝑃(𝑆) + 𝑝𝑛+1 ⋅ (𝑃(𝑆+) − 𝑃(𝑆)). 

Then, 

∆𝑃(𝑆 ← 𝑝𝑛+1) =  𝑃(𝑆 ← 𝑝𝑛+1) − 𝑃(𝑆) = 

= 𝑝𝑛+1 ⋅ (𝑃(𝑆+) − 𝑃(𝑆)). 

Let us prove that P(S+) – P(S) equals to the 

probability of an event when the system S+ is 

operational, and system S is not operational, i.e. 

𝑃(𝑆+ ∙ 𝑆̅). Remember that the system S+ differs from 

the original system S having 1 higher level of fault-

tolerance. Obviously 𝑃(𝑆+|𝑆) = 1, i.e. if system S is 

operational, then S+ has to be also operational.  

Then by the formula of total probability 

𝑃(𝑆+) = 𝑃(𝑆+|𝑆) ⋅ 𝑃(𝑆) + 𝑃(𝑆+|𝑆̅) ⋅ 𝑃(𝑆̅) =  

= 𝑃(𝑆) + 𝑃(𝑆+|𝑆̅) ⋅ 𝑃(𝑆̅). 

Let us also note that 𝑃(𝑆+|𝑆̅) ⋅ 𝑃(𝑆̅) = 
= 𝑃(𝑆+ ⋅ 𝑆̅). Thus, 

𝑃(𝑆+) = 𝑃(𝑆) + 𝑃(𝑆+ ⋅ 𝑆̅). 

Then, 

𝑃(𝑆+ ⋅ 𝑆̅) = 𝑃(𝑆+) − 𝑃(𝑆). 

System S+ will be operational, and system S – 

will not be operational only when exactly m + 1 of n 

processors have failed in the latter. Let us denote the 
probability of such an event as P(S*). In some cases, 

calculating it may be easier than to calculating the 

probability P(S+). Thus, we can write: 

∆𝑃(𝑆 ← 𝑝𝑛+1) = 𝑝𝑛+1 ⋅ 𝑃(𝑆∗). 

Therefore, it is enough to calculate either both 

P(S) and P(S+) or just P(S*) once, And then you can 

easily calculate the value ∆P(S) for different pn+1, i.e. 
for various variants of the “extra” processor. 

In addition, we can immediately determine the 

value pn+1, that is sufficient to achieve the given 

increase ∆Pr(S ← pn + 1) of the probability of failure-
free operation of the system, namely: 

𝑝𝑛+1 ≥
𝑃(𝑆∗)

∆𝑃𝑟(𝑆 ← 𝑝𝑛+1)
. 

For the case of the system with the same 

components, considered earlier, takes place 

𝑃(𝑆∗) = 𝛶𝑚+1,𝑛 = 𝐶𝑛
𝑚+1𝑝𝑛−𝑚−1𝑞𝑚+1. Thus,  

∆𝑃(𝑆 ← 𝑝) = 𝑃(𝑆 ← 𝑝) − 𝑃(𝑆) = 𝑝 ⋅ 𝑃(𝑆∗) = 

= 𝑝 ⋅ 𝐶𝑛
𝑚+1𝑝𝑛−𝑚−1𝑞𝑚+1 = 𝐶𝑛

𝑚+1𝑝𝑛−𝑚𝑞𝑚+1. 

It should be noted that the results obtained here 
generally similar to the results presented in prior-arts 

[7, 54]. However, for non-basic systems, the 

situation proves to be somewhat more complex. 

NON-BASIC SYSTEM 

As for non-basic systems, the situation is more 

complicated, because the system’s behavior in the 
failure flow won’t be certain after the extra 

processor is connected, i.e., the system behaves 

differently after exposure to the same number of 
failures. However, looking forward we will assume 

that we know this behavior and it does not depend 

on the added processor’s specifications. 

In this case, we can calculate the probability of 
a fault-tolerant system for any given reliability 

parameters of added processor using any method 

(for example, [10, 11], [12, 13], [14, 15], [16]). Let 
us calculate this probability for the infinitely reliable 

the added processor, i.e., pn+1 = 1 and call such 

system as S’, and the probability of its fault-free 
operation as P(S’). Also, let us point out that, in this 

scenario qn+1 = 1 – pn+1 = 0.  

Equation (1) then will transform to: 

𝑃(𝑆′) = 𝑞𝑛+1 ∙ 𝑃(𝑆 ← 𝑝𝑛+1|𝑥𝑛+1=0) + 

+𝑝𝑛+1 ∙ 𝑃(𝑆 ← 𝑝𝑛+1|𝑥𝑛+1=1) = 

= 0 ∙ 𝑃(𝑆 ← 𝑝𝑛+1|𝑥𝑛+1=0) + 1 × 

× 𝑃(𝑆 ← 𝑝𝑛+1|𝑥𝑛+1=1) = 𝑃(𝑆 ← 𝑝𝑛+1|𝑥𝑛+1=1). 

Also let us assume that, in case of an extra 

processor failure, the system won’t differ from 

original from the failure flow’s point of view. 
Therefore, it will be fair 

𝑃(𝑆 ← 𝑝𝑛+1|𝑥𝑛+1=0) = 𝑃(𝑆). 

Next, let us rewrite the equation (1) again, this 

time for arbitrary value pn+1 and qn+1 = 1 – pn+1: 

𝑃(𝑆 ← 𝑝𝑛+1) = 𝑞𝑛+1 ∙ 𝑃(𝑆 ← 𝑝𝑛+1|𝑥𝑛+1=0) + 

+𝑝𝑛+1 ∙ 𝑃(𝑆 ← 𝑝𝑛+1|𝑥𝑛+1=1) = 

= 𝑞𝑛+1 ∙ 𝑃(𝑆) + 𝑝𝑛+1 ∙ 𝑃(𝑆′). 

Then, we can calculate the increase in the 

probability of fault-free system operation:  

∆𝑃(𝑆 ← 𝑝𝑛+1) =  𝑃(𝑆 ← 𝑝𝑛+1) − 𝑃(𝑆) = 

= 𝑞𝑛+1 ∙ 𝑃(𝑆) + 𝑝𝑛+1 ∙ 𝑃(𝑆′) − 𝑃(𝑆) = 

= 𝑝𝑛+1 ∙ 𝑃(𝑆′) − (1 − 𝑞𝑛+1) ∙ 𝑃(𝑆) = 

= 𝑝𝑛+1 ∙ (𝑃(𝑆′) − 𝑃(𝑆)). 
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Designating ∆𝑃(𝑆′) = 𝑃(𝑆′) − 𝑃(𝑆), we get 

∆𝑃(𝑆 ← 𝑝𝑛+1) = 𝑝𝑛+1 ∙ ∆𝑃(𝑆′). 

Thus, it turns out that it is enough to calculate 
once, in one way or another, the values of the 

probabilities of failure-free operation of both the 

original system S and the system with an extra 

infinitely reliable processor, after that the increase of 
reliability due to the addition of an extra processor 

can be easily assessed. 

We can also formulate the equation for 
assessing the value pn+1, which is enough to achieve 

the required value of increase ∆Pr(S ← pn + 1) of 

probability of fault-free system operation 

𝑝𝑛+1 ≥
𝑃(𝑆′) − 𝑃(𝑆)

∆𝑃𝑟(𝑆 ← 𝑝𝑛+1)
, 

or, if the mentioned above notation ΔP(S’) is used, 
we get 

𝑝𝑛+1 ≥
∆𝑃(𝑆′)

∆𝑃𝑟(𝑆 ← 𝑝𝑛+1)
. 

It is also important to note that, in the case of 

basic systems, ΔP(S’) precisely corresponds to 
P(S*). Indeed, let us remember that  

𝑃(𝑆∗) = 𝑃(𝑆+) − 𝑃(𝑆), where P(S+) is the 

probability of fault-free operation of the system with 

degree of fault-tolerance that is 1 higher, than in the 
original system has. It is easy to notice, that this 

probability will be equal to probability P(S’) of 

fault-free operation of the considered here system 
with an extra, infinitely reliable, processor. Thus, the 

formula proposed in this section fits every system 

type, mentioned above, and is the most general. 
However, the use of particular formulae, proposed in 

previous sections, can be preferable in terms of 

computational complexity. 

HIERARCHICAL SYSTEM WITH NON-BASIC 

SUBSYSTEMS AND DIFFERENT 

PROCESSORS 

The addition of a processor to a hierarchical 
system deserves special consideration. Let the 

system S contain k subsystems 𝑠𝑗. Where 1 ≤ j ≤ k. 

And let n be the total number of the system’s 

processors. Let us assume, that the developer of the 

system decided to increase its reliability by adding a 
processor with probability of fault-free operation 

𝑝𝑛+1. The increase in probability of fault-free 

operation for such system ∆𝑃(𝑆) will not only 

depend on 𝑝𝑛+1 but also depends on which 
subsystem the extra processor will be added to. 

Naturally arises, the task of selecting such a 

subsystem to obtain the maximum increase in 

reliability. 

Let us remember, that assessing the probability 

of fault-free operation of a hierarchical system is 
quite a resource-intensive task, the solution to which 

in the reasonable time is to carry out step-by-step 

statistical experiments with GL-models for each 
subsystem separately and then for the top-level 

system [52, 53]. 

Let us designate via 𝑠𝑗 ← 𝑝𝑛+1 the subsystem, 

that we get by adding a processor to the 

subsystem 𝑠𝑗 , and through 𝑆 ← 𝑠𝑗 ← 𝑝𝑛+1 the whole 

hierarchical system after such addition. Then, to 
determine directly the maximum increase in 

reliability, it will be necessary to calculate the 

probabilities 𝑃(𝑠𝑗) of fault-free operation for each of 

the subsystems, then, calculate the probabilities 

𝑃(𝑠𝑗 ← 𝑝𝑛+1) of fault-free operation for each of k 

subsystems after the addition of another processor, 

next, on a subsystem level perform probability 
calculation for resulted hierarchical system  

𝑃(𝑆 ← 𝑠𝑗 ← 𝑝𝑛+1), afterward, choose the maximum 

of resulted values of increase 

∆𝑃(𝑆 ← 𝑠𝑗 ← 𝑝𝑛+1) = 

= 𝑃(𝑆 ← 𝑠𝑗 ← 𝑝𝑛+1) −  𝑃(𝑆). 

Let us consider a method for determining the 

maximum increase in reliability, which will reduce 
the required number of statistical experiments. After 

decomposing the subsystem 𝑠𝑗 ← 𝑝𝑛+1, by the added 

processor, we can get the probability of fault-free 

operation as: 

𝑃(𝑠𝑗 ← 𝑝𝑛+1) = 𝑝𝑛+1 ∙ 𝑃(𝑠𝑗 ← 𝑝𝑛+1|𝑥𝑛+1=1) +  

+(1 − 𝑝𝑛+1) ∙ 𝑃(𝑆 ← 𝑠𝑗 ← 𝑝𝑛+1|𝑥𝑛+1=0). 

Considering, that if the extra processor fails, 

subsystems behavior 𝑠𝑗 ← 𝑝𝑛+1 will be similar to the 

behavior of the original subsystem 𝑠𝑗 , we can 

assume that: 

𝑃(𝑠𝑗 ← 𝑝𝑛+1|𝑥𝑛+1=0) ≡ 𝑃(𝑠𝑗). 

We obtain the following relationship for the 

increase in subsystem reliability 𝑠𝑗 ← 𝑝𝑛+1: 

∆𝑃(𝑠𝑗 ← 𝑝𝑛+1) =  

= 𝑝𝑛+1 ∙ (𝑃(𝑠𝑗 ← 𝑝𝑛+1|𝑥𝑛+1=1) − 𝑃(𝑠𝑗)). 

Similarly, applying decomposition to a 

hierarchical system 𝑆 ← 𝑠𝑗 ← 𝑝𝑛+1 by the subsystem   

𝑠𝑗 ← 𝑝𝑛+1, we can write down the probability of 
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failure-free operation of a hierarchical system after 

adding a processor in this form: 

𝑃(𝑆 ← 𝑠𝑗 ← 𝑝𝑛+1) =  

= 𝑃(𝑠𝑗 ← 𝑝𝑛+1) ∙ 𝑃 (𝑆 ← 𝑠𝑗 ← 𝑝𝑛+1|𝑦𝑗=1) +  

+ (1 − 𝑃(𝑠𝑗 ← 𝑝𝑛+1)) ∙ 𝑃 (𝑆 ← 𝑠𝑗 ← 𝑝𝑛+1|𝑦𝑗=0), 

where 𝑦𝑗 = 1 is an event, that indicates that  

𝑠𝑗 ← 𝑝𝑛+1 is operable, and 𝑦𝑗 = 0 is an event of its 

failure.  

Similarly, for the original hierarchical system S 

we have: 

𝑃(𝑆) = 𝑃(𝑠𝑗) ∙ 𝑃 (𝑆|𝑦𝑗=1) + 

+ (1 − 𝑃(𝑠𝑗)) ∙ 𝑃 (𝑆|𝑦𝑗=0). 

Then the magnitude of reliability increase of the 

system 𝑆 ← 𝑠𝑗 ← 𝑝𝑛+1 can be presented, as 

∆𝑃(𝑆 ← 𝑠𝑗 ← 𝑝𝑛+1) = 

=  𝑃(𝑆 ← 𝑠𝑗 ← 𝑝𝑛+1) − 𝑃(𝑆) = 

= 𝑃(𝑠𝑗 ← 𝑝𝑛+1) ∙ 𝑃 (𝑆 ← 𝑠𝑗 ← 𝑝𝑛+1|𝑦𝑗=1) + 

+ (1 − 𝑃(𝑠𝑗 ← 𝑝𝑛+1)) ∙ 𝑃 (𝑆 ← 𝑠𝑗 ← 𝑝𝑛+1|𝑦𝑗=0) − 

−𝑃(𝑠𝑗) ∙ 𝑃 (𝑆|𝑦𝑗=1) − (1 − 𝑃(𝑠𝑗)) ∙ 𝑃 (𝑆|𝑦𝑗=0) = 

= ∆𝑃(𝑠𝑗 ← 𝑝𝑛+1) ∙ (𝑃 (𝑆|𝑦𝑗=1) − 𝑃 (𝑆|𝑦𝑗=0)). 

Thus, we get: 

∆𝑃(𝑆 ← 𝑠𝑗 ← 𝑝𝑛+1) =  

= 𝑝𝑛+1 ∙ (𝑃(𝑠𝑗 ← 𝑝𝑛+1|𝑥𝑛+1=1) − 𝑃(𝑠𝑗)) × 

× (𝑃 (𝑆|𝑦𝑗=1) − 𝑃 (𝑆|𝑦𝑗=0)). 

The resulting relation requires performing 

statistical experiments for each subsystem to 

determine the values 𝑃(𝑠𝑗). It is also necessary to 

perform statistical experiments for the upper-level 

system to determine the values 𝑃 (𝑆|𝑦𝑗=1) and 

𝑃 (𝑆|𝑦𝑗=0), which is commensurate with the 

definition 𝑃(𝑆 ← 𝑠𝑗 ← 𝑝𝑛+1). However, its obvious 

advantage is that to define values  

𝑃(𝑠𝑗 ← 𝑝𝑛+1|𝑥𝑛+1=1) it is needed twice as little tests 

than for values 𝑃(𝑠𝑗 ← 𝑝𝑛+1), because the variable 

𝑥𝑛+1 is a fixed value. 
As well as in previous situations, we can define 

the expression for the evaluation of pn+1, which is 

enough for reaching the needed increase 
∆Pr(S ← sj ← pn + 1) in fault-free system operation 

probability: 

𝑝𝑛+1 ≥ (𝑃(𝑠𝑗 ← 𝑝𝑛+1|𝑥𝑛+1=1) − 𝑃(𝑠𝑗)) × 

×
(𝑃 (𝑆|𝑦𝑗=1) − 𝑃 (𝑆|𝑦𝑗=0))

∆𝑃𝑟(𝑆 ← 𝑠𝑗 ← 𝑝𝑛+1)
. 

Let us look an example. Let us assume, that all 

k subsystems have the same number of processors, 

and the evaluation of 𝑃(𝑠𝑗) for all subsystems is 

comparable and can be limited by the number of 

experiments L1. Assume that evaluation of values 

𝑃(𝑠𝑗 ← 𝑝𝑛+1) requires 2L1 experiments and 

evaluation of 𝑃(𝑆 ← 𝑠𝑗 ← 𝑝𝑛+1) on the upper level 

requires L2 experiments. Then directly determining 

the maximum increase in the reliability of a 
hierarchical system will require the following 

number of experiments: 

𝑘 ∙ (𝑘𝐿1 + 2𝑘𝐿1 + 𝐿2). 

The proposed relationship for the same system 
will require 

𝑘 ∙ (𝑘𝐿1 + 𝑘𝐿1 + 𝐿2), 

experiments, meaning kL1 experiments less. 

EXAMPLES 

Let us look at some examples. Note, that 
simplified systems will be considered here, the 

calculation of reliability parameters of which may be 

performed without the use of GL-models. 

Example 1. The system consists of n = 10 identical 
processors and is resistant to failure of any m = 2 of 

them. The probability of failure of each processor is 

q = 10-4. It is required to estimate the increase in the 

probability of failure-free operation of such system 
in case of adding one more similar processor to it. 

The probability of failure-free operation of the 

processor is p = 1 – q = 1 – 10-4 = 0.9999. 

The probability of failure-free operation of the 

system under review will be: 

𝑃(𝑆) = ∑ 𝐶𝑛
𝑖 𝑝𝑛−𝑖𝑞𝑖

𝑚

𝑖=0

= 0.9999999998800632. 

Let us also calculate the value of 𝑃(𝑆 ← 𝑝), 
i.e., the probability of failure-free operation of a 

system consisting of 11 processors and resistant to 

failure of 3 of them: 

𝑃(𝑆 ← 𝑝) = ∑ 𝐶𝑛+1
𝑖 𝑝𝑛+1−𝑖𝑞𝑖

𝑚+1

𝑖=0

= 

= 0.999999999999967. 
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Assuming that q is close to 0, we estimate 

𝜈 ≈
𝑚+2

𝑞(𝑛+1)
=

2+2

10−4∙(10+1)
= 3636.36. Also let us 

calculate the direct value of  

 𝜈 =
1−𝑃(𝑆)

1−𝑃(𝑆←𝑝)
=

1−0.9999999998800632

1−0.999999999999967
= 3637.3569.  

Therefore, the estimated value proposed in the 

article indeed turns out to be very close to the real 

value.  

Let us also estimate ∆𝑃(𝑆) – the increase in 
system reliability as a result of adding an extra 

processor. To do this, we calculate the value of  

𝑄(𝑆) = 1 − 𝑃(𝑆) = 1.199368 ∙ 10−10. 

As it has been shown, 

∆𝑃(𝑆 ← 𝑝) =
𝜈 − 1

𝜈
⋅ 𝑄(𝑆) = 1.199 ∙ 10−10 . 

Another formula proposed in the article can 

also be used: 

∆𝑃(𝑆 ← 𝑝) = 𝐶𝑛
𝑚+1𝑝𝑛−𝑚𝑞𝑚+1 = 

= 𝐶10
3 ∙ 0.99998 ∙ (10−4)3 = 1.199 ∙ 10−10 . 

On the other side, ∆𝑃(𝑆) =  𝑃(𝑆 ← 𝑝) − 𝑃(𝑆), 
i.e., 

∆𝑃(𝑆 ← 𝑝) =  𝑃(𝑆 ← 𝑝) − 𝑃(𝑆) = 1.199 ∙ 10−10. 

As we can see, the value of reliability gain 
performed by the methods proposed in this article 

does coincide with the value calculated directly. 

Example 2. The system consists of n = 9 

identical processors and is resistant to failure of any 

m = 2 of them. The probabilities of failure of each 
processor are q1 = 1 ∙ 10-4, q2 = 2 ∙ 10-4, q3 = 3 ∙ 10-4, 

q4 = 4 ∙ 10-4, q5 = 5 ∙ 10-4, q6 = 6 ∙ 10-4, q7 = 7 ∙ 10-4, 

q8 = 8 ∙ 10-4 и q9 = 9 ∙ 10-4, and probabilities of a 
failure-free work are accordingly p1 = 0.9999, 

p2 = 0.9998, p3 = 0.9997, p4 = 0.9996, p5 = 0.9995, 

p6 = 0.9994, p7 = 0.9993, p8 = 0.9992 and 
p9 = 0.9991. 

It is required to estimate the increase in the 

probability of failure-free operation of such a system 

in case of adding to it one more processor with some 
probability of failure-free operation p. 

The probability of failure-free operation of such 

a system can be calculated in one of the known 

ways, in particular, here and in the following 
examples we used a method based on statistical 

experiments with a GL-model of the system 

behavior in the failure flow [16]. We will not give 

details of these calculations and will only mention 
the already obtained results 

P(S) = 0.9999999905689658.  

Let us consider several variants of extra 

processors with probabilities of failure-free 

operation p10
(1) = 0.999, p10

(2) = 0.9995, 
p10

(3) = 0.9999. In the same way we can calculate 

probabilities of failure-free operation of the system, 

extended by the corresponding processors 

(considering that such a system will be already  
3-fault-tolerant): 

P(S ← p10
(1)) = 0.9999999999842588; 

P(S ← p10
(2)) = 0.9999999999889713; 

P(S ← p10
(3)) = 0.999999999992741. 

Therefore, 

ΔP(S ← p10
(1)) = P(S ← p10

(1)) – P(S) = 9.4153 ∙ 10-9; 

ΔP(S ← p10
(2)) = P(S ← p10

(2)) – P(S) = 9.42 ∙ 10-9; 

ΔP(S ← p10
(3)) = P(S ← p10

(3)) – P(S) = 9.42378 × 

× 10-9. 

Note, that the process of direct calculation of 

the values of P(S ← p10
(1)), P(S ← p10

(2)) and 

P(S ← p10
(3)) is quite complicated, so we will use the 

method proposed in the article. To do this, we 
calculate the value of P(S*) – the probability that 

exactly 3 out of 10 processors in the system will fail: 

P(S*) = 9.42472∙10-9. Now we can easily calculate 
the reliability gain values: 

ΔP(S ← p10
(1)) = p10

(1) ∙ P(S*) = 0.999 ∙ 9.42472 × 

× 10-9 = 9.4153 ∙ 10-9, 

ΔP(S ← p10
(2)) = p10

(2) ∙ P(S*) = 0.9995 ∙ 9.42472 × 
× 10-9 = 9.42 ∙ 10-9, 

ΔP(S ← p10
(3)) = p10

(3) ∙ P(S*) = 0.9999 ∙ 9.42472 × 

× 10-9 = 9.42378 ∙ 10-9. 

As we can see, the results obtained by the 
proposed method match the directly calculated 

values. 

Example 3. Consider a non-basic system 

consisting of 9 processors and resistant to failures of 
any two of them, and if the 1st and 2nd and/or 3rd and 

4th are operational, then to any three of them. The 

probabilities of failure-free operation of the system 

processors are assumed to be the same as in  
Example 2. 

It is required to estimate the increase in the 

probability of failure-free operation of such a system 

in case of adding to it one more processor with some 
probability of failure-free operation p. It is assumed 

that the new system will also be non-basic and 

resistant to three failures, and if 1st and 2nd and/or 3rd 
and 4th processors are operational, then to four 

failures (note that the behavior of the modified 

system, generally speaking, could be different, and 
this does not fundamentally affect the possibility of 

applying the proposed approach). 



Romankevich V. A., Morozov K. V., Feseniuk A. P., Romankevich A. M., Zacharioudakis L.   
                                                                                                        /   Applied Aspects of Information Technology 

                                                                                                                                      2024; Vol.7 No.1: 81–95 

ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 

Computer systems and cybersecurity 89 

 
 

The probability of failure-free operation of the 

system described above 

P(S) = 0.9999999992112518. As in the previous 
case, let us consider several variants of extra 

processors with the probability of failure-free 

operation p10
(1) = 0.999, p10

(2) = 0.9995, 

p10
(3) = 0.9999 and calculate the probabilities of 

failure-free operation of the system extended by the 

corresponding processor: 

P(S ← p10
(1)) = 0.999999999998017; 

P(S ← p10
(2)) = 0.9999999999984108; 

P(S ← p10
(3)) = 0.9999999999987258. 

Therefore, 

ΔP(S ← p10
(1)) = P(S ← p10

(1)) – P(S) = 7.86765 × 

× 10-10; 

ΔP(S ← p10
(2)) = P(S ← p10

(2)) – P(S) = 7.87159 × 

× 10-10; 

ΔP(S ← p10
(3)) = P(S ← p10

(3)) – P(S) = 7.87474 × 

× 10-10. 

Note that the process of direct calculation of the 

values of P(S ← p10
(1)), P(S ← p10

(2)) and 

P(S ← p10
(3)) can be even more complicated than in 

the previous example so let us use the method 

proposed in this article. 

Let us calculate the probability of failure-free 

operation of the system S’, which is obtained from 
the original one by adding an infinitely reliable 

processor, i.e. p’10 = 1: 

P(S’) = P(S ← p’10) = 0.9999999999988046. 

Hence, 

ΔP(S’) = P(S’) – P(S) = 7.875528 ∙ 10-10. 

Then, as it was shown earlier, 

ΔP(S ← p10
(1)) = p10

(1) ∙ ΔP(S’) = 0.999 ∙ 7.875528 × 
× 10-10 = 7.86765 ∙ 10-10; 

ΔP(S ← p10
(2)) = p10

(2) ∙ ΔP(S’) = 0.9995 × 

× 7.875528 ∙ 10-10 = 7.87159 ∙ 10-10; 

ΔP(S ← p10
(3)) = p10

(3) ∙ ΔP(S’) = 0.9999 × 

× 7.875528 ∙ 10-10 = 7.87474 ∙ 10-10. 

As we can see, in this case, the results obtained 

by the method proposed in the article match the 

directly calculated values too. 
Example 4. Let us consider the most 

complicated example. Let the system consist of 21 

processors distributed among four subsystems s1, s2, 

s3 and s4. Moreover, subsystem s1 contains 
processors 1-5, s2 – processors 6-10, s3 – processors 

11-15 and s4 – processors 16-21. The system is 

resistant to failure of any one of the subsystems, and 
if subsystem s4 is operational, then to failure of any 

two subsystems. Subsystem s1 is non-basic and 

resistant to failure of one or, if the 2nd or 3rd 

processor is functional, of two of its processors. 
Subsystem s2 is non-basic and resistant to failure of 

one, and if the 6th processor is functional, of two of 

its processors. Subsystem s3 is non-basic and 

resistant to failure of one processor only if the 11th 
and/or at the same time the 12th and 13th processors 

are functional. Subsystem s4 is non-basic and 

resistant to failure of one, and if the 16th or 21st 
processor is functional, of two its processors. 

Probabilities of failure-free operation of 

processors:  

p1 = 0.9999, p2 = 0.9998, p3 = 0.9997, p4 = 0.9996, 

p5 = 0.9995, p6 = 0.9994, p7 = 0.9993, p8 = 0.9992 

p9 = 0.9991, p10 = 0.999, p11 = 0.9989, p12 = 0.9988, 

p13 = 0.9987, p14 = 0.9986, p15 = 0.9985, 
p16 = 0.9984, p17 = 0.9983, p18 = 0.9982, 

p19 = 0.9981, p20 = 0.998, p21 = 0.997. 

It is assumed to add a processor (number 22) 
with some failure-free operation probability p to 

subsystem s3. This subsystem is expected to become 

resistant to one, and, if the 11th and/or at the same 

time the 12th and 13th and/or at the same time the 12th 
and 22nd processors are functional, to two failures. It 

is required to estimate the increase in the probability 

of system failure-free operation resulting from such 
a modification. 

The probability of failure-free operation of the 

system described above is 

P(S) = 0.9999999999976966. As in the previous 
case, consider several variants of extra processors 

with a probability of failure-free operation 

p22
(1) = 0.999, p22

(2) = 0.9995, p22
(3) = 0.9999 and 

calculate the probability of failure-free operation of 

the system extended by the corresponding processor 

P(S ← s3 ← p22
(1)) = 0.9999999999995793; 

P(S ← s3 ← p22
(2)) = 0.9999999999995803; 

P(S ← s3 ← p22
(3)) = 0.999999999999581. 

Consequently, the reliability gain in each case 

is equal to 

ΔP(S ← s3 ← p22
(1)) = P(S ← s3 ← p22

(1)) – P(S) = 

= 1.8827 ∙ 10-12; 
ΔP(S ← s3 ← p22

(2)) = P(S ← s3 ← p22
(2)) – P(S) = 

= 1.8837 ∙ 10-12; 

ΔP(S ← s3 ← p22
(3)) = P(S ← s3 ← p22

(3)) – P(S) = 

= 1.8844 ∙ 10-12. 

Now let us calculate the reliability gain of the 

system by the method proposed in the article. Recall 

that it can be calculated according to the formula  
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∆𝑃(𝑆 ← 𝑠3 ← 𝑝22) = 

= 𝑝22 ∙ (𝑃(𝑠3 ← 𝑝22|𝑥22=1) − 𝑃(𝑠3)) × 

× (𝑃(𝑆|𝑦3=1) − 𝑃(𝑆|𝑦3=0)). 

Then let us calculate all necessary values of 

probabilities: 

𝑃(𝑠3) =  0.9999831935079323; 
𝑃(𝑠3 ← 𝑝22|𝑥22=1) = 0.9999986638033157; 

𝑃(𝑠3 ← 𝑝22|𝑥22=1) − 𝑃(𝑠3) =  1.547 ∙ 10−5; 

𝑃(𝑆|𝑦3=0) = 0.9999998781741908; 

𝑃(𝑆|𝑦3=1) = 0.9999999999997441; 

𝑃(𝑆|𝑦3=1) − 𝑃(𝑆|𝑦3=0) = 1.21826 ∙ 10−7. 

Also let us denote 

𝑃′ = (𝑃(𝑠3 ← 𝑝22|𝑥22=1) − 𝑃(𝑠3)) × 

 × (𝑃(𝑆|𝑦3=1) − 𝑃(𝑆|𝑦3=0)) = 1.8846 ∙ 10−12 . 

Now we can calculate the reliability gain for 

each case: 

ΔP(S ← s3 ← p22
(1)) = p22

(1) ∙ P’ = 1.8827 ∙ 10-12; 

ΔP(S ← s3 ← p22
(2)) = p22

(2) ∙ P’ = 1.8837 ∙ 10-12; 

ΔP(S ← s3 ← p22
(3)) = p22

(3) ∙ P’ = 1.8844 ∙ 10-12. 

As we can see, the values calculated in this way 

match the values calculated directly. 

It is readily apparent that for each of the 

presented examples (bearing in mind that each 
involved the consideration of three candidate 

processors), the overall complexity of the 

incremental reliability assessment procedure was 
reduced by approximately threefold due to the 

absence of the need for direct reliability calculation 

for each variant of the modified system. 

CONCLUSIONS 

The work solves the problem of assessing the 

magnitude increase of failure-free operation 

probability for a fault-tolerant multiprocessor control 
system after adding an extra processor. Various 

types of systems are researched: basic with the same 

processors, basic with different processors, and non-
basic, including hierarchical systems consisting of 

several subsystems. 

The results obtained in the work can be used by 
developers of fault-tolerant multi-processor systems 

both to assess the possibilities for increasing the 

reliability of the developed system and to select the 

optimal configuration of the modified system and 
select the appropriate element base (for example, 

putting forward requirements for the reliability 

parameters of the added processor). 
It should be noted that in each case, the increase 

in reliability is directly proportional to the 

probability of fault-free operation of the added 
processor. This allows you to perform the most 

complex calculations for the selected configuration 

of the modified system once, and then just substitute 

the values of the probability of failure-free operation 
for the considered variants of the added processor 

into a basic expression. In addition, it turned out to 

be possible to estimate the minimum sufficient value 
of the probability of failure-free operation of such a 

processor to achieve needed increase in reliability 

(or the impossibility of achieving it by adding just 

one processor). 
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АНОТАЦІЯ 

Робота присвячена задачі оцінки приросту надійності відмовостійкої багатопроцесорної системи в результаті 
додавання до неї додаткового процесора. Передбачається, що поведінка модифікованої системи потоці відмов у разі 
відмови додаткового процесора не відрізняється від поведінки вихідної системи. У статті розглядаються як системи виду k-
з-n, так і складніші, зокрема, ієрархічні. Важливою особливістю запропонованого підходу є те, що він передбачає 
попередній розрахунок деяких допоміжних значень, які не залежать від параметрів надійності процесора, що додається. 

Далі оцінка приросту надійності виконується шляхом підстановки значень цих параметрів у прості вирази, що дозволяє 
спростити вибір оптимального процесора з множини доступних, достатнього для досягнення необхідного рівня надійності 
системи, або переконатися у неможливості цього. Запропонований підхід сумісний з будь-якими методами розрахунку 
параметрів надійності відмовостійких багатопроцесорних систем, але особливо актуальний для методів, що базуються на 
проведенні статистичних експериментів з моделями поведінки системи в потоці відмов, зокрема такими, як GL-моделі, 
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внаслідок суттєвої обчислювальної складності таких розрахунків. Крім того, для найбільш простих випадків, що 
розглядаються, систем виду k-з-n з однаковими процесорами, запропоновано простий вираз для приблизної оцінки 
співвідношення ймовірностей виходу з ладу вихідної і модифікованої системи. Точність такої оцінки виявляється тим 
вищою, чим вище надійність процесорів системи. Наведено приклади, які на практиці доводять коректність запропонованих 
підходів. Розрахунок значень параметрів надійності системи, як і допоміжних виразів, був виконаний на основі проведення 
статистичних експериментів з відповідними GL-моделями. 

Ключові слова: відмовостійкі багатопроцесорні системи; підвищення надійності; системи k-з-n; ієрархічні системи; 
GL-моделі 
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