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ABSTRACT 

Deep Learning (DL) has recently gained a lot of interest, as nowadays, many practical applications rely on it. Typically, 
these applications are implemented with the help of special deep learning libraries, which inner implementations are hard to 
understand. We developed such a library in a lightweight way with a focus on teaching. Our library DP (differentiable 
programming) has the following properties which fit particular requirements for education: small code base, simple concepts, and 
stable Application Programming Interface (API). Its core use case is to teach how deep learning libraries work in principle. The 
library is divided into two layers. The low-level part allows programmatically building a computational graph based on 

elementary operations. In machine learning, the computational graph is typically the cost function including a machine learning 
model, e.g. a neural network. Built-in reverse mode automatic differentiation on the computational graph allows the training of 
machine learning models. This is done by optimization algorithms, such as stochastic gradient descent. These algorithms use the 
derivatives to minimize the cost by adapting the parameters of the model. In the case of neural networks, the parameters are the 
neuron weights. The higher-level part of the library eases the implementation of neural networks by providing larger building 
blocks, such as neuron layers and helper functions, e.g., implementation of the optimization algorithms (optimizers) for training 
neural networks. Accompanied to the library, we provide exercises to learn the underlying principles of deep learning libraries 
and fundamentals of neural networks. An additional benefit of the library is that the exercises and corresponding programming 

assignments based on it do not need to be permanently refactored because of its stable API. 
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INTRODUCTION 

Modern deep learning libraries ease the 

implementation of neural networks for applications 

and research. In the last few years, different types of 
such libraries were developed by academic groups 

and commercial companies. Examples are Theano 

[1], TensorFlow  or PyTorch Recently, the term 
“differentiable programming” emerged (see e.g., 

which expresses that e.g. (Deep) Neural Networks 

can be implemented by such libraries by composing 
building blocks provided by the library. The term 

differentiable programming also reflects the fact that 

a much wider spectrum of models is possible by 

using additional (differentiable) structures (e.g. 
memory, stacks, queues) [12Error! Reference 

source not found.] as building blocks and control 

flow statements.  
With the DP library, we provide a minimalistic 

version of such a library for teaching purposes. The 

library is designed light-weighted, focusing on the 

principles of differentiable programming: How to 
build a computational graph and how automatic 

differentiation can be implemented.

© Herta, Christian, Strohmenger, Klaus, Fischer, Oliver,

Oktay, Diyar, 2019  

We also developed a high-level neural network API 
which allows for more convenient implementation 
of neural network models by providing predefined 
functional blocks, typically used in neural networks. 

The library is accompanied by many Jupyter 

[25] notebooks, a de facto standard in data science 

research and education [27], to demonstrate and 
teach the underlying principles of a deep learning 

library. We also provide many exercises that allow 

students to deepen their understanding. The 

exercises also include concepts of modern neural 
networks, e.g., activation functions, layer 

initialization, versions of stochastic gradient descent, 

dropout, and batch normalization (see e.g. [5]). 

TYPES OF DEEP LEARNING LIBRARIES 

Different deep learning libraries follow 

different concepts, and they distinguish further from 
each other in various aspects. In some libraries, the 

neural networks must be defined by configuration 

(e.g. Caffe [4]). Other libraries provide APIs for 
programming languages, e.g. for Python or R. Some 

of the APIs resemble languages that are embedded 

in a host language. Typically, with these domain-

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/deed.uk)
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specific languages, the computational graphs are 
defined symbolically. In the next step, the 

computational graphs (and the corresponding graphs 

for the derivatives) are translated into code for 

another programming language, typically C++ or 
CUDA. Subsequently, the program is compiled and 

can be executed. Sometimes the term static 

computation graph is used here which reflects the 
fact that the graph is defined once declaratively and 

cannot be changed dynamically.  

Contrary to this symbolic approach is the 

imperative approach. Here, the computation graph is 

built up implicitly by executing the program line by 

line. The forward computation is done directly, and 

the computation of the derivatives can be done at the 

end, e.g., by recursion. With each execution of the 

program, control structures in the program can 

change the structure of the computation graph. In 

this case the term dynamic computation graph is 

used. 

Another aspect is the granularity of the 

computational operations in a deep learning library. 

With some libraries, the computational graph can be 

constructed with elementary tensor operations, e.g. 

matrix multiplication. In other libraries, the 

operations may correspond to whole layers of a 

neural network. 

Our library DP is a finely granular, imperative 

deep learning library for Python, based on NumPy 

[15]. The focus of the library lies in teaching the 

principles of a deep learning library and the 

implementation of neural network models and 

algorithms. Therefore, we designed the library as 

simple as possible, and we restrict the tensor order to 

two, i.e. matrices. So, the code base of DP is 

significantly smaller and easier to understand as of 

libraries with much more functionality like   

autograd [9]. 

Another problem is that most common deep 

learning libraries are still subject to frequent changes 

in their API, which is a big drawback when used for 

exercises. We are developing exercises for advanced 

deep learning, e.g., Bayesian neural networks [9] or 

variational autoencoders. For educational reasons 

(didactic reduction), we provide all boilerplate code 

so that the students can focus on the learning 

objective. The boilerplate code includes 

implementation against a deep learning library. If 

then a new version of the used library is released and 

its usage changes, exercises have to be adjusted 

accordingly to work correctly. Typically, 

universities do not have the personal resources to 

keep the teaching materials and exercises 

permanently up-to-date. The minimalistic approach 

of our library and the strict focus on teaching allows 

us to keep its API stable and therefore eliminates the 

need for permanent maintenance of the exercises.  

OVERVIEW ON THE PRINCIPLES 

In deep learning libraries, a machine learning 

model is built up as a computational graph. A 
computational graph is a directed graph. The 

structure of the graph encodes the order of the 

computation steps. At each inner node, an 

elementary computation is executed. The inner 
nodes of the graph are elementary mathematical 

operations (including elementary functions). 

Examples of elementary operators are +, - or dot-

product and elementary functions are e.g., 𝑒𝑥𝑝, 

𝑡𝑎𝑛ℎ or 𝑅𝑒𝐿𝑈. A computational graph corresponds 

to a mathematical expression. The input nodes are 

the parameters of the model or data values. In 
machine learning, the output nodes of the graph 

usually correspond to the prediction values or cost 

values. Typically, the computational graph is built 
up in a computer program which allows different 

programming techniques such as looping, branching, 

and recursion. 
Computational graphs enable automatic 

differentiation. For each computational node the 

derivative of the operation must be known. Local 

derivative computations are combined by the chain 
rule of calculus to get a numerical value for the 

derivatives of the whole computational graph for 

given input values. In deep learning libraries this is 
typically implemented as reverse-mode automatic 

differentiation. With reverse-mode automatic 

differentiation, all partial derivatives of the output 

w.r.t. to all inputs can be calculated efficiently. This 
feature is very important for machine learning. In the 

training process of a machine learning model, all 

partial derivatives of the cost function w.r.t. all 
parameters of the model must be computed. In 

neural networks, these parameters are the neuron 

weights.   
The computational graph for the training of a 

model corresponds to the cost function which should 

be minimized in the training procedure [7]. The cost 

𝑙𝑜𝑠𝑠(𝜃) is a function of the parameters 𝜃 of the 
model. During the optimization, the parameters are 

adapted to minimize the cost value. This 

optimization is typically realized by variants of 
stochastic gradient descent (SGD) [10]. In each step 

of SGD all partial derivatives of the cost w.r.t. the 

parameters must be computed.  

Before the appearance of deep learning 
libraries, a symbolic expression for the partial 

derivatives for new models was done by the 

researcher in a pen-and-paper solution. For an 
example see e.g. [13]. This manual procedure is 
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error-prone, time consuming and nearly impossible 
for large complex models.  

By building up the model in a deep learning 

library the build-in feature reverse automatic 

differentiation deliberates the researcher or 
developer from this work. 

 

THEORETICAL BACKGROUND OF 

AUTOMATIC DIFFERENTIATION 
In the following we describe the theoretical 

background of reverse mode automatic 

differentiation in a semi-formal way. For a more 
rigorous formal explanation, see e.g. [15].  

Notation 

In the theoretical description, we use the 

following mathematical notation. Lower-case Latin 

letters, e.g. 𝑎, denote scalars or vectors. Upper-case 

Latin letters, e.g. 𝐴, denote matrices or more struc-

tured objects like graphs. Python variables 
corresponding to a mathematical object are denoted 

as lower-case letter in a sans-serif fond, e.g. a, 

independent of the type.  

From the context, it should be clear which 
objects are referenced by the corresponding letters. 

 

Definition of a computational graph 

A computational graph 𝐺 is a directed acyclic 

graph. A directed acyclic graph is a set of nodes 𝑉 

(with a node 𝑛(𝑖) in 𝑉) and a set of edges 𝐸, i.e. pairs 

of nodes (𝑛(𝑖), 𝑛(𝑗)) ∈ 𝐸. i respectively j is the index 

of the node. Further we assume that the 

computational graph 𝐺 is topologically ordered, i.e. 

for each edge (𝑛(𝑖), 𝑛(𝑗)) holds 𝑖 <  𝑗.  

We define the leaves of the graph as the nodes 

with no incoming edges. Each node 𝑛(𝑖) has a 

corresponding variable 𝑣(𝑖). The dimensionality of 

variable 𝑣(𝑖)
 is 𝑑(𝑖). Leaf nodes correspond directly 

to inputs for the computation and the value of the 

variable 𝑣(𝑖)
 is directly the input value. Non-leaf 

nodes 𝑛(𝑗) have a corresponding operator 𝑜(𝑗). The 

operator 𝑜(𝑗)
 takes as input the variables 𝑣(𝑖)

 of all 

nodes with an outgoing edge to the node 𝑛(𝑗). For 

the concatenation of all variables 𝑣(𝑖) with an edge 

to 𝑛(𝑗)
 we write 𝑤(𝑗). The concatenation is done in 

topological order.  

For a consistent definition we can define the 

operator for leaf nodes as the identity which takes as 
input the (external) input to the (leaf) node.  

In summary, a computational graph is a 

directed acyclic graph where each node has an 

internal structure. The nodes 𝑛(𝑖) consists of a 

variable 𝑣(𝑖) and an operator 𝑜(𝑖). The input to the 

operator is determined by the edge structure of the 
graph. 

 

Forward propagation algorithm  

The forward propagation algorithm computes 

the values of all non-leaf nodes. The values of the 

leaf nodes are the input to the algorithm. In 

topological order all non-leaf nodes 𝑛(𝑗) are 

computed by the corresponding operator 𝑜(𝑗) and the 

variables of the nodes 𝑛(𝑖) which have an edge to the 

node 𝑛(𝑗)
. Note that the variable values of all 𝑛(𝑖)

 are 

already known. Either because they are leaf nodes or 

they have a lower order index and are already 
computed by the algorithm. 

 

Reverse mode automatic differentiation 
Reverse-mode automatic differentiation is a 

two-step procedure. In the first step, the variable 

values of each inner node of the computational 

graph are computed by the forward algorithm. The 
computed values of all variables are stored in an 

appropriate data structure. 

The second step is based on the chain rule of 
calculus. Here we assume that we have only one 

node with no outgoing edges. This node has the 

highest order index m. We call the node the output 
node. In machine learning, the value of the node is 

typically the cost value and the computational graph 

computes the cost function. The cost value is a 

scalar, i.e. the dimensionality of the output variable 

𝑣(𝑚) is 𝑑(𝑚) = 1.  

In general, the node variables in the 

computational graph can be tensors of any order. 
However, for compact indexing we assume that they 

are flattened to vectors for this theoretical analysis. 

So, there is only one index for each variable and the 

variables of the nodes are 𝑑(𝑖) dimensional vectors. 

We are interested in partial derivatives of the 

output node variable 𝑣(𝑚) with respect to the leaf 

node variables  𝑣(𝑖), i.e.  
∂𝑣𝑘

(𝑚)

∂𝑣𝑙
(𝑖) . 

On the right side of the equation each summand 

is a dot-product of Jacobians 𝑗 is the index of all 

nodes which have an edge to node 𝑛(𝑚), i.e. 

(𝑛(𝑗), 𝑛(𝑚)) ∈ 𝐸.  

The Jacobian which corresponds to an edge in 

the computational graph (here from  𝑛(𝑗) to 𝑛(𝑚)) is 

called a local Jacobian (matrix). 
For each variable with index the chain rule can 

be applied again: 
 

[
∂𝑣(𝑗)

∂𝑣(𝑖)
] = ∑ [

∂𝑣(𝑗)

∂𝑣(𝑘)
]

𝑘

⋅ [
∂𝑣(𝑘)

∂𝑣(𝑖)
], 

k is the index of all nodes which have an edge to 

node 𝑛(𝑗) ,, i.e. (𝑛(𝑘), 𝑛(𝑗)) ∈ 𝐸. 

systems and technologies
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Note, that for different nodes 𝑗 the sum is over 

different nodes with indices 𝑘 depending on the 
graph structure. Repeated application of the chain 

rule by respecting the graph structure shows that we 

can compose a global Jacobian from local Jacobians. 
It can be shown [15] that the dot products of all local 

Jacobians on all paths from the leaf node 𝑛(𝑖) to the 

output node 𝑛(𝑚) must be summed up to get the 
global Jacobian. 

As already stated, we want to compute (nearly) 

all global Jacobians, i.e. all global Jacobians w.r.t. 

(nearly) all leaf variables 𝑣(𝑖). The principle idea for 

an efficient computation is to reuse the partial 

results [
∂𝑣(𝑚)

∂𝑣(𝑝) ] for all non-leaf variables 𝑣(𝑝). Note 

that [
∂𝑣(𝑚)

∂𝑣(𝑝) ] is again the sum of the dot products of 

all local Jacobians on all paths from the node (𝑝) to 

the node 𝑛(𝑚). So, regrouping of the nested sums is 
equivalent to send backward signals. A backward 

signal at a current node is the sum of dot products of 

the local Jacobians of all paths from the current node 
to the output node. To compute the backward signal 

of a new node 𝑣(𝑞) it is sufficient to sum up all dot 

products of the backward signals [
∂𝑣(𝑚)

∂𝑣(𝑝) ] of all 

nearby upstream nodes 𝑣(𝑝) with the local Jacobians 

[
∂𝑣(𝑝)

∂𝑣(𝑞)]: 

 

[
∂𝑣(𝑚)

∂𝑣(𝑞)
] = ∑ [

∂𝑣(𝑚)

∂𝑣(𝑝)
]

𝑝

⋅ [
∂𝑣(𝑝)

∂𝑣(𝑞)
], 

 

p is the index of all nodes with an edge from 

node 𝑛(𝑞) to 𝑛(𝑝), i.e. (𝑛(𝑞), 𝑛(𝑝)) ∈ 𝐸. 

The algorithm starts at the output node 𝑛(𝑚). 

The initial backward signal is [
∂𝑣(𝑚)

∂𝑣(𝑚)] = 𝐼, i.e. an 

identity matrix with dimension 𝑑(𝑚) × 𝑑(𝑚). Then, 

the backward signals at the nodes which have an 

edge to 𝑣(𝑚) are computed as described above. This 

procedure is repeated until all wanted global 

Jacobians are computed. 
In the context of neural networks, reverse mode 

automatic differentiation is also called 

backpropagation. 

 

Implementation  
 

For the implementation in a computer program 
we chose as programming language Python, because 

(scientific) Python is the most common 

programming language for machine learning. Our 

library is based mainly on the tensor library NumPy. 

Basic (low-level) part 
With the basic low-level part of the library the 

user can build the computational graph (implicitly) 

imperatively. On such a computational graph the 

global Jacobians of the output node can be computed 
efficiently by reverse mode automatic differentiation 

with the help of the library. 

The low-level part consists mainly of the Node 
class. Each instantiation of the Node class 

corresponds to the creation a node for the 

computational graph. To keep the implementation 
small and clear, the node variables are restricted to 

tensors of order 2 and the output node variable  𝑣(𝑚) 

must be a scalar, i.e. 𝑑(𝑚) = 1. In machine learning, 
the value of the output node is typically the cost 

value. So, that is not a severe restriction.  

 

 
Fig. 1. Example of a computational graph. 

The leaf nodes are A and B. The output node is 

the rightmost node (sum over all elements). We 

denote in topological order, the non-leaf variables 

C (element-wise product), D (exponentiation) and 

E (sum of all elements) 
Source: compiled by the author 

In the following, we show how the 

computational graph of figure1can be build up in the 

DP-library. Leaf nodes can be instantiated directly 
by calling the constructor of the Node class, e.g. by 

 
a = Node(np.array([[1,1,1], [2,2,2]]), "A") 
b = Node(np.array([[1,2,3]]), "B"). 
 

Here, two leaf nodes a (with name A) and b 

(with name B) are generated. Both nodes have got 

an explicit name given by the optional second 
argument of the constructor. For all nodes with 

names the Jacobians (also called gradients) are 

computed by reverse mode automatic differentiation, 

see below. 

The first node is a, i.e. 𝑣(1) = 𝐴 and the second 

𝑣(2) = 𝐵. The node variable 𝐴 is 2x3 matrix. 

However, note that the node variables described in 
the theoretical part are formulated as vectors and 

that the Jacobian indices refer to such vector indices. 

As an example, for the correspondence to the matrix 

𝐴 note that the element 𝐴21 is equivalent to 𝑣4
(1)

, and 
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the total number of elements of the variable 𝑣(1)  is 

𝑑(1) = 6. For the flattened / vector version of 𝐴 we 

write 𝑎. 

Non-leaf nodes are generated by methods (or 
overwritten python operators) of the Node class. The 

methods correspond to the mathematical operator, 

e.g., the element-wise multiplication in figure 1 can 

be done with the API by 
 
c = a * b. 

Here, a Node instance of a non-leaf node is 

generated by the binary operator “element-wise 

multiplication” and the instance is assigned to the 

Python variable c (mathematical notation: 𝐶). 

Note, that the shape of  𝐴 (2x3 matrix) and 

𝐵(1x3 matrix) respectively 𝑏 (vector of dimension 

3) are different. The DP-library supports 
broadcasting [20] for such element-wise operations. 

As result of broadcasted element-wise 

multiplication, c has the same shape as a. 
The completion of the computational graph of 

Fig. 1 is done by the following code,  

 
d = c.exp() 
e = d.sum() # output e is a scalar. 

 
For the variable d each element of c is 

exponentiated. For the variable e all elements of the 

variable d are summed up to a scalar. e is the output 
variable of the computational graph. 

By reverse mode automatic differentiation, the 

Jacobians of the node e w.r.t. node a and b can be 
computed. This is done by the method grad(.) with 

argument 1 on the output node, 

grads = e.grad          (1). 

The return value is a Python dictionary with an 
entry for each leaf-variable with a name, here 

 
{'A': array([[2.7, 14.78, 60.26], 
             [7.39, 109.20, 1210.29]]), 
 'B': array([[ 17.50, 116.59, 826.94]])}. 
 

Exemplarily, we describe the implementation of the 
element-wise multiplication operation. The internal 

implementation is given by the following code: 
 
def __mul__(self, other): 
  if isinstance(other, numbers.Number) or 
        isinstance(other, np.ndarray): 
    other = Node(other) 
  ret = Node(self.value * other.value) 
 
  def grad(g): 
    g_total_self = g * other.value 
    g_total_other = g * self.value 
    x = Node._set_grad(self, g_total_self,  
           other, g_total_other) 
    return x 
 
  ret.grad = grad 
  return ret. 

The method generates and returns a new node 
ret for the element wise multiplication operator. 

The node instance ret has no name. The inner 

function definition grad implements how the 

backpropagated signal g is combined with the local 
Jacobians for both operands, i.e. in our 

computational graph a and b. How this 

implementation is related to the theory (see above) is 
not obvious. In the implementation, there is no 

(explicit) dot-product of Jacobians. In the following 

this relation is explained for the variable a. We 
assume in the analysis, that the variable b was 

internally broadcasted, so that a and b resp. 𝑣(1) and 

𝑣(2) have the same dimension 𝑑(1) =  𝑑(2)  = 6:  
Here, the output node is e, i.e. and the 

backpropagated signal is at the node c [
∂𝑣(𝑚)

∂𝑣(𝑝) ] = [
∂e

∂c
] 

(given to the inner function grad as argument g. To 
get the global Jacobian w.r.t. the node a the dot 

product with the local gradient [
∂c

∂a
] must be 

calculated and combined with the backpropagated 

signal: 

[
∂e

∂a
] =  [

∂e

∂c
] ⋅ [

∂c

∂a
], 

 
or explicitly (with Jacobian) indices: 

 

[
∂e

∂a
]

1𝑗
= ∑ [

∂e

∂c
]

1𝑘
[

∂c

∂a
]

𝑘𝑗
𝑘 . 

 

Note, that the first index of [
∂e

∂a
]

1𝑗
resp. [

∂e

∂c
]

1𝑘
is 

always a 1 because of the scalar output of the 

computational graph. The local Jacobian for the 

element-wise multiplication is 
 

[
∂c

∂a
]

𝑘𝑗
= 𝛿𝑘𝑗 𝑏𝑗, 

 

𝛿𝑘𝑗 is the Kronecker-Delta, i.e. 𝛿𝑘𝑗  =  0  

for 𝑘 ≠  𝑗 and 𝛿𝑘𝑗  =  1 for k =  𝑗.  So, we have 
 

[
∂e

∂a
]

1𝑗
= ∑ [

∂e

∂c
]

1𝑘
𝛿𝑘𝑗  𝑏𝑗 =  [

∂e

∂c
]

1𝑗
𝑏𝑗

𝑘

. 

 

Therefore, the combination of the Jacobians by 

the dot-product is here equivalent to an element-wise 

multiplication of the Jacobians. The dimension of 

the Jacobians (indexed by 1) need not to be 

considered in the shape of the Jacobian variables in 

the implementation. 

Neural network library (high-level) part 

Additionally, to the low-level part, the library 

includes different building blocks and helper 
functions which ease the implementation of neural 

networks. 
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For teaching purposes, we restrict the provided 
building blocks to simple fully connected layers (see 

Fig. 2). With these layers fully connected feed-

forward networks can be implemented.  

A hidden or output layer consists of an affine 

transformation given by a weight matrix 𝑊(𝑙) and a 

bias vector 𝑏(𝑙) and a (non-linear) activation 

function act( ). Typical activation functions for 

hidden layers are, e.g. element-wise 𝑅𝑒𝐿𝑈 or 𝑡𝑎𝑛ℎ. 

For classification tasks, the activation function of the 

output (last) layer is typically the logistic (two 
classes only) or the softmax function. 

A layer can be described mathematically by 

 

ℎ(𝑙+1) =  act(𝑊(𝑙) ⋅ ℎ(𝑙) + 𝑏(𝑙)). 
 

Here, the superscript is the layer index. The 

input to the network is therefore  ℎ(1) = 𝑥.  

For training of a neural network, a set of training 

examples must be provided, 

  

𝐷{𝑇𝑟𝑎𝑖𝑛}

=  { (𝑥(1), 𝑦(1)), (𝑥(2), 𝑦(2)), … , (𝑥(𝑛), 𝑦(𝑛))}. 
 

Each pair (𝑥(𝑖), 𝑦(𝑖)) is a training example with 

an input 𝑥(𝑖) and a label (target value) 𝑦(𝑖). The 

superscript is the index of the example. 𝑛 is the total 
number of training examples.  

On the training data set, the learning 

corresponds to minimizing a cost function. Here, we 
neglect for simplification generalization [7] which is 

very important in practice. The cost (and the 

prediction) is computed typically on (mini) batches. 

The inputs of many examples are concatenated in a 

design matrix 𝑋, i.e. each row of the matrix 

corresponds to an input vector 𝑥(𝑖). Each layer of the 

neural network outputs a matrix 𝐻 with a hidden 
representation h for each example as row vectors of 

the matrix.   

𝐻(𝑙+1) =  act(𝑊(𝑙) ⋅ 𝐻(𝑙) + 𝑏(𝑙)). 
The neural network layer building blocks are 

internally composed from Node class objects. In  

Fig. 2 such a building-block, internally structured by 
Node objects, is shown.  

 
Fig. 2. One neural network layer represented as 

computational graph with activation function, 

here 𝑹𝒆𝑳𝑼. Note, that such a layer is only a part 

of the full computational graph 
Source: compiled by the author 

 

 
Fig. 3. A complete neural network composed of 

multiple layers. Each layer is internally composed 

of Nodes objects as shown in Fig. 2 
Source: compiled by the author 

 

A complete feed forward network is composed 

of stacked layers, see Fig. 3. 
For training, the computational graph of the 

neural network is augmented with a cost function 

and an additional node for the provided labels 𝑌 of 
the mini batch. An example of a building block for 

the cross-entropy cost is show in Fig. 4. 

In the next few sections we show how each layer is 

implemented with our library. 
The input layer consists only of input data, also 

called features, and is represented as a leaf node 𝑥 in 

the computational graph. In Python, the input data 
are typically given as NumPy arrays, so we just need 

to convert this input array into a node object to 

enable backpropagation. With the DP-Library the 

conversation is done via 
 
input = Node(X) # X is a NumPy 2d-array. 
 

Note, that the optional name argument is 

omitted as the Jacobian w.r.t. X is not needed for the 
optimization. After converting the data into a Node 

object, we can use all operators and functions 

implemented in the Node class, including automatic 
differentiation. 

For the hidden layers, our library contains a 

class called NeuralNode, which initializes a weight 

matrix 𝑊(𝑙) and a bias vector 𝑏(𝑙). Both are leaf-
nodes (see Fig. 2) with unique names given to the 

Node constructor. Since the most common used 

activation function is 𝑅𝑒𝐿𝑈 we implemented also a 

𝑅𝑒𝐿𝑈 layer besides a pure linear layer. The pure 

linear layer can be used together with any activation 

functions specified by the user with the Node class, 

e.g. 𝑙𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈, 𝑡𝑎𝑛ℎ, 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 etc. 
Stacking many of these layers results in a fully 

connected neural network, see Fig. 3. We call the 

output of the last layer 𝑂.  𝑂 is automatically 

produced by sending the input 𝑋 forward through 

the network (forward propagation). 

The training of the neural network is done by 

minimization of the cost. The cost is a function of 

the parameters 𝜃 of the neural network. The 

parameters 𝜃 are the weight matrices and bias 

vectors: 
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𝜃 = {𝑊(1),  𝑏(1),  𝑊(2),  𝑏(2), …,   𝑊(𝑚),  𝑏(𝑚)}, 

𝑚 is the number of layers in the network. 
The cost function is implemented as part of the 

computational graph. Therefore, is consists of 

structured Node objects, see Fig. 4. 

 

      
 

Fig. 4. Calculation of the loss value 𝒍 using a cost 

function, here cross entropy represented as 

computational graph. The labels 𝒀 must be 

provided in one-hot encoding. 𝑶 is the output of 

the neural network (last Node object of the  

last layer) 
Source: compiled by the author 

 

The final output from the cost (sub-)graph will 

be a scalar 𝑙. So, the gradient of the cost (loss) with 

respect to all model parameters 𝜃 can be calculated 
by the DP-library. This gradient is then used to train 

the network via an update rule, to tune the network 

parameters to lower the loss 𝑙. The full calculation 

pipeline of  𝑙 is shown in Fig. 5. 

 

 

 
 

Fig. 5. Neural network with corresponding cost 

function. The X input is mapped to the output via 

the neural network (see Fig. 3). The output of the 

neural network and the labels Y are mapped to 

the cost value via cost block 
Source: compiled by the author 

To ease the implementation of a neural 

network, we provide a Model class. The user has to 
derive from the Model class a concrete model. The 

layers must be defined as instance variables. 

Additionally, the user has to define a loss method 
and a forward pass method.  

The following code shows an example of a 

neural network for MNIST classification: 

  
class Network(Model): 
  def __init__(self): 
    super(Net, self).__init__() 

    self.h1 = self.ReLu_Layer(784,500,"h1") 
    self.h2 = self.ReLu_Layer(500,200,"h2") 
    self.h3 = self 
          .Linear_Layer(200,10,"h3") 
   
  def loss(self, x, y): 
    if not type(y) == Node: 
      y = Node(y) 
    out = self.forward(x) 
    loss = -1 * (y * out.log()) 
    return loss.sum() 
   
  def forward(self, x): 
    if not type(x) == Node: 
      x = Node(x) 
    out= self.h3(self.h2(self.h1(x))) 
          .softmax() 
    return out 

 

In the constructor code two 𝑅𝑒𝐿𝑈 layers and a 

linear layer are defined as instance variables. The 

linear layer is later complemented with a softmax 

activation function, since this network deals with 
multiclass classification (10 disjunct classes).  

The constructor signature of a layer 

instantiation is: 
 
def ReLu_Layer(number_of_inputs, 
      number_of_outputs, name_of_layer"). 

 

The forward pass to generate the output 𝑂 is 

defined in def forward(self, x) simply by 
stacking all defined layers plus an additional 

softmax() as explained above.  

The loss function which outputs 𝑙 is defined in 
def loss(self, x, y) where  self.forward(x)  

is used to calculate the network output 𝑂. 𝑌 

represents our target values, here fixed class labels 

(one hot encoded) for classification. Notice, that 
each time we start a calculation it is checked 

whether the input is a Node object or not, and if not, 

the data is converted into one. 
After that, the user-defined network can be 

instantiated by calling the constructor: 

 
net = Network(). 
 

For training, we also provide different 
optimizers which inherit from the basic (abstract) 

Optimizer class. The optimizer updates the model 

parameter according to special update rules. The 
optimizer we provide are SGD, SGD Momentum, 

RMSProp and Adam [22]. An instance of an 

optimizer can be initialized, e.g. by 

 
optimizer = SGD(net,x_train,y_train). 

 

The first parameter, net, is the network (see 

above). x_train and y_train are the training data, 

equivalent to X and Y. Training can be started with  
 
loss = optimizer.train(steps=1000, 

print_each=100), 
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steps is the number of total training loops to adjust 

the model parameters. print_each is the number of 

steps after which we want to receive a feedback 
about the current training error, basically the loss 

value, which should decrease if training succeeds. 

Per default the train function will return the final 
loss value which we saved into loss in our example 

above. For a more detailed analysis of the training it 

is also possible to call  

 
loss, loss_hist, para_hist = optimizer 
      .train(steps=1000, print_each=100, 
             err_hist=True). 

With the parameter err_hist=True a complete 
history of the loss value the model parameters will 

be returned. These can be used for further analytics, 

e.g. to visualize the training process. 

After the network is trained, it is quite common 
to test how well the network learned its task by 

testing its prediction using a set x_test. Using the 

network prediction from the forward pass      
 
y_pred = net.forward(x_test), 
 

the test accuracy of the network can be calculated. 

For classification for example this means how many 

labels the network predicted correctly.  
For a deeper understanding on neural networks 

and optimizers or for special purposes it is possible 

to implement the training process from scratch. The 
Model class provides the functions get_grad(), 

get_param() and set_param(). These are also 

used internally called by the Optimizer class. A 
manually implemented training loop, using basic 

gradient descent, could look like the following 

 
net= Network() 
for epoch in range(100): 
  # compute the loss and gradients 
  grad,loss = net.get_grad(x,y) 
 
  # get the current parameters 
  param_current = net.get_param() 
 
  # calc new parameters, actual learning 
  param_new = { name : param_current[name]  
        - 0.001 * grad[name]  
        for name in param_current.keys()} 
  # set new parameters 
  net.set_param(param_new).  
 

Accompanying exercises 

To make the entry into the topic of 

differentiable programming as easy as possible, the 

DP library is part of a differentiable programming 

course and can be found, together with 

accompanying exercises, on the deep-teaching 

website [18] or directly at the GitLab repository 

[18]. The exercises are divided into three groups. 

The first group of exercises teaches the 

principles of reverse mode automatic differentiation. 

It is explained how the DP library itself is 

implemented, i.e. how to implement the operator 

methods for instantiation of a computational graph, 

consisting of scalars, matrices, elementary operators 

(+, -, dot-product) and functions (𝑡𝑎𝑛ℎ, 𝑒𝑥𝑝, etc.) 

and how to implement automatic differentiation. 

Finally, everything is combined in an object-oriented 

architecture forming the DP library and therefore 

enabling easy use of the low level and high-level 

functionalities mentioned. 

The second group of exercises is about using 

the DP library to build neural networks, train them 

and using them for inference. At the same time each 

of these exercises is about best practices and 

findings of neural network research of the last 

couple of years, including batch-norm [21], dropout 

[22], optimizers (improvements of SGD, e.g. Adam 

[22]), weight-initialization methods (e.g. Xavier 

[24]) and activation functions. 

The last-mentioned exercise, at which we will 

have a look at for illustration purposes, teaches 

about different activation functions and the so-called 
vanishing gradient problem. 

We consider a simple deep neural network, i.e. 

one that consists of many layers, e.g. 10 linear 
layers. The output of the first linear layer is 

computed with 𝐻(2) = 𝑎𝑐𝑡(1)(𝑊(1)𝐻(1) + b(1)), 

with 𝐻(1) = 𝑋 the input, 𝑊(1) the first weight 

matrix, b(1) the corresponding bias vector and 

𝑎𝑐𝑡(1) the activation function. The output of the 

second linear layer then is computed with 𝐻(3) =

𝑎𝑐𝑡(2)(𝑊(2)𝐻(2) + b(2)) and so on, until the last 

layer 𝑂 = 𝑎𝑐𝑡(10)(𝑊(10)𝐻(10) + b(10)). Training 

the network, we first calculate the loss 𝑙, i.e. the 

difference of the output of our last layer 𝑂 (our 

predictions) and the true labels 𝑌. This is a binary 

classification tasks, i.e. there are two possible labels 

(0 and 1). The output 𝑂 for an example input 𝑥 is 

the predicted probability for the positive class, i.e. 

𝑝𝜃(𝑦 = 1|𝑥). For such problems the binary cross-

entropy as cost function is typically used:  

 

𝑙𝑜𝑠𝑠(θ) = −(𝑌 𝑙𝑜𝑔 (𝑂) + (1 − 𝑌) 𝑙𝑜𝑔 (1 − 𝑂)). 
 

Second, we adjust the weight matrices for all 

layers 𝑖 by the update rule of gradient descent: 

𝑊(𝑙)𝑁𝐸𝑊
← 𝑊(𝑙)𝑂𝐿𝐷

− α ⋅
∂𝑙𝑜𝑠𝑠(θ)

∂𝑊(𝑙)𝑂𝐿𝐷. 

 

systems and technologies
Systems analysis, applied information 



Applied Aspects of Information Technology                          2019; Vol.2 No.4: 283–294                    

ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 

 291 

 

Using the chain rule to calculate 
∂𝑙𝑜𝑠𝑠(θ)

∂𝑊(1)  for 

example, we get:  
  

∂𝑙𝑜𝑠𝑠(θ)

∂𝑊(1) =
𝜕𝑙𝑜𝑠𝑠(𝜃)

∂O
⋅

𝜕O

∂𝐻(10) ⋅
∂𝐻(10)

∂𝐻(9) ⋅
∂𝐻(9)

∂𝐻(8) ⋅ … ⋅
∂𝐻(2)

∂𝑊(1). 

 

For binary classification, the typical activation 

function 𝑎𝑐𝑡(10) of the output layer is the logistic 

function σ(𝑧) =
1

1+𝑒𝑥𝑝−𝑧 which has the range ]0,1[. 

However, a problem arises, if the logistic function is 

further used as activation function 𝑎𝑐𝑡(1) to 𝑎𝑐𝑡(9) 

in intermediate layers, because the absolute value of 

its derivative is at most 
1

4
, which in turn leads to the 

partial derivative 
𝜕𝑙𝑜𝑠𝑠(𝜃)

𝜕𝑊(1)  becoming smaller and 

smaller the more layers the network has in between, 

as lim
𝑙→ ∞

(
1

4
)

𝑙

= 0. 

The derivative of the 𝑡𝑎𝑛ℎ or the 𝑅𝑒𝐿𝑈 

function on the other hand is defined in the range of 

]0, 1], resp. 0,1. 

The task of this sample exercise consists of (a) 

building the neural network model for the 

computational graph using the DP library, (b) train 

and validate the network with different activation 

functions while (c) visualizing the vanishing 

gradient problem by plotting the sum of the absolute 

values of the partial derivates 
∂loss(θ)

∂W(l)  for all weights 

of each layer 𝑙 ∈ {1,2, … , 10}. 

The third group of exercises is on using more 

common, but also more complex deep learning 

libraries, like PyTorch and TensorFlow. This kind of 

exercises is not directly related to our DP library, but 

still should be mentioned here because they are the 

last step of our educational path for students on 

differentiable programming, that is: (1) Learn the 

principles of differentiable programming and how to 

build a framework for it at the example of our 

lightweight DP library, (2) learn how to use this 

library to build models, train them, validate them 

and use them for inference and (3) make a transition 

to using well-known but more complex frameworks. 

After that, the students should then have a good 

starting point for understanding the inner 

implementation and software-architecture of 

libraries, like PyTorch and TensorFlow. 

 

CONCLUSION 

The use of machine learning, especially of 

artificial neural networks, in practical applications 

has increased tremendously over the last years and 

most likely will keep increasing in the near and far 
future. Yet already today research and industry 

suffer from a lack of specialists in this field. 

Unfortunately, becoming an AI specialist has a very 
flat learning curve and requires knowledge in the 

fields of mathematics, computer science, statistics 

and ideally in the domain, which you want to 
provide with AI driven applications. 

With our library for educational purpose, 

teaching the fundamentals of differentiable 

programming can be improved significantly by 
opening the black box of deep learning libraries.  

With less than 1.000 lines of code, including 

about 400 lines of comments, in contrast to 3.5 
million lines for TensorFlow [28], the goal of a 

lightweight, clear and easy understandable library 

was achieved. Following the concept of didactic 
reduction [29], its use and architecture have a lot in 

common with TensorFlow and PyTorch, but with a 

focus on the core principles of differentiable 

programming. 

Lastly the stable API does not force teachers to 

re-adjust their exercises and educational material 

over and over again to keep them up-to-date. 
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АНОТАЦІЯ 
 

  Технології глибокого навчання  (Deep Learning –DL) викликають великий інтерес, так як в даний час на ньому 
базується велика кількість прикладних додатків. Як правило, ці програми реалізуються за допомогою спеціальних 
бібліотек глибокого навчання, внутрішню реалізацію яких важко зрозуміти. Ми розробили таку бібліотеку в 
полегшеному вигляді з упором на викладання відповідних дисциплін. Наша бібліотека має наступні характеристики, які 
відповідають певним вимогам з урахуванням специфіки навчального процесу: невелика кодова база, прості концепції і 
стабільний інтерфейс прикладного програмування (API). Основне призначення бібліотеки -  допомога у володінні 

принципами роботи з бібліотеками глибокого навчання. Бібліотека розділена на два шари. Низькорівнева частина 
дозволяє програмно побудувати обчислювальний графік на основі елементарних операцій. У машинному навчанні 
обчислювальний графік зазвичай є функцією вартості, що включає в себе модель машинного навчання, наприклад, 
нейронну мережу. Вбудований зворотний режим автоматичного диференціювання на обчислювальному графіку 
дозволяє навчати моделі машинного навчання. Це робиться за допомогою алгоритмів оптимізації, таких як стохастичний 
градієнтний спуск. Ці алгоритми використовують похідні, щоб мінімізувати вартість шляхом адаптації параметрів 
моделі. У разі нейронних мереж параметри є вагами нейронних мереж. Частина бібліотеки вищого рівня полегшує 
реалізацію нейронних мереж, надаючи більші будівельні блоки, такі як нейронні шари і допоміжні функції, наприклад, 

реалізацію алгоритмів оптимізації (оптимізаторів) для навчання нейронних мереж. Також до бібліотеки ми додаємо 
вправи для вивчення основних принципів роботи бібліотеки глибокого навчання і основ нейронних мереж. Додатковою 
перевагою бібліотеки є те, що вправи і відповідні програмні завдання на її основі не потребують постійного 
рефакторінгу через її стабільного API. 
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АННОТАЦИЯ 

Технологии Глубокого обучения (Deep Learning – DL) вызывают большой интерес, так как в настоящее время на 
нем базируются многие практические приложения. Как правило, эти приложения реализуются с помощью специальных 
библиотек глубокого обучения, внутреннюю реализацию которых трудно понять. Мы разработали библиотеку 
глубокого обучения в облегченном виде с упором на преподавание. Наша библиотека  имеет следующие 
характеристики, которые соответствуют определенным требованиям с учетом специфики учебного процесса: небольшая 
кодовая база, простые концепции и стабильный интерфейс прикладного программирования (API). Основное назначение 
этой библиотеки - обучение принципам глубокого обучения. Библиотека разделена на два слоя. Низкоуровневая часть 
позволяет программно построить вычислительный график на основе элементарных операций. В машинном обучении 
вычислительный график обычно является функцией стоимости, включающей в себя модель машинного обучения, 
например, нейронную сеть. Встроенный обратный режим автоматического дифференцирования на вычислительном 
графике позволяет обучать модели машинного обучения. Это делается с помощью алгоритмов оптимизации, таких как 
стохастический градиентный спуск. Эти алгоритмы используют производные, чтобы минимизировать стоимость путем 
адаптации параметров модели. В случае нейронных сетей параметры являются нейронными весами. Часть библиотеки 
более высокого уровня облегчает реализацию нейронных сетей, предоставляя более крупные строительные блоки, такие 
как нейронные слои и вспомогательные функции, например, реализацию алгоритмов оптимизации (оптимизаторов) для 
обучения нейронных сетей. В дополнение к библиотеке мы предоставляем упражнения для изучения основополагающих 
принципов работы библиотеки глубокого обучения и основ нейронных сетей. Дополнительным преимуществом 
библиотеки является то, что упражнения и соответствующие программные задания на ее основе не нуждаются в 
постоянном рефакторинге из-за ее стабильного API.  

Ключевые слова: дифференцируемое программирование; глубокое обучение; автоматическое 
дифференцирование 
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