
Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

283

DOI: https://doi.org/10.15276/aait.04.2019.3

UDC 004.4

DP: A LIGHTWEIGHT LIBRARY FOR TEACHING DIFFERENTIABLE

PROGRAMMING

 Christian Herta1)

ORCID: https://orcid.org/ 0000-0003-2519-6794, christian.herta@htw-berlin.de

 Klaus Strohmenger1)

ORCID: https://orcid.org/0000-0002-4534-1306, klaus.strohmenger@htw-berlin.de

 Oliver Fischer1)

ORCID: https://orcid.org/0000-0002-1871-9350, oliver.fischer@htw-berlin.de

 Diyar Oktay1)

ORCID: https://orcid.org/0000-0003-1483-5837, diyar.oktay99@gmail.com
1) HTW Berlin – University of Applied Sciences, 75a, Wilhelminenhofstr. Berlin, 12459, Germany

ABSTRACT

Deep Learning (DL) has recently gained a lot of interest, as nowadays, many practical applications rely on it. Typically,
these applications are implemented with the help of special deep learning libraries, which inner implementations are hard to
understand. We developed such a library in a lightweight way with a focus on teaching. Our library DP (differentiable
programming) has the following properties which fit particular requirements for education: small code base, simple concepts, and
stable Application Programming Interface (API). Its core use case is to teach how deep learning libraries work in principle. The
library is divided into two layers. The low-level part allows programmatically building a computational graph based on

elementary operations. In machine learning, the computational graph is typically the cost function including a machine learning
model, e.g. a neural network. Built-in reverse mode automatic differentiation on the computational graph allows the training of
machine learning models. This is done by optimization algorithms, such as stochastic gradient descent. These algorithms use the
derivatives to minimize the cost by adapting the parameters of the model. In the case of neural networks, the parameters are the
neuron weights. The higher-level part of the library eases the implementation of neural networks by providing larger building
blocks, such as neuron layers and helper functions, e.g., implementation of the optimization algorithms (optimizers) for training
neural networks. Accompanied to the library, we provide exercises to learn the underlying principles of deep learning libraries
and fundamentals of neural networks. An additional benefit of the library is that the exercises and corresponding programming

assignments based on it do not need to be permanently refactored because of its stable API.

Keywords: Differentiable Programming; Deep Learning; Teaching; Automatic Differentiation

For citation: Christian Herta, Klaus Strohmenger, Oliver Fischer Diyar Oktay. DP: A Lightweight Library for Teaching Differentiable

Programming. Applied Aspects of Information Technology. 2019; Vol.2 No.4: 283–294. DOI: https://doi.org/10.15276/aait.04.2019.3

INTRODUCTION

Modern deep learning libraries ease the

implementation of neural networks for applications

and research. In the last few years, different types of
such libraries were developed by academic groups

and commercial companies. Examples are Theano

[1], TensorFlow or PyTorch Recently, the term
“differentiable programming” emerged (see e.g.,

which expresses that e.g. (Deep) Neural Networks

can be implemented by such libraries by composing
building blocks provided by the library. The term

differentiable programming also reflects the fact that

a much wider spectrum of models is possible by

using additional (differentiable) structures (e.g.
memory, stacks, queues) [12Error! Reference

source not found.] as building blocks and control

flow statements.
With the DP library, we provide a minimalistic

version of such a library for teaching purposes. The

library is designed light-weighted, focusing on the

principles of differentiable programming: How to
build a computational graph and how automatic

differentiation can be implemented.

© Herta, Christian, Strohmenger, Klaus, Fischer, Oliver,

Oktay, Diyar, 2019

We also developed a high-level neural network API
which allows for more convenient implementation
of neural network models by providing predefined
functional blocks, typically used in neural networks.

The library is accompanied by many Jupyter

[25] notebooks, a de facto standard in data science

research and education [27], to demonstrate and
teach the underlying principles of a deep learning

library. We also provide many exercises that allow

students to deepen their understanding. The

exercises also include concepts of modern neural
networks, e.g., activation functions, layer

initialization, versions of stochastic gradient descent,

dropout, and batch normalization (see e.g. [5]).

TYPES OF DEEP LEARNING LIBRARIES

Different deep learning libraries follow

different concepts, and they distinguish further from
each other in various aspects. In some libraries, the

neural networks must be defined by configuration

(e.g. Caffe [4]). Other libraries provide APIs for
programming languages, e.g. for Python or R. Some

of the APIs resemble languages that are embedded

in a host language. Typically, with these domain-

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/deed.uk)

Systems analysis, applied information
systems and technologies

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

284 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

specific languages, the computational graphs are
defined symbolically. In the next step, the

computational graphs (and the corresponding graphs

for the derivatives) are translated into code for

another programming language, typically C++ or
CUDA. Subsequently, the program is compiled and

can be executed. Sometimes the term static

computation graph is used here which reflects the
fact that the graph is defined once declaratively and

cannot be changed dynamically.

Contrary to this symbolic approach is the

imperative approach. Here, the computation graph is

built up implicitly by executing the program line by

line. The forward computation is done directly, and

the computation of the derivatives can be done at the

end, e.g., by recursion. With each execution of the

program, control structures in the program can

change the structure of the computation graph. In

this case the term dynamic computation graph is

used.

Another aspect is the granularity of the

computational operations in a deep learning library.

With some libraries, the computational graph can be

constructed with elementary tensor operations, e.g.

matrix multiplication. In other libraries, the

operations may correspond to whole layers of a

neural network.

Our library DP is a finely granular, imperative

deep learning library for Python, based on NumPy

[15]. The focus of the library lies in teaching the

principles of a deep learning library and the

implementation of neural network models and

algorithms. Therefore, we designed the library as

simple as possible, and we restrict the tensor order to

two, i.e. matrices. So, the code base of DP is

significantly smaller and easier to understand as of

libraries with much more functionality like

autograd [9].

Another problem is that most common deep

learning libraries are still subject to frequent changes

in their API, which is a big drawback when used for

exercises. We are developing exercises for advanced

deep learning, e.g., Bayesian neural networks [9] or

variational autoencoders. For educational reasons

(didactic reduction), we provide all boilerplate code

so that the students can focus on the learning

objective. The boilerplate code includes

implementation against a deep learning library. If

then a new version of the used library is released and

its usage changes, exercises have to be adjusted

accordingly to work correctly. Typically,

universities do not have the personal resources to

keep the teaching materials and exercises

permanently up-to-date. The minimalistic approach

of our library and the strict focus on teaching allows

us to keep its API stable and therefore eliminates the

need for permanent maintenance of the exercises.

OVERVIEW ON THE PRINCIPLES

In deep learning libraries, a machine learning

model is built up as a computational graph. A
computational graph is a directed graph. The

structure of the graph encodes the order of the

computation steps. At each inner node, an

elementary computation is executed. The inner
nodes of the graph are elementary mathematical

operations (including elementary functions).

Examples of elementary operators are +, - or dot-

product and elementary functions are e.g., 𝑒𝑥𝑝,

𝑡𝑎𝑛ℎ or 𝑅𝑒𝐿𝑈. A computational graph corresponds

to a mathematical expression. The input nodes are

the parameters of the model or data values. In
machine learning, the output nodes of the graph

usually correspond to the prediction values or cost

values. Typically, the computational graph is built
up in a computer program which allows different

programming techniques such as looping, branching,

and recursion.
Computational graphs enable automatic

differentiation. For each computational node the

derivative of the operation must be known. Local

derivative computations are combined by the chain
rule of calculus to get a numerical value for the

derivatives of the whole computational graph for

given input values. In deep learning libraries this is
typically implemented as reverse-mode automatic

differentiation. With reverse-mode automatic

differentiation, all partial derivatives of the output

w.r.t. to all inputs can be calculated efficiently. This
feature is very important for machine learning. In the

training process of a machine learning model, all

partial derivatives of the cost function w.r.t. all
parameters of the model must be computed. In

neural networks, these parameters are the neuron

weights.
The computational graph for the training of a

model corresponds to the cost function which should

be minimized in the training procedure [7]. The cost

𝑙𝑜𝑠𝑠(𝜃) is a function of the parameters 𝜃 of the
model. During the optimization, the parameters are

adapted to minimize the cost value. This

optimization is typically realized by variants of
stochastic gradient descent (SGD) [10]. In each step

of SGD all partial derivatives of the cost w.r.t. the

parameters must be computed.

Before the appearance of deep learning
libraries, a symbolic expression for the partial

derivatives for new models was done by the

researcher in a pen-and-paper solution. For an
example see e.g. [13]. This manual procedure is

systems and technologies
Systems analysis, applied information

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 285

error-prone, time consuming and nearly impossible
for large complex models.

By building up the model in a deep learning

library the build-in feature reverse automatic

differentiation deliberates the researcher or
developer from this work.

THEORETICAL BACKGROUND OF

AUTOMATIC DIFFERENTIATION
In the following we describe the theoretical

background of reverse mode automatic

differentiation in a semi-formal way. For a more
rigorous formal explanation, see e.g. [15].

Notation

In the theoretical description, we use the

following mathematical notation. Lower-case Latin

letters, e.g. 𝑎, denote scalars or vectors. Upper-case

Latin letters, e.g. 𝐴, denote matrices or more struc-

tured objects like graphs. Python variables
corresponding to a mathematical object are denoted

as lower-case letter in a sans-serif fond, e.g. a,

independent of the type.

From the context, it should be clear which
objects are referenced by the corresponding letters.

Definition of a computational graph

A computational graph 𝐺 is a directed acyclic

graph. A directed acyclic graph is a set of nodes 𝑉

(with a node 𝑛(𝑖) in 𝑉) and a set of edges 𝐸, i.e. pairs

of nodes (𝑛(𝑖), 𝑛(𝑗)) ∈ 𝐸. i respectively j is the index

of the node. Further we assume that the

computational graph 𝐺 is topologically ordered, i.e.

for each edge (𝑛(𝑖), 𝑛(𝑗)) holds 𝑖 < 𝑗.

We define the leaves of the graph as the nodes

with no incoming edges. Each node 𝑛(𝑖) has a

corresponding variable 𝑣(𝑖). The dimensionality of

variable 𝑣(𝑖)
 is 𝑑(𝑖). Leaf nodes correspond directly

to inputs for the computation and the value of the

variable 𝑣(𝑖)
 is directly the input value. Non-leaf

nodes 𝑛(𝑗) have a corresponding operator 𝑜(𝑗). The

operator 𝑜(𝑗)
 takes as input the variables 𝑣(𝑖)

 of all

nodes with an outgoing edge to the node 𝑛(𝑗). For

the concatenation of all variables 𝑣(𝑖) with an edge

to 𝑛(𝑗)
 we write 𝑤(𝑗). The concatenation is done in

topological order.

For a consistent definition we can define the

operator for leaf nodes as the identity which takes as
input the (external) input to the (leaf) node.

In summary, a computational graph is a

directed acyclic graph where each node has an

internal structure. The nodes 𝑛(𝑖) consists of a

variable 𝑣(𝑖) and an operator 𝑜(𝑖). The input to the

operator is determined by the edge structure of the
graph.

Forward propagation algorithm

The forward propagation algorithm computes

the values of all non-leaf nodes. The values of the

leaf nodes are the input to the algorithm. In

topological order all non-leaf nodes 𝑛(𝑗) are

computed by the corresponding operator 𝑜(𝑗) and the

variables of the nodes 𝑛(𝑖) which have an edge to the

node 𝑛(𝑗)
. Note that the variable values of all 𝑛(𝑖)

 are

already known. Either because they are leaf nodes or

they have a lower order index and are already
computed by the algorithm.

Reverse mode automatic differentiation
Reverse-mode automatic differentiation is a

two-step procedure. In the first step, the variable

values of each inner node of the computational

graph are computed by the forward algorithm. The
computed values of all variables are stored in an

appropriate data structure.

The second step is based on the chain rule of
calculus. Here we assume that we have only one

node with no outgoing edges. This node has the

highest order index m. We call the node the output
node. In machine learning, the value of the node is

typically the cost value and the computational graph

computes the cost function. The cost value is a

scalar, i.e. the dimensionality of the output variable

𝑣(𝑚) is 𝑑(𝑚) = 1.

In general, the node variables in the

computational graph can be tensors of any order.
However, for compact indexing we assume that they

are flattened to vectors for this theoretical analysis.

So, there is only one index for each variable and the

variables of the nodes are 𝑑(𝑖) dimensional vectors.

We are interested in partial derivatives of the

output node variable 𝑣(𝑚) with respect to the leaf

node variables 𝑣(𝑖), i.e.
∂𝑣𝑘

(𝑚)

∂𝑣𝑙
(𝑖) .

On the right side of the equation each summand

is a dot-product of Jacobians 𝑗 is the index of all

nodes which have an edge to node 𝑛(𝑚), i.e.

(𝑛(𝑗), 𝑛(𝑚)) ∈ 𝐸.

The Jacobian which corresponds to an edge in

the computational graph (here from 𝑛(𝑗) to 𝑛(𝑚)) is

called a local Jacobian (matrix).
For each variable with index the chain rule can

be applied again:

[
∂𝑣(𝑗)

∂𝑣(𝑖)
] = ∑ [

∂𝑣(𝑗)

∂𝑣(𝑘)
]

𝑘

⋅ [
∂𝑣(𝑘)

∂𝑣(𝑖)
],

k is the index of all nodes which have an edge to

node 𝑛(𝑗) ,, i.e. (𝑛(𝑘), 𝑛(𝑗)) ∈ 𝐸.

systems and technologies
Systems analysis, applied information

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

286 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Note, that for different nodes 𝑗 the sum is over

different nodes with indices 𝑘 depending on the
graph structure. Repeated application of the chain

rule by respecting the graph structure shows that we

can compose a global Jacobian from local Jacobians.
It can be shown [15] that the dot products of all local

Jacobians on all paths from the leaf node 𝑛(𝑖) to the

output node 𝑛(𝑚) must be summed up to get the
global Jacobian.

As already stated, we want to compute (nearly)

all global Jacobians, i.e. all global Jacobians w.r.t.

(nearly) all leaf variables 𝑣(𝑖). The principle idea for

an efficient computation is to reuse the partial

results [
∂𝑣(𝑚)

∂𝑣(𝑝)] for all non-leaf variables 𝑣(𝑝). Note

that [
∂𝑣(𝑚)

∂𝑣(𝑝)] is again the sum of the dot products of

all local Jacobians on all paths from the node (𝑝) to

the node 𝑛(𝑚). So, regrouping of the nested sums is
equivalent to send backward signals. A backward

signal at a current node is the sum of dot products of

the local Jacobians of all paths from the current node
to the output node. To compute the backward signal

of a new node 𝑣(𝑞) it is sufficient to sum up all dot

products of the backward signals [
∂𝑣(𝑚)

∂𝑣(𝑝)] of all

nearby upstream nodes 𝑣(𝑝) with the local Jacobians

[
∂𝑣(𝑝)

∂𝑣(𝑞)]:

[
∂𝑣(𝑚)

∂𝑣(𝑞)
] = ∑ [

∂𝑣(𝑚)

∂𝑣(𝑝)
]

𝑝

⋅ [
∂𝑣(𝑝)

∂𝑣(𝑞)
],

p is the index of all nodes with an edge from

node 𝑛(𝑞) to 𝑛(𝑝), i.e. (𝑛(𝑞), 𝑛(𝑝)) ∈ 𝐸.

The algorithm starts at the output node 𝑛(𝑚).

The initial backward signal is [
∂𝑣(𝑚)

∂𝑣(𝑚)] = 𝐼, i.e. an

identity matrix with dimension 𝑑(𝑚) × 𝑑(𝑚). Then,

the backward signals at the nodes which have an

edge to 𝑣(𝑚) are computed as described above. This

procedure is repeated until all wanted global

Jacobians are computed.
In the context of neural networks, reverse mode

automatic differentiation is also called

backpropagation.

Implementation

For the implementation in a computer program
we chose as programming language Python, because

(scientific) Python is the most common

programming language for machine learning. Our

library is based mainly on the tensor library NumPy.

Basic (low-level) part
With the basic low-level part of the library the

user can build the computational graph (implicitly)

imperatively. On such a computational graph the

global Jacobians of the output node can be computed
efficiently by reverse mode automatic differentiation

with the help of the library.

The low-level part consists mainly of the Node
class. Each instantiation of the Node class

corresponds to the creation a node for the

computational graph. To keep the implementation
small and clear, the node variables are restricted to

tensors of order 2 and the output node variable 𝑣(𝑚)

must be a scalar, i.e. 𝑑(𝑚) = 1. In machine learning,
the value of the output node is typically the cost

value. So, that is not a severe restriction.

Fig. 1. Example of a computational graph.

The leaf nodes are A and B. The output node is

the rightmost node (sum over all elements). We

denote in topological order, the non-leaf variables

C (element-wise product), D (exponentiation) and

E (sum of all elements)
Source: compiled by the author

In the following, we show how the

computational graph of figure1can be build up in the

DP-library. Leaf nodes can be instantiated directly
by calling the constructor of the Node class, e.g. by

a = Node(np.array([[1,1,1], [2,2,2]]), "A")
b = Node(np.array([[1,2,3]]), "B").

Here, two leaf nodes a (with name A) and b

(with name B) are generated. Both nodes have got

an explicit name given by the optional second
argument of the constructor. For all nodes with

names the Jacobians (also called gradients) are

computed by reverse mode automatic differentiation,

see below.

The first node is a, i.e. 𝑣(1) = 𝐴 and the second

𝑣(2) = 𝐵. The node variable 𝐴 is 2x3 matrix.

However, note that the node variables described in
the theoretical part are formulated as vectors and

that the Jacobian indices refer to such vector indices.

As an example, for the correspondence to the matrix

𝐴 note that the element 𝐴21 is equivalent to 𝑣4
(1)

, and

systems and technologies
Systems analysis, applied information

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 287

the total number of elements of the variable 𝑣(1) is

𝑑(1) = 6. For the flattened / vector version of 𝐴 we

write 𝑎.

Non-leaf nodes are generated by methods (or
overwritten python operators) of the Node class. The

methods correspond to the mathematical operator,

e.g., the element-wise multiplication in figure 1 can

be done with the API by

c = a * b.

Here, a Node instance of a non-leaf node is

generated by the binary operator “element-wise

multiplication” and the instance is assigned to the

Python variable c (mathematical notation: 𝐶).

Note, that the shape of 𝐴 (2x3 matrix) and

𝐵(1x3 matrix) respectively 𝑏 (vector of dimension

3) are different. The DP-library supports
broadcasting [20] for such element-wise operations.

As result of broadcasted element-wise

multiplication, c has the same shape as a.
The completion of the computational graph of

Fig. 1 is done by the following code,

d = c.exp()
e = d.sum() # output e is a scalar.

For the variable d each element of c is

exponentiated. For the variable e all elements of the

variable d are summed up to a scalar. e is the output
variable of the computational graph.

By reverse mode automatic differentiation, the

Jacobians of the node e w.r.t. node a and b can be
computed. This is done by the method grad(.) with

argument 1 on the output node,

grads = e.grad (1).

The return value is a Python dictionary with an
entry for each leaf-variable with a name, here

{'A': array([[2.7, 14.78, 60.26],
 [7.39, 109.20, 1210.29]]),
 'B': array([[17.50, 116.59, 826.94]])}.

Exemplarily, we describe the implementation of the
element-wise multiplication operation. The internal

implementation is given by the following code:

def __mul__(self, other):
 if isinstance(other, numbers.Number) or
 isinstance(other, np.ndarray):
 other = Node(other)
 ret = Node(self.value * other.value)

 def grad(g):
 g_total_self = g * other.value
 g_total_other = g * self.value
 x = Node._set_grad(self, g_total_self,
 other, g_total_other)
 return x

 ret.grad = grad
 return ret.

The method generates and returns a new node
ret for the element wise multiplication operator.

The node instance ret has no name. The inner

function definition grad implements how the

backpropagated signal g is combined with the local
Jacobians for both operands, i.e. in our

computational graph a and b. How this

implementation is related to the theory (see above) is
not obvious. In the implementation, there is no

(explicit) dot-product of Jacobians. In the following

this relation is explained for the variable a. We
assume in the analysis, that the variable b was

internally broadcasted, so that a and b resp. 𝑣(1) and

𝑣(2) have the same dimension 𝑑(1) = 𝑑(2) = 6:
Here, the output node is e, i.e. and the

backpropagated signal is at the node c [
∂𝑣(𝑚)

∂𝑣(𝑝)] = [
∂e

∂c
]

(given to the inner function grad as argument g. To
get the global Jacobian w.r.t. the node a the dot

product with the local gradient [
∂c

∂a
] must be

calculated and combined with the backpropagated

signal:

[
∂e

∂a
] = [

∂e

∂c
] ⋅ [

∂c

∂a
],

or explicitly (with Jacobian) indices:

[
∂e

∂a
]

1𝑗
= ∑ [

∂e

∂c
]

1𝑘
[

∂c

∂a
]

𝑘𝑗
𝑘 .

Note, that the first index of [
∂e

∂a
]

1𝑗
resp. [

∂e

∂c
]

1𝑘
is

always a 1 because of the scalar output of the

computational graph. The local Jacobian for the

element-wise multiplication is

[
∂c

∂a
]

𝑘𝑗
= 𝛿𝑘𝑗 𝑏𝑗,

𝛿𝑘𝑗 is the Kronecker-Delta, i.e. 𝛿𝑘𝑗 = 0

for 𝑘 ≠ 𝑗 and 𝛿𝑘𝑗 = 1 for k = 𝑗. So, we have

[
∂e

∂a
]

1𝑗
= ∑ [

∂e

∂c
]

1𝑘
𝛿𝑘𝑗 𝑏𝑗 = [

∂e

∂c
]

1𝑗
𝑏𝑗

𝑘

.

Therefore, the combination of the Jacobians by

the dot-product is here equivalent to an element-wise

multiplication of the Jacobians. The dimension of

the Jacobians (indexed by 1) need not to be

considered in the shape of the Jacobian variables in

the implementation.

Neural network library (high-level) part

Additionally, to the low-level part, the library

includes different building blocks and helper
functions which ease the implementation of neural

networks.

systems and technologies
Systems analysis, applied information

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

288 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

For teaching purposes, we restrict the provided
building blocks to simple fully connected layers (see

Fig. 2). With these layers fully connected feed-

forward networks can be implemented.

A hidden or output layer consists of an affine

transformation given by a weight matrix 𝑊(𝑙) and a

bias vector 𝑏(𝑙) and a (non-linear) activation

function act(). Typical activation functions for

hidden layers are, e.g. element-wise 𝑅𝑒𝐿𝑈 or 𝑡𝑎𝑛ℎ.

For classification tasks, the activation function of the

output (last) layer is typically the logistic (two
classes only) or the softmax function.

A layer can be described mathematically by

ℎ(𝑙+1) = act(𝑊(𝑙) ⋅ ℎ(𝑙) + 𝑏(𝑙)).

Here, the superscript is the layer index. The

input to the network is therefore ℎ(1) = 𝑥.

For training of a neural network, a set of training

examples must be provided,

𝐷{𝑇𝑟𝑎𝑖𝑛}

= { (𝑥(1), 𝑦(1)), (𝑥(2), 𝑦(2)), … , (𝑥(𝑛), 𝑦(𝑛))}.

Each pair (𝑥(𝑖), 𝑦(𝑖)) is a training example with

an input 𝑥(𝑖) and a label (target value) 𝑦(𝑖). The

superscript is the index of the example. 𝑛 is the total
number of training examples.

On the training data set, the learning

corresponds to minimizing a cost function. Here, we
neglect for simplification generalization [7] which is

very important in practice. The cost (and the

prediction) is computed typically on (mini) batches.

The inputs of many examples are concatenated in a

design matrix 𝑋, i.e. each row of the matrix

corresponds to an input vector 𝑥(𝑖). Each layer of the

neural network outputs a matrix 𝐻 with a hidden
representation h for each example as row vectors of

the matrix.

𝐻(𝑙+1) = act(𝑊(𝑙) ⋅ 𝐻(𝑙) + 𝑏(𝑙)).
The neural network layer building blocks are

internally composed from Node class objects. In

Fig. 2 such a building-block, internally structured by
Node objects, is shown.

Fig. 2. One neural network layer represented as

computational graph with activation function,

here 𝑹𝒆𝑳𝑼. Note, that such a layer is only a part

of the full computational graph
Source: compiled by the author

Fig. 3. A complete neural network composed of

multiple layers. Each layer is internally composed

of Nodes objects as shown in Fig. 2
Source: compiled by the author

A complete feed forward network is composed

of stacked layers, see Fig. 3.
For training, the computational graph of the

neural network is augmented with a cost function

and an additional node for the provided labels 𝑌 of
the mini batch. An example of a building block for

the cross-entropy cost is show in Fig. 4.

In the next few sections we show how each layer is

implemented with our library.
The input layer consists only of input data, also

called features, and is represented as a leaf node 𝑥 in

the computational graph. In Python, the input data
are typically given as NumPy arrays, so we just need

to convert this input array into a node object to

enable backpropagation. With the DP-Library the

conversation is done via

input = Node(X) # X is a NumPy 2d-array.

Note, that the optional name argument is

omitted as the Jacobian w.r.t. X is not needed for the
optimization. After converting the data into a Node

object, we can use all operators and functions

implemented in the Node class, including automatic
differentiation.

For the hidden layers, our library contains a

class called NeuralNode, which initializes a weight

matrix 𝑊(𝑙) and a bias vector 𝑏(𝑙). Both are leaf-
nodes (see Fig. 2) with unique names given to the

Node constructor. Since the most common used

activation function is 𝑅𝑒𝐿𝑈 we implemented also a

𝑅𝑒𝐿𝑈 layer besides a pure linear layer. The pure

linear layer can be used together with any activation

functions specified by the user with the Node class,

e.g. 𝑙𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈, 𝑡𝑎𝑛ℎ, 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 etc.
Stacking many of these layers results in a fully

connected neural network, see Fig. 3. We call the

output of the last layer 𝑂. 𝑂 is automatically

produced by sending the input 𝑋 forward through

the network (forward propagation).

The training of the neural network is done by

minimization of the cost. The cost is a function of

the parameters 𝜃 of the neural network. The

parameters 𝜃 are the weight matrices and bias

vectors:

systems and technologies
Systems analysis, applied information

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 289

𝜃 = {𝑊(1), 𝑏(1), 𝑊(2), 𝑏(2), …, 𝑊(𝑚), 𝑏(𝑚)},

𝑚 is the number of layers in the network.
The cost function is implemented as part of the

computational graph. Therefore, is consists of

structured Node objects, see Fig. 4.

Fig. 4. Calculation of the loss value 𝒍 using a cost

function, here cross entropy represented as

computational graph. The labels 𝒀 must be

provided in one-hot encoding. 𝑶 is the output of

the neural network (last Node object of the

last layer)
Source: compiled by the author

The final output from the cost (sub-)graph will

be a scalar 𝑙. So, the gradient of the cost (loss) with

respect to all model parameters 𝜃 can be calculated
by the DP-library. This gradient is then used to train

the network via an update rule, to tune the network

parameters to lower the loss 𝑙. The full calculation

pipeline of 𝑙 is shown in Fig. 5.

Fig. 5. Neural network with corresponding cost

function. The X input is mapped to the output via

the neural network (see Fig. 3). The output of the

neural network and the labels Y are mapped to

the cost value via cost block
Source: compiled by the author

To ease the implementation of a neural

network, we provide a Model class. The user has to
derive from the Model class a concrete model. The

layers must be defined as instance variables.

Additionally, the user has to define a loss method
and a forward pass method.

The following code shows an example of a

neural network for MNIST classification:

class Network(Model):
 def __init__(self):
 super(Net, self).__init__()

 self.h1 = self.ReLu_Layer(784,500,"h1")
 self.h2 = self.ReLu_Layer(500,200,"h2")
 self.h3 = self
 .Linear_Layer(200,10,"h3")

 def loss(self, x, y):
 if not type(y) == Node:
 y = Node(y)
 out = self.forward(x)
 loss = -1 * (y * out.log())
 return loss.sum()

 def forward(self, x):
 if not type(x) == Node:
 x = Node(x)
 out= self.h3(self.h2(self.h1(x)))
 .softmax()
 return out

In the constructor code two 𝑅𝑒𝐿𝑈 layers and a

linear layer are defined as instance variables. The

linear layer is later complemented with a softmax

activation function, since this network deals with
multiclass classification (10 disjunct classes).

The constructor signature of a layer

instantiation is:

def ReLu_Layer(number_of_inputs,
 number_of_outputs, name_of_layer").

The forward pass to generate the output 𝑂 is

defined in def forward(self, x) simply by
stacking all defined layers plus an additional

softmax() as explained above.

The loss function which outputs 𝑙 is defined in
def loss(self, x, y) where self.forward(x)

is used to calculate the network output 𝑂. 𝑌

represents our target values, here fixed class labels

(one hot encoded) for classification. Notice, that
each time we start a calculation it is checked

whether the input is a Node object or not, and if not,

the data is converted into one.
After that, the user-defined network can be

instantiated by calling the constructor:

net = Network().

For training, we also provide different
optimizers which inherit from the basic (abstract)

Optimizer class. The optimizer updates the model

parameter according to special update rules. The
optimizer we provide are SGD, SGD Momentum,

RMSProp and Adam [22]. An instance of an

optimizer can be initialized, e.g. by

optimizer = SGD(net,x_train,y_train).

The first parameter, net, is the network (see

above). x_train and y_train are the training data,

equivalent to X and Y. Training can be started with

loss = optimizer.train(steps=1000,

print_each=100),

systems and technologies
Systems analysis, applied information

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

290 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

steps is the number of total training loops to adjust

the model parameters. print_each is the number of

steps after which we want to receive a feedback
about the current training error, basically the loss

value, which should decrease if training succeeds.

Per default the train function will return the final
loss value which we saved into loss in our example

above. For a more detailed analysis of the training it

is also possible to call

loss, loss_hist, para_hist = optimizer
 .train(steps=1000, print_each=100,
 err_hist=True).

With the parameter err_hist=True a complete
history of the loss value the model parameters will

be returned. These can be used for further analytics,

e.g. to visualize the training process.

After the network is trained, it is quite common
to test how well the network learned its task by

testing its prediction using a set x_test. Using the

network prediction from the forward pass

y_pred = net.forward(x_test),

the test accuracy of the network can be calculated.

For classification for example this means how many

labels the network predicted correctly.
For a deeper understanding on neural networks

and optimizers or for special purposes it is possible

to implement the training process from scratch. The
Model class provides the functions get_grad(),

get_param() and set_param(). These are also

used internally called by the Optimizer class. A
manually implemented training loop, using basic

gradient descent, could look like the following

net= Network()
for epoch in range(100):
 # compute the loss and gradients
 grad,loss = net.get_grad(x,y)

 # get the current parameters
 param_current = net.get_param()

 # calc new parameters, actual learning
 param_new = { name : param_current[name]
 - 0.001 * grad[name]
 for name in param_current.keys()}
 # set new parameters
 net.set_param(param_new).

Accompanying exercises

To make the entry into the topic of

differentiable programming as easy as possible, the

DP library is part of a differentiable programming

course and can be found, together with

accompanying exercises, on the deep-teaching

website [18] or directly at the GitLab repository

[18]. The exercises are divided into three groups.

The first group of exercises teaches the

principles of reverse mode automatic differentiation.

It is explained how the DP library itself is

implemented, i.e. how to implement the operator

methods for instantiation of a computational graph,

consisting of scalars, matrices, elementary operators

(+, -, dot-product) and functions (𝑡𝑎𝑛ℎ, 𝑒𝑥𝑝, etc.)

and how to implement automatic differentiation.

Finally, everything is combined in an object-oriented

architecture forming the DP library and therefore

enabling easy use of the low level and high-level

functionalities mentioned.

The second group of exercises is about using

the DP library to build neural networks, train them

and using them for inference. At the same time each

of these exercises is about best practices and

findings of neural network research of the last

couple of years, including batch-norm [21], dropout

[22], optimizers (improvements of SGD, e.g. Adam

[22]), weight-initialization methods (e.g. Xavier

[24]) and activation functions.

The last-mentioned exercise, at which we will

have a look at for illustration purposes, teaches

about different activation functions and the so-called
vanishing gradient problem.

We consider a simple deep neural network, i.e.

one that consists of many layers, e.g. 10 linear
layers. The output of the first linear layer is

computed with 𝐻(2) = 𝑎𝑐𝑡(1)(𝑊(1)𝐻(1) + b(1)),

with 𝐻(1) = 𝑋 the input, 𝑊(1) the first weight

matrix, b(1) the corresponding bias vector and

𝑎𝑐𝑡(1) the activation function. The output of the

second linear layer then is computed with 𝐻(3) =

𝑎𝑐𝑡(2)(𝑊(2)𝐻(2) + b(2)) and so on, until the last

layer 𝑂 = 𝑎𝑐𝑡(10)(𝑊(10)𝐻(10) + b(10)). Training

the network, we first calculate the loss 𝑙, i.e. the

difference of the output of our last layer 𝑂 (our

predictions) and the true labels 𝑌. This is a binary

classification tasks, i.e. there are two possible labels

(0 and 1). The output 𝑂 for an example input 𝑥 is

the predicted probability for the positive class, i.e.

𝑝𝜃(𝑦 = 1|𝑥). For such problems the binary cross-

entropy as cost function is typically used:

𝑙𝑜𝑠𝑠(θ) = −(𝑌 𝑙𝑜𝑔 (𝑂) + (1 − 𝑌) 𝑙𝑜𝑔 (1 − 𝑂)).

Second, we adjust the weight matrices for all

layers 𝑖 by the update rule of gradient descent:

𝑊(𝑙)𝑁𝐸𝑊
← 𝑊(𝑙)𝑂𝐿𝐷

− α ⋅
∂𝑙𝑜𝑠𝑠(θ)

∂𝑊(𝑙)𝑂𝐿𝐷.

systems and technologies
Systems analysis, applied information

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 291

Using the chain rule to calculate
∂𝑙𝑜𝑠𝑠(θ)

∂𝑊(1) for

example, we get:

∂𝑙𝑜𝑠𝑠(θ)

∂𝑊(1) =
𝜕𝑙𝑜𝑠𝑠(𝜃)

∂O
⋅

𝜕O

∂𝐻(10) ⋅
∂𝐻(10)

∂𝐻(9) ⋅
∂𝐻(9)

∂𝐻(8) ⋅ … ⋅
∂𝐻(2)

∂𝑊(1).

For binary classification, the typical activation

function 𝑎𝑐𝑡(10) of the output layer is the logistic

function σ(𝑧) =
1

1+𝑒𝑥𝑝−𝑧 which has the range]0,1[.

However, a problem arises, if the logistic function is

further used as activation function 𝑎𝑐𝑡(1) to 𝑎𝑐𝑡(9)

in intermediate layers, because the absolute value of

its derivative is at most
1

4
, which in turn leads to the

partial derivative
𝜕𝑙𝑜𝑠𝑠(𝜃)

𝜕𝑊(1) becoming smaller and

smaller the more layers the network has in between,

as lim
𝑙→ ∞

(
1

4
)

𝑙

= 0.

The derivative of the 𝑡𝑎𝑛ℎ or the 𝑅𝑒𝐿𝑈

function on the other hand is defined in the range of

]0, 1], resp. 0,1.

The task of this sample exercise consists of (a)

building the neural network model for the

computational graph using the DP library, (b) train

and validate the network with different activation

functions while (c) visualizing the vanishing

gradient problem by plotting the sum of the absolute

values of the partial derivates
∂loss(θ)

∂W(l) for all weights

of each layer 𝑙 ∈ {1,2, … , 10}.

The third group of exercises is on using more

common, but also more complex deep learning

libraries, like PyTorch and TensorFlow. This kind of

exercises is not directly related to our DP library, but

still should be mentioned here because they are the

last step of our educational path for students on

differentiable programming, that is: (1) Learn the

principles of differentiable programming and how to

build a framework for it at the example of our

lightweight DP library, (2) learn how to use this

library to build models, train them, validate them

and use them for inference and (3) make a transition

to using well-known but more complex frameworks.

After that, the students should then have a good

starting point for understanding the inner

implementation and software-architecture of

libraries, like PyTorch and TensorFlow.

CONCLUSION

The use of machine learning, especially of

artificial neural networks, in practical applications

has increased tremendously over the last years and

most likely will keep increasing in the near and far
future. Yet already today research and industry

suffer from a lack of specialists in this field.

Unfortunately, becoming an AI specialist has a very
flat learning curve and requires knowledge in the

fields of mathematics, computer science, statistics

and ideally in the domain, which you want to
provide with AI driven applications.

With our library for educational purpose,

teaching the fundamentals of differentiable

programming can be improved significantly by
opening the black box of deep learning libraries.

With less than 1.000 lines of code, including

about 400 lines of comments, in contrast to 3.5
million lines for TensorFlow [28], the goal of a

lightweight, clear and easy understandable library

was achieved. Following the concept of didactic
reduction [29], its use and architecture have a lot in

common with TensorFlow and PyTorch, but with a

focus on the core principles of differentiable

programming.

Lastly the stable API does not force teachers to

re-adjust their exercises and educational material

over and over again to keep them up-to-date.

ACKNOWLEDGMENT

The project Deep.Teaching is funded by the

German National Ministry of Education and

Research (BMBF), project number 01IS17056.

REFERENCES

1. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G. & Bengio, Y.

“Theano: a CPU and GPU math Expression Compiler”. In Proceedings of the Python for scientific

computing conference (SciPy). 2010; Vol.4 No.3: 3–10.
2. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C. & Ghemawat, S. “Tensorflow:

Large-scale Machine Learning on Heterogeneous Distributed Systems”, arXiv preprint arXiv:1603.04467.

2016.

3. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,
Antiga, L. & Lerer, A. “Automatic Differentiation in PyTorch”. NIPS 2017 Workshop on Autodiff.

systems and technologies
Systems analysis, applied information

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

292 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

4. Maclaurin, D., Duvenaud, D. & Adams, R. P. “Autograd: Effortless Gradients in numpy. In ICML
2015. AutoML Workshop. 2015. Vol. 238.

5. Baydin, A. G., Pearlmutter, B. A., Radul, A. A. & Siskind, J. M. “Automatic Differentiation in

Machine Learning: a Survey”. In Journal of Machine Learning Research. 2018; 18(153): 1–43. arXiv

preprint arXiv:1502.05767.
6. “Official Caffe Website”. [Electronic resource]. – Access mode https://caffe.berkeleyvision.org/ –

Active link: – August 2019.

7. Nickolls, J., Buck, I. & Garland, M. „Scalable Parallel Programming”. In 2008 IEEE Hot Chips 20
Symposiums (HCS). IEEE. August 2008. p. 40–53.

8. Goodfellow, I., Bengio, Y. & Courville, A. “Deep Learning”. MIT press. 2016. р. 271–273. DOI:

https://doi.org/10.1007/s10710-017-9314-z.
9. Blundell, Charles, et al. “Weight Uncertainty in Neural Networks”. Proceedings of the 32nd

International Conference on International Conference on Machine Learning. 2015; Vol.37: 1613–1622,

arXiv preprint arXiv: 1505.05424.

10. Kingma, D. P. & Welling, M. “Auto-encoding Variational Bayes”. In 2nd International Conference
on Learning Representations. {ICLR} 2014. arXiv preprint arXiv:1312.6114.

11. Bottou, L., Curtis, F. E. & Nocedal, J. “Optimization Methods for large-scale Machine Learning”.

SIAM Review. 2018; Vol.60(2): 223–311. DOI: https://doi.org/10.1137/16M1080173.
12. Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A. &

Badia, A. P. “Hybrid Computing using a Neural Network with Dynamic External Memory”. Nature. 2016;

538(7626): 471–476. DOI: https://doi.org/10.1038/nature20101.

13. Grefenstette, E., Hermann, K. M., Suleyman, M. & Blunsom, P. „Learning to Transducer with
Unbounded Memory”. In Advances in neural information processing systems (NIPS). 2015. p. 1828–1836.

arXiv: 1506.02516.

14. Gers, F. “Long Short-Term Memory in Recurrent Neural Networks”. PhD Thesis, Lausanne. EPF.
Switzerland: 2001. p. 17–19.

15. M. Collins. “Computational Graphs, and Backpropagation”, Lecture Notes, Columbia University. p

11–23. – Available from: http://www.cs.columbia.edu/ ~mcollins/ff2.pdf. – Active link: – August 2019.

16. Travis E. Oliphant. “A Guide to NumPy”. Trelgol Publishing. USA: 2006. р. 13–17.

17. Thomas Kluyver et al. “Jupyter Notebooks – a Publishing Format for Reproducible Computational

Workflows”. In Positioning and Power in Academic Publishing: Players. Agents and Agendas. IOS Press.

(2016). p. 87–90. DOI: https://doi.org/10.3233/978-1-61499-649-1-87.

18. Herta Christian, et al. “deep.TEACHING.org – Website for Educational Material on Machine

Learning”. – Available from: https://www.deep-teaching.org/courses/differential-programming. – Active

link: – August 2019.

19. Herta Christian, et al. “deep.TEACHING.org – “Repository of “deep.TEACHING.org”. – Available

from: – https://gitlab.com/deep.TEACHING/educational-materials/blob/master/notebooks/differentiable-

programming/dp.py – Active link: – August 2019.

20. “Array Broadcasting in Numpy”. – Available from: https://www.numpy.org/

devdocs/user/theory.broadcasting.html. – Active link – August 2019.

21. Ioffe, S. & Szegedy, C. “Batch Normalization: Accelerating deep Network Training by Reducing

Internal Covariate Shift. ICML'15” Proceedings of the 32nd International Conference on International

Conference on Machine Learning. 2015; Vol.37: 448–456. arXiv preprint arXiv:1502.03167.

22. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. “Dropout: a Simple

way to Prevent Neural Networks from Overfitting”. The Journal оf Machine Learning Research. 2014;

15(1): 1929–1958.

23. Kingma, D. P. & Ba, J. “Adam: A Method for Stochastic Optimization”. 3rd International

Conference on Learning Representations, ICLR 2015. arXiv preprint arXiv:1412.6980.

24. Glorot, X. & Bengio, Y. “Understanding the Difficulty of Training deep feed Forward Neural

Networks”. In Proceedings of the thirteenth international conference on artificial intelligence and statistics.

PMLR 9:249-256. March 2010. p. 249–256.

25. Hochreiter, S. „Untersuchungen zu Dynamischen Neuronalen Netzen“ (in German). Diploma thesis.
TU Munich. 1991.

26. Jupyter Homepage. – Available from: https://jupyter.org/ – Active link: – August 2019.

systems and technologies
Systems analysis, applied information

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 293

27. Jeffrey M. Perkel. “Why Jupyter is data Scientists' Computational Notebook of Choice”. Nature.
2018; 563.7729: 145–146. DOI: https://doi.org/10.1038/d41586-018-07196-1.

28. OpenHub – Projects – TensorFlow. – Available from: https://www.openhub.net/p/

tensorflow/analyses/latest/languages_summary – Active link – August 2019.

29. Herta, C., Voigt, B., Baumann, P., Strohmenger, K., Jansen, C., Fischer, O. & Hufnagel, P. “Deep
Teaching: Materials for Teaching Machine and Deep Learning. In HEAD'19”. 5th International Conference

on Higher Education Advances. 2019. p. 1153–1131. DOI: http://dx.doi.org/10.4995/HEAd19.2019.9177.

Conflicts of Interest: the authors declare no conflict of interest.

Received 01.09.2019
Received after revision 24.11.2019

Accepted 30.11.2019

DOI: https://doi.org/10.15276/aait.04.2019.3

УДК 004.4

DP: ПОЛЕГШЕНА БІБЛІОТЕКА ДЛЯ НАВЧАННЯ ДІФФЕРЕНЦІЙНОМУ

ПРОГРАМУВАННЮ

 Крістіан Херста1)

 ORCID: https://orcid.org/0000-0003-2519-6794, christian.herta@htw-berlin.de

 Клаус, Штоменгер1)

 ORCID: https://orcid.org/0000-0002-4534-1306, klaus.strohmenger@htw-berlin.de

 Олівер Фішер1)

 ORCID: https://orcid.org/0000-0002-1871-9350, oliver.fischer@htw-berlin.de

 Дівар Октай1)

 ORCID: https://orcid.org/0000-0003-1483-5837, diyar.oktay99@gmail.com
 1) HTW Берлін – Університет прикладних наук, Вільгельменхофштр, 75а. Берлін, 12459, Німеччина

АНОТАЦІЯ

 Технології глибокого навчання (Deep Learning –DL) викликають великий інтерес, так як в даний час на ньому
базується велика кількість прикладних додатків. Як правило, ці програми реалізуються за допомогою спеціальних
бібліотек глибокого навчання, внутрішню реалізацію яких важко зрозуміти. Ми розробили таку бібліотеку в
полегшеному вигляді з упором на викладання відповідних дисциплін. Наша бібліотека має наступні характеристики, які
відповідають певним вимогам з урахуванням специфіки навчального процесу: невелика кодова база, прості концепції і
стабільний інтерфейс прикладного програмування (API). Основне призначення бібліотеки - допомога у володінні

принципами роботи з бібліотеками глибокого навчання. Бібліотека розділена на два шари. Низькорівнева частина
дозволяє програмно побудувати обчислювальний графік на основі елементарних операцій. У машинному навчанні
обчислювальний графік зазвичай є функцією вартості, що включає в себе модель машинного навчання, наприклад,
нейронну мережу. Вбудований зворотний режим автоматичного диференціювання на обчислювальному графіку
дозволяє навчати моделі машинного навчання. Це робиться за допомогою алгоритмів оптимізації, таких як стохастичний
градієнтний спуск. Ці алгоритми використовують похідні, щоб мінімізувати вартість шляхом адаптації параметрів
моделі. У разі нейронних мереж параметри є вагами нейронних мереж. Частина бібліотеки вищого рівня полегшує
реалізацію нейронних мереж, надаючи більші будівельні блоки, такі як нейронні шари і допоміжні функції, наприклад,

реалізацію алгоритмів оптимізації (оптимізаторів) для навчання нейронних мереж. Також до бібліотеки ми додаємо
вправи для вивчення основних принципів роботи бібліотеки глибокого навчання і основ нейронних мереж. Додатковою
перевагою бібліотеки є те, що вправи і відповідні програмні завдання на її основі не потребують постійного
рефакторінгу через її стабільного API.

Ключові слова: диференційоване програмування; глибоке навчання; навчання; автоматичне диференціювання

DOI: https://doi.org/10.15276/aait.04.2019.3
УДК 004.4

DP: ОБЛЕГЧЕННАЯ БИБЛИОТЕКА ДЛЯ ОБУЧЕНИЯ ДИФФЕРЕНЦИРУЕМОМУ
ПРОГРАММИРОВАНИЮ

 Кристиан Херста1)

 ORCID: https://orcid.org/0000-0003-2519-6794, christian.herta@htw-berlin.de

 Клаус Штоменгер1)

 ORCID: https://orcid.org/0000-0002-4534-1306, klaus.strohmenger@htw-berlin.de

 Оливер Фишер1)

 ORCID: https://orcid.org/ 0000-0002-1871-9350, oliver.fischer@htw-berlin.de

systems and technologies
Systems analysis, applied information

Applied Aspects of Information Technology 2019; Vol.2 No.4: 283–294

294 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 Дивар Октай1)

 ORCID: https://orcid.org/0000-0003-1483-5837, diyar.oktay99@gmail.com
 1) HTW Берлин – Университет прикладных наук, Вильгельменхофштр, 75а. Берлин, 12459, Германия

АННОТАЦИЯ

Технологии Глубокого обучения (Deep Learning – DL) вызывают большой интерес, так как в настоящее время на
нем базируются многие практические приложения. Как правило, эти приложения реализуются с помощью специальных
библиотек глубокого обучения, внутреннюю реализацию которых трудно понять. Мы разработали библиотеку
глубокого обучения в облегченном виде с упором на преподавание. Наша библиотека имеет следующие
характеристики, которые соответствуют определенным требованиям с учетом специфики учебного процесса: небольшая
кодовая база, простые концепции и стабильный интерфейс прикладного программирования (API). Основное назначение
этой библиотеки - обучение принципам глубокого обучения. Библиотека разделена на два слоя. Низкоуровневая часть
позволяет программно построить вычислительный график на основе элементарных операций. В машинном обучении
вычислительный график обычно является функцией стоимости, включающей в себя модель машинного обучения,
например, нейронную сеть. Встроенный обратный режим автоматического дифференцирования на вычислительном
графике позволяет обучать модели машинного обучения. Это делается с помощью алгоритмов оптимизации, таких как
стохастический градиентный спуск. Эти алгоритмы используют производные, чтобы минимизировать стоимость путем
адаптации параметров модели. В случае нейронных сетей параметры являются нейронными весами. Часть библиотеки
более высокого уровня облегчает реализацию нейронных сетей, предоставляя более крупные строительные блоки, такие
как нейронные слои и вспомогательные функции, например, реализацию алгоритмов оптимизации (оптимизаторов) для
обучения нейронных сетей. В дополнение к библиотеке мы предоставляем упражнения для изучения основополагающих
принципов работы библиотеки глубокого обучения и основ нейронных сетей. Дополнительным преимуществом
библиотеки является то, что упражнения и соответствующие программные задания на ее основе не нуждаются в
постоянном рефакторинге из-за ее стабильного API.

Ключевые слова: дифференцируемое программирование; глубокое обучение; автоматическое
дифференцирование

ABOUT THE AUTHORS

Christian Herta, Prof. Dr. rer. nat., Regular Professor at the HTW Berlin. Faculty 4 – Computer Science. HTW Berlin –

University of Applied Sciences, 75a, Wilhelminenhofstr. Berlin, 12459, Germany

christian.herta@htw-berlin.de. ORCID: https://orcid.org/ 0000-0003-2519-6794

Research field: Applications and Theoretical Aspects of Machine Learning and Deep Learning

Крістіан Херста, д-р природ. наук, професор факультету 4 – Комп'ютерні науки. HTW Берлін – Університет

прикладних наук, Вільгельменхофштр, 75а. Берлін, 12459, Німеччина

Klaus Strohmenger, Master of Science, Scientific Research Assistant at the HTW Berlin. Faculty 4 – Computer

Science. HTW Berlin – University of Applied Sciences. 75a, Wilhelminenhofstr. Berlin, 12459, Germany

klaus.strohmenger@htw-berlin.de, ORCID: https://orcid.org/0000-0002-4534-1306.

Research field: Machine Learning, Practical Applications of Neural Networks, Computer Vision

Клаус Штоменгер, науковий співробітник факультету 4 – Комп'ютерні науки. HTW Берлін – Університет

прикладних наук, Вільгельменхофштр, 75а. Берлін, 12459, Німеччина

Oliver Fischer, Master of Science, Scientific Research Assistant at the HTW Berlin.

Faculty 4 - Computer Science. HTW Berlin – University of Applied Sciences. 75a, Wilhelminenhofstr. Berlin, 12459,

Germany

oliver.fischer@htw-berlin.de. ORCID: https://orcid.org/0000-0002-1871-935

Research field: Theoretical Background of Neural Networks, Building and Explicability

Олівер Фішер, науковий співробітник факультету 4 – Комп'ютерні науки.HTW Берлін – Університет прикладних

наук, Вільгельменхофштр, 75а. Берлін, 12459, Німеччина,

Diyar Oktay, Student of the HTW Berlin. Faculty 4 – Computer Science. HTW Berlin – University of Applied Sciences.

75a, Wilhelminenhofstr. Berlin, 12459, Germany

diyar.oktay99@gmail.com. ORCID: https://orcid.org/0000-0003-1483-5837.

Research field: Image Processing, Application of ai in Urban Planning and Education

Дівар Октай, студент факультету 4 – Комп'ютерні науки. HTW Берлін – Університет прикладних наук,

Вільгельменхофштр, 75а, Берлін, 12459, Німеччина

Systems analysis, applied information
systems and technologies

