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ABSTRACT 

The paper proposes a method for constructing GL-models of the behavior of complex non-basic fault-tolerant multiprocessor 
systems under a failure flow. The aim of the study is to develop a universal approach that enables the formation of an integrated GL-
model for systems characterized by multiple independent or weakly coupled operability conditions. Such models can be used, in 

particular, to evaluate the reliability parameters of the systems under consideration using statistical simulation methods. The study 
focuses on systems whose operability is determined by the simultaneous fulfillment of several relatively simple conditions, for each 
of which established methods for constructing GL-models are available (for example, a condition limiting the number of failures 
within a certain subset of processors). These include, in particular, hierarchical systems composed of multiple subsystems with their 
own levels of fault tolerance, as well as systems containing specialized processors of different types. The proposed method involves 
the preliminary construction of auxiliary GL-models for each operability condition; followed by their integration into a unified model 
through the sequential merging of their graphs via selected vertices (the merged vertices form a single vertex, while the remaining 
vertices and edges are copied). The order of model merging and the choice of corresponding vertices can be defined arbitrarily, 

providing flexibility in the structure of the resulting GL-model. Examples of the method’s application are presented, illustrating 
various options for determining the sequence of merging auxiliary models and selecting the connecting vertices of their graphs, as 
well as the use of different methods for constructing these models. The scientific novelty of the work lies in the generalization and 
formalization of the sequential GL-model merging procedure, which makes it possible to combine models of arbitrary structure and 
type into a unified model of a complex system without compromising the correctness of its behavior. Experimental results confirm 
that, despite structural differences in the graphs of the obtained models, their behavior on identical input vectors coincides completely 
and accurately reflects the operation of the fault-tolerant multiprocessor system under a failure flow. It is also shown that the method 
imposes no restrictions on the construction techniques of GL-models for individual conditions: models of different types can be 
combined, the conditions do not necessarily correspond to basic systems, and the model graphs may be other than a cycle graph. 

Furthermore, the paper provides complexity estimates for GL-models constructed by the proposed method, including the number of 
vertices and edges in their graphs and the overall complexity of edge functions, depending on the characteristics of the corresponding 
auxiliary models. The practical value of the method is that it enables automated construction of comprehensive models for systems 
with complex operability conditions and supports efficient reliability evaluation of real multiprocessor systems. 

Keywords: Fault-tolerant multiprocessor systems; GL-models; non-basic systems; control systems; reliability evaluation; 
statistical experiments 
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INTRODUCTION 

In recent decades, the automation of various 

processes has become increasingly widespread [1], 

[2]. On the one hand, this makes it possible to 
relieve humans from performing monotonous tasks,  
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and on the other, to reduce the impact of the human 

factor on the execution of such tasks. Some tasks 

cannot be performed by humans at all due to the 

limitations of physiological capabilities (for 
example, reaction speed), or because of the 

undesirability or impossibility of their direct 

presence at the site (for instance, space missions, 
military unmanned systems, etc.). One of the key  
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components of such objects and systems is their 

control system (CS), which, based on data obtained 

from various sensors, generates the corresponding 

control signals for actuating devices [1], [2]. 
There exist systems whose malfunction may 

lead to significant adverse consequences, such as 

considerable material losses, threats to human health 
or life, and risks to the welfare and stability of a 

state [3], [4], [5]. Such systems in general – and their 

control systems (CS) in particular – are therefore 
subject to increased reliability requirements. 

Moreover, the control of these systems often 

involves solving problems of substantial 

computational complexity. Hence, it is reasonable to 
implement the control systems of such objects using 

so-called fault-tolerant multiprocessor systems 

(FTMS), which consist of a large number of 
processors (allowing, in particular, for high 

performance levels) and remain operational even in 

the event of failures of some processors (thus 

ensuring high reliability) [6], [7], [8]. 

LITERATURE REVIEW AND PROBLEM 

STATEMENT 

For a developer of fault-tolerant multiprocessor 
systems, it is important to be able to assess the 

reliability level of the system being designed. This 

task is not always straightforward, particularly 
because FTMSs used in control systems may have 

complex and heterogeneous architectures, consisting 

of processors of different types that perform 

specialized tasks, and so forth. 
Methods for calculating the reliability 

parameters of FTMSs can be conventionally divided 

into two groups [9], [10]. The first group comprises 
methods based on the derivation of complex 

analytical expressions, which, on the one hand, often 

enable highly accurate evaluation of the reliability 
parameters of an FTMS, but on the other hand, are 

not universal: for each new type of system, a new 

method usually has to be developed [11], [12], [13], 

[14], [15], [16]. The second group includes methods 
that allow calculating FTMS reliability parameters 

by conducting statistical experiments using models 

of their behavior under a failure flow [17], [18], [19] 
[20]. These methods are universal; however, the 

accuracy of the obtained results generally depends 

on the number of experiments performed. Therefore, 

reducing the complexity of an experiment (in 
particular, through simplification of the model) 

makes it possible, on the one hand, to decrease the 

computation time and, on the other hand, to increase 
the accuracy of the results. 

As models of FTMS behavior under a failure 

flow, GL-models [20], [21] can be employed, which 

combine the properties of graphs and Boolean 

functions. A GL-model represents an undirected 
graph in which each edge is associated with a 

Boolean edge function that depends on the so-called 

system state vector – a Boolean vector whose 
elements correspond to the states of the system’s 

processors (1 indicates that a processor is 

operational, 0 indicates that it has failed). If an edge 
function evaluates to zero, the corresponding edge is 

removed from the graph. The connectivity of the 

graph for a given vector corresponds to the system’s 

state under a specific configuration of processor 
states: a connected graph represents an operational 

system, whereas a disconnected graph indicates a 

system failure. The construction of GL-models for 
FTMSs can be performed using various approaches 

[22], [23], [24], [25]. 

Of particular interest are the so-called basic 

systems, which are capable of remaining operational 
provided that no more than a certain number of their 

processors have failed. A basic FTMS, denoted as 

K(m, n), consists of n processors and is tolerant to 
the failure of no more than m arbitrary processors. 

GL-models of basic systems can be constructed on 

the basis of cycle graphs [22], [23], which, in 
particular, allows for a reduction in the complexity 

of the connectivity evaluation procedure. It is worth 

noting that the state of a basic FTMS under a failure 

flow can be easily determined even without 
constructing a GL-model – for example, by simply 

counting the number of zeros in the system state 

vector. 
However, control FTMSs are often non-basic, 

meaning that they remain tolerant to certain failures 

of a given multiplicity while being intolerant to 
other failures of the same multiplicity. Such systems 

include, in particular, consecutive k-out-of-n [14], 

[16], [26], [27], [28], consecutive k-within-m-out-of-

n [29], [30], consecutive k-out-of-r-from-n [31], 
[32], m‑consecutive-k-out-of-n [33], [34], [35], 

(n, f, k) [36], [37], <n, f k> [36], [38], consecutive-

(k, l)-out-of-n [15], m-consecutive-k,l-out-of-n [39], 
[40], kc-out-of-n [35], (r, s)-out-of-(m, n) [12], [41], 

[42], consecutive-kr-out-of-nr [43], as well as other, 

potentially even more complex, systems. In such 

cases, the determination of the system state can no 
longer be reduced to a simple count of zeros in the 

state vector. 
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PROBLEM STATEMENT 

The construction of a GL-model for a non-basic 

system can be performed by modifying the model of 

a certain basic system, in particular, by altering the 
structure of its graph (for example, by introducing 

additional edges) and/or by changing the expressions 

of its edge functions. This approach is especially 
convenient in cases where the FTMS does not differ 

significantly from the basic one – that is, it behaves 

as a basic system in most situations and deviates 
only in certain specific cases (for particular 

combinations of operational and failed processors), 

either becoming non-operational or remaining 

functional [24], [44], [45]. 
However, some real FTMSs may differ 

significantly from basic ones. For example, each 

processor type in a system may have its own 
maximum allowable failure multiplicity. In addition, 

additional constraints may also be present – for 

instance, a maximum total failure multiplicity, or a 

maximum number of allowable failures within a 
certain subset of processors. This is particularly 

relevant for systems composed of several distinct 

subsystems: each subsystem may behave as a basic 
system, while the overall system behavior may differ 

considerably from that of a basic one. In [25], a 

method for constructing GL-models for such 
hierarchical systems was proposed. However, the 

models obtained by this method are themselves 

hierarchical and, consequently, rather complex: first, 

calculations must be performed for several auxiliary 
models, after which the calculation for the system’s 

GL-model is carried out. 

A relevant problem is the construction of GL-
models for complex non-basic fault-tolerant 

multiprocessor systems for which existing modeling 

methods are ineffective, particularly when their 
application leads to a significant increase in the 

complexity of the edge-function expressions in the 

resulting models. This issue is especially 

pronounced for systems whose operability is 
determined by several independent or weakly 

coupled conditions, each of which must be modeled 

and combined within a unified framework. 

RESEARCH AIM AND OBJECTIVES 

The aim of this study is to develop a method for 

constructing GL-models of complex non-basic 

FTMSs of a special type – namely, those whose 
behavior under a failure flow can be described by a 

set of relatively simple conditions (for example, the 

failure of no more than a certain number of 
processors within a specific subset of the system’s 

processors), for each of which a separate GL-model 

can be constructed by one method or another. It is 

assumed that the operability of the system is 

maintained only when all of these conditions are 
satisfied simultaneously. 

To achieve this goal, the following objectives 

have been defined: 
1) to develop a method for constructing GL-

models of non-basic FTMSs by combining several 

auxiliary models formed for individual operability 
conditions of the system; 

2) to design, based on the proposed method, an 

algorithm for constructing such GL-models; 

3) to perform an experimental validation of the 
correctness of the GL-models constructed using the 

proposed method. 

METHOD FOR CONSTRUCTING A  

GL-MODEL OF A NON-BASIC FTMS 

Let us consider a non-basic FTMS that remains 

operational only if a certain set of conditions 

C1, C2, …, Ck are simultaneously satisfied. For each 
of these conditions Ci, a corresponding GL-model Mi 

can be constructed in some way (these models will 

be referred to as auxiliary models). Thus, the 
satisfaction of condition Ci corresponds to the 

connectivity of the graph of model Mi. 

Since the system is operational only when all 
conditions Ci are satisfied, the graph of the GL-

model M of this FTMS must remain connected if the 

graphs of all models Mi are connected, and it must 

become disconnected if the graph of at least one of 
the models Mi becomes disconnected. 

Let us now consider two arbitrary graphs, G1 

and G2. Let graph G1 contain vertices 𝛼1, 𝛼2, … , 𝛼𝑛1
, 

and graph G2 contain vertices 𝛽1, 𝛽2, … , 𝛽𝑛2
. Select 

two arbitrary vertices, 𝛼𝑖 and 𝛽𝑗, belonging to 

graphs G1 and G2, respectively. Perform the merging 

of graphs G1 and G2 through vertices 𝛼𝑖 and 𝛽𝑗, i.e., 

merge these vertices into one, while copying the 
remaining vertices and all edges of both graphs. As a 

result of this merging, a new graph G is obtained. 

The connectivity of graph G1 means that there 
exists a path between any pair of its vertices. 

Conversely, the lack of connectivity of graph G1 

means that there is at least one pair of vertices with 

no path between them. Similarly, the connectivity of 
graph G2 implies that a path exists between any pair 

of its vertices, while the absence of connectivity in 

graph G2 indicates that there is at least one pair of 
vertices that are not connected by a path. 

Let us show that graph G is connected if and 

only if both graphs G1 and G2 are connected, and 
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that it becomes disconnected if at least one of the 

graphs G1 or G2 loses connectivity. Assume that 

graphs G1 and G2 are connected. Consider an 

arbitrary pair of vertices of graph G. The following 
three cases are possible. 

1. Both vertices belong to the set 

{𝛼1, 𝛼2, … , 𝛼𝑛1
}. In this case, the existence of a path 

between these vertices follows from the connectivity 

of graph G1. 

2. Both vertices belong to the set 

{𝛽1, 𝛽2, … , 𝛽𝑛2
}. Similarly, the existence of a path 

between these vertices follows from the connectivity 

of graph G2. 

3. One of the vertices (denoted as 𝛼𝑘) belongs 

to the set {𝛼1, 𝛼2, … , 𝛼𝑛1
}, and the other (denoted as 

𝛽𝑙) belongs to the set {𝛽1, 𝛽2, … , 𝛽𝑛2
}. From the 

connectivity of graph G1, it follows that there exists 

a path between vertices 𝛼𝑘 and 𝛼𝑖; from the 
connectivity of graph G2, it follows that there exists 

a path between vertices 𝛽𝑗 and 𝛽𝑙. Therefore, since 

in graph G the vertices 𝛼𝑖 and 𝛽𝑗 are merged into a 

single vertex, there also exists a path between 

vertices 𝛼𝑘 and 𝛽𝑙. 
Thus, if graphs G1 and G2 are connected, graph 

G will also be connected. 

Next, we show that graph G will be 
disconnected if at least one of the graphs G1 or G2 is 

disconnected. Let graph G1 be disconnected. In this 

case, there exists at least one pair of vertices from 

the set {𝛼1, 𝛼2, … , 𝛼𝑛1
} between which no path 

exists. It is easy to see that in this situation there will 

also be no path from at least one of these vertices to 

vertex 𝛼𝑖 (otherwise, a path between the previously 

considered vertices would exist through vertex 𝛼𝑖). 

Consequently, in graph G, there will also be no path 

from this vertex to any vertices from the set 

{𝛽1, 𝛽2, … , 𝛽𝑛2
}, since only vertices 𝛼𝑖 and 𝛽𝑗 were 

merged and no additional edges were added. Thus, 

graph G will be disconnected. 
Similarly, it can be shown that if graph G2 is 

disconnected, then graph G will also be 

disconnected. 
The merging procedure described above can be 

extended to an arbitrary number of graphs. Let us 

apply it to merge the graphs of the auxiliary models 

M1, M2, …, Mk. 
It is easy to see that the GL-model M obtained 

in this way will indicate the operable (fault-free) 

state of the system if and only if each of the 
conditions C1, C2, …, Ck is satisfied, that is, when 

the graphs of all models M1, M2, …, Mk remain 

connected. Indeed, on the one hand, the connectivity 

of each of the graphs of models M1, M2, …, Mk 

ensures the connectivity of the graph of model M. 

On the other hand, merging the graphs of the models 

through common vertices does not create any 
additional paths that could preserve the connectivity 

of the graph of model M in the event that it is lost by 

at least one of the graphs of models M1, M2, …, Mk. 
It should also be noted that the method allows 

for an arbitrary choice of both the order in which the 

models are merged and the vertices through which 
their graphs are joined. Therefore, for the same 

FTMS, a large number of alternative GL-model 

variants can be obtained. This, in particular, makes it 

possible to construct a more convenient graph 
structure (for example, to accelerate the connectivity 

evaluation procedure or to simplify further model 

modifications, if required). 

ALGORITHM FOR CONSTRUCTING A  

GL-MODEL OF A NON-BASIC FTMS 

According to the proposed method, the 

algorithm for constructing the GL-model of the 
above-described non-basic FTMS can be formulated 

as follows. 

1. For each of the conditions C1, C2, …, Ck, 
construct separate GL-models (denote them as 

Ω = {M1, M2, …, Mk}). 

2. Remove an arbitrary model Mi from the set 
Ω; let M = Mi be the model under construction. 

3. If the set Ω is empty, proceed to Step 8. 

4. Remove an arbitrary model Mj from the set 

Ω. 
5. Select an arbitrary vertex α in the graph of 

model M and an arbitrary vertex β in the graph of 

model Mj. 
6. Merge the graphs of models M and Mj 

through vertices α and β, resulting in a new model 

M. 
7. Return to Step 3. 

8. The resulting model M is the desired GL-

model of the system. 

EXAMPLES AND EXPERIMENTAL RESULTS 

Example 1. Let us construct a GL-model of a 

system consisting of 12 processors, which is 

operable if and only if the following conditions are 
simultaneously satisfied (Fig. 1). 

1. Among processors 1…6, there are no more 

than two faulty ones. 

2. Among processors 7…10, there is no more 
than one faulty processor. 

3. Among processors 4…8, there is no more 

than one faulty processor. 
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4. Among processors 1, 3, 7, 8, and 9, there are 

no more than two faulty ones. 

5. In the entire system, there are no more than 

three faulty processors. 
Each of the above conditions corresponds to the 

behavior under a failure flow of a certain basic 

system. Let us construct GL-models for each of 
them, namely: model K1(2, 6) for the set of 

processors 1…6, model K2(1, 4) for processors 

7…10, model K3(1, 5) for processors 4…8, model 
K4(2, 5) for processors 1, 3, 7, 8, 9, and model 

K5(3, 12) for processors 1…12. The elements of the 

system state vector will be denoted as xi, where i is 

the index of the corresponding processor. To 
construct these models, we will use the method 

described in [22]. 

 
Fig. 1. The FTMS considered in Example 1 

Source: compiled by the authors 

Model K1(2, 6) is based on a cycle graph with 

five vertices (denoted as α1, α2, α3, α4, α5) and five 

edges (Fig. 2). It has the following edge functions: 

𝑓1
1 = 𝑥1 ∨ 𝑥2;  

𝑓2
1 = 𝑥1𝑥2 ∨ 𝑥3;  

𝑓3
1 = 𝑥1𝑥2𝑥3 ∨ 𝑥4𝑥5𝑥6;  

𝑓4
1 = 𝑥4 ∨ 𝑥5;  

𝑓5
1 = 𝑥4𝑥5 ∨ 𝑥6.  

Model K2(1, 4) is constructed on a cycle graph 

with four vertices (β1, β2, β3, β4) and four edges 
(Fig. 2). Its edge functions are as follows: 

𝑓1
2 = 𝑥7;  

𝑓2
2 = 𝑥8;  

𝑓3
2 = 𝑥9;  

𝑓4
2 = 𝑥10 .  

Model K3(1, 5) is built on a cycle graph with 
five vertices (γ1, γ2, γ3, γ4, γ5) and five edges (Fig. 2). 

The edge functions of this model have the following 

form: 

𝑓1
3 = 𝑥4;  

𝑓2
3 = 𝑥5;  

𝑓3
3 = 𝑥6;  

𝑓4
3 = 𝑥7;  

𝑓5
3 = 𝑥8 .  

Model K4(2, 5) is based on a cycle graph with 
four vertices (δ1, δ2, δ3, δ4) and four edges (Fig. 2). It 

has the following edge functions: 

 𝑓1
4 = 𝑥1 ∨ 𝑥3;  

𝑓2
4 = 𝑥1𝑥3 ∨ 𝑥7;  

𝑓3
4 = 𝑥1𝑥3𝑥7 ∨ 𝑥8𝑥9;  

𝑓4
4 = 𝑥8 ∨ 𝑥9.  

 

Fig. 2. GL-models K1(2, 6), K2(1, 4), K3(1, 5), K4(2, 5) and K5(3, 12) 
Source: compiled by the authors 
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Finally, model K5(3, 12) is based on a cycle 

graph with ten vertices (ε1, ε2, ε3, ε4, ε5, ε6, ε7, ε8, ε9, 

ε10) and ten edges (Fig. 2). Its edge functions are as 

follows: 

𝑓1
5 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3;  

𝑓2
5 = (𝑥1 ∨ 𝑥2)(𝑥1𝑥2 ∨ 𝑥3) ∨ 𝑥4𝑥5𝑥6;  

𝑓3
5 = 𝑥1𝑥2𝑥3 ∨ (𝑥4 ∨ 𝑥5)(𝑥4𝑥5 ∨ 𝑥6);  

𝑓4
5 = 𝑥4 ∨ 𝑥5 ∨ 𝑥6;  

𝑓5
5 = (𝑥1 ∨ 𝑥2)(𝑥1𝑥2 ∨ 𝑥3) ∧  

∧ (𝑥1𝑥2𝑥3 ∨ 𝑥4𝑥5𝑥6)(𝑥4 ∨ 𝑥5)(𝑥4𝑥5 ∨ 𝑥6) ∨  

∨ 𝑥7𝑥8𝑥9𝑥10𝑥11𝑥12;  
𝑓6

5 = 𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6 ∨ (𝑥7 ∨ 𝑥8)(𝑥7𝑥8 ∨ 𝑥9) ∧  

∧ (𝑥7𝑥8𝑥9 ∨ 𝑥10𝑥11𝑥12)(𝑥10 ∨ 𝑥11) ∧  

∧ (𝑥10𝑥11 ∨ 𝑥12);  
𝑓7

5 = 𝑥7 ∨ 𝑥8 ∨ 𝑥9;  

𝑓8
5 = (𝑥7 ∨ 𝑥8)(𝑥7𝑥8 ∨ 𝑥9) ∨ 𝑥10𝑥11𝑥12;  

𝑓9
5 = 𝑥7𝑥8𝑥9 ∨ (𝑥10 ∨ 𝑥11)(𝑥10𝑥11 ∨ 𝑥12);  

𝑓10
5 = 𝑥10 ∨ 𝑥11 ∨ 𝑥12 .  

Next, to construct the GL-model of the system 

under consideration, we perform a sequential 

merging of the previously constructed models. For 

example, we may first select model K1(2, 6), and 
then merge it with model K2(1, 4) through vertices α2 

and β4 (the resulting merged vertex is denoted as 

ω1). Then, the obtained model is merged with model 
K3(1, 5) through vertices β2 and γ5 (the 

corresponding vertex in the new model is denoted as 

ω2). After that, we merge the resulting model with 
model K4(2, 5) through vertices α4 and δ1, denoting 

the merged vertex as ω3. Finally, the obtained model 

is merged with model K5(3, 12) through vertices γ4 

and ε2 (as in the previous cases, the corresponding 

vertex in the new model is denoted as ω4). The GL-

model obtained as a result of these successive 
mergers (Fig. 3) represents the behavior of the 

considered system under a failure flow, which was 

confirmed by the experiments performed with it.  
According to the results of experiments 

(conducted for all possible Boolean vectors of length 

12), the obtained GL-model represents the operable 
state of the system for all vectors containing no more 

than one zero (it is evident that under such vectors, 

none of the operability conditions of the considered 

FTMS can be violated), as well as for the following 
51 vectors with two zeros: 111111111100, 

111111111010, 111111110110, 111111101110, 

111111011110, 111110111110, 111101111110, 
111011111110, 110111111110, 101111111110, 

011111111110, 111111111001, 111111110101, 

111111101101, 111111011101, 111110111101, 

111101111101, 111011111101, 110111111101, 
101111111101, 011111111101, 111110111011, 

111101111011, 111011111011, 110111111011, 

101111111011, 011111111011, 111110110111, 
111101110111, 111011110111, 110111110111, 

101111110111, 011111110111, 110111101111, 

101111101111, 011111101111, 110111011111, 
101111011111, 011111011111, 110110111111, 

101110111111, 011110111111, 110101111111, 

101101111111, 011101111111, 110011111111, 

101011111111, 011011111111, 100111111111, 
 

 

Fig. 3. The GL-model of the FTMS constructed using the proposed method for Example 1 
Source: compiled by the authors 
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010111111111, 001111111111; and the following 97 

vectors with three zeros: 111111111000, 

111111110100, 111111101100, 111111011100, 

111110111100, 111101111100, 111011111100, 
110111111100, 101111111100, 011111111100, 

111110111010, 111101111010, 111011111010, 

110111111010, 101111111010, 011111111010, 
111110110110, 111101110110, 111011110110, 

110111110110, 101111110110, 011111110110, 

110111101110, 101111101110, 011111101110, 
110111011110, 101111011110, 011111011110, 

110110111110, 101110111110, 011110111110, 

110101111110, 101101111110, 011101111110, 

110011111110, 101011111110, 011011111110, 
100111111110, 010111111110, 001111111110, 

111110111001, 111101111001, 111011111001, 

110111111001, 101111111001, 011111111001, 
111110110101, 111101110101, 111011110101, 

110111110101, 101111110101, 011111110101, 

110111101101, 101111101101, 011111101101, 

110111011101, 101111011101, 011111011101, 
110110111101, 101110111101, 011110111101, 

110101111101, 101101111101, 011101111101, 

110011111101, 101011111101, 011011111101, 
100111111101, 010111111101, 001111111101, 

110110111011, 101110111011, 011110111011, 

110101111011, 101101111011, 011101111011, 
110011111011, 101011111011, 011011111011, 

100111111011, 010111111011, 001111111011, 

110110110111, 101110110111, 011110110111, 

110101110111, 101101110111, 011101110111, 

110011110111, 101011110111, 011011110111, 

100111110111, 001111110111, 100111101111, 
001111101111, 100111011111, 001111011111. 

The model indicates an inoperable system state 

for all vectors containing four or more zeros (which 
directly follows from operability condition 5 of the 

system). A detailed analysis confirmed that the 

above-mentioned system state vectors with two and 
three zeros are indeed exactly those vectors that 

correspond to the simultaneous fulfillment of all five 

operability conditions of the FTMS considered in 

this example. 
It should be noted that, as mentioned above, 

both the order of model merging and the choice of 

vertices through which their graphs are combined 
can be arbitrary. For example, one could first select 

model K5(3, 12), then merge it with model K4(2, 5) 

through vertices ε9 and δ2 (ω1). Next, it can be 

merged with model K2(1, 4) through vertices ε4 and 
β4 (ω2), and with model K1(2, 6) through vertices ε7 

and α1 (ω3). Finally, it can be merged with model 

K3(1, 5) through vertices ε2 and γ4 (ω4). The GL-
model obtained as a result of these transformations 

(Fig. 4), although differing from the previous one in 

the structure of its graph, demonstrates, as confirmed 
by experiments, behavior consistent with the 

previous model for identical input vectors. 

Fig. 4. An alternative GL-model of the FTMS under consideration for Example 1 
Source: compiled by the authors 
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It should also be noted that the proposed 

method does not impose any restrictions on how the 

GL-models for each condition are constructed. 

Example 2. Let us construct a GL-model of an 
FTMS that also consists of 12 processors but has 

slightly different operability conditions (all of which 

must be satisfied simultaneously). 
1. Among processors 1…6, there are no more 

than two faulty ones (similarly to the system in 

Example 1). 
2. Among processors 7…10, there is at most 

one faulty processor, or, alternatively, in each of the 

pairs (7, 8) and (9, 10), there is at most one faulty 

processor (that is, up to two in total), provided that 
at least one of processors 7 or 9 is operational. 

3. Among processors 4…8, there is at most one 

faulty processor, or, if processors 4 and 5 are 
operational, there may be up to two faulty ones. 

4. Among processors 1, 3, 7, 8, and 9, there are 

no more than two faulty ones, or no more than three, 

provided that only one faulty processor is present 
among processors 1, 3, and 7. 

5. In the entire system, there are no more than 

three faulty processors, and if among the faulty ones 
there are processors 1, 2, 5, or 10, then no more than 

two are allowed. 

Let us construct the GL-models M1, M2, M3, M4, 
and M5 for each of the above conditions. The first 

model, M1, corresponds to a basic 2-failure-tolerant 

system. To construct it, we use the method described 

in [22]. It is based on a cycle graph with six vertices 
(α1, α2, α3, α4, α5, α6), six edges (Fig. 5), and the 

following edge functions: 

𝑓1
1 = 𝑥1 ∨ 𝑥2𝑥3;  

𝑓2
1 = 𝑥2 ∨ 𝑥3𝑥4;  

𝑓3
1 = 𝑥3 ∨ 𝑥4𝑥5;  

𝑓4
1 = 𝑥4 ∨ 𝑥5𝑥6;  

𝑓5
1 = 𝑥5 ∨ 𝑥6𝑥1;  

𝑓6
1 = 𝑥6 ∨ 𝑥1𝑥2.  

The GL-model M2 can be obtained from the 

basic model K2(1, 4), constructed in Example 1, by 
adding an additional edge β1β3 with the edge 

function 𝑓5
2 = 𝑥7 ∨ 𝑥9 [46]. Thus, the model will 

contain four vertices (β1, β2, β3, β4), five edges 
(Fig. 5), and the following edge functions: 

𝑓1
2 = 𝑥7;  

𝑓2
2 = 𝑥8;  

𝑓3
2 = 𝑥9;  

𝑓4
2 = 𝑥10;  

𝑓5
2 = 𝑥7 ∨ 𝑥9.  

Model M3 is constructed using the method 

described in [44], based on the expression  

𝑐 = 𝑥4𝑥5, which corresponds to the simultaneous 
operability of processors 4 and 5. Accordingly, this 

model is based on a cycle graph with five vertices  

(γ1, γ2, γ3, γ4, γ5), five edges (Fig. 5), and the 
following edge functions: 

𝑓1
3 = 𝑥4 ∨ 𝑐𝑥5𝑥6 = 𝑥4 ∨ 𝑥4𝑥5𝑥5𝑥6 = 𝑥4;  

𝑓2
3 = 𝑥5 ∨ 𝑐𝑥6𝑥7 = 𝑥5 ∨ 𝑥4𝑥5𝑥6𝑥7 = 𝑥5;  

𝑓3
3 = 𝑥6 ∨ 𝑐𝑥7𝑥8 = 𝑥6 ∨ 𝑥4𝑥5𝑥7𝑥8;  

𝑓4
3 = 𝑥7 ∨ 𝑐𝑥8𝑥4 = 𝑥7 ∨ 𝑥4𝑥5𝑥8𝑥4 =  

= 𝑥7 ∨ 𝑥4𝑥5𝑥8;  
𝑓5

3 = 𝑥8 ∨ 𝑐𝑥4𝑥5 = 𝑥7 ∨ 𝑥4𝑥5𝑥4𝑥5 =  

= 𝑥7 ∨ 𝑥4𝑥5.  

Fig. 5. GL-models M1, M2, M3, M4 and M5 
Source: compiled by the authors  
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Model M4 is obtained by modifying the third 

edge function of model K4(2, 5) from Example 1 in 

accordance with the method proposed in [45]. As a 

result, the GL-model is based on a cycle graph with 
four vertices (δ1, δ2, δ3, δ4), four edges, and the 

following edge functions: 

𝑓1
4 = 𝑥1 ∨ 𝑥3;  

𝑓2
4 = 𝑥1𝑥3 ∨ 𝑥7;  

𝑓3
4 = (𝑥1 ∨ 𝑥3)(𝑥1𝑥3 ∨ 𝑥7) ∨ 𝑥8𝑥9;  

𝑓4
4 = 𝑥8 ∨ 𝑥9.  

Model M5 is constructed according to the 

method proposed in [24], using the  

expressions 𝑐1 = 𝑐2̅ = 𝑥̅1 ∨ 𝑥̅2 ∨ 𝑥̅5 ∨ 𝑥̅10 and  
𝑐2 = 𝑐1̅ = 𝑥1𝑥2𝑥5𝑥10. Thus, the GL-model is based 

on a cycle graph with eleven vertices  

(ε1, ε2, ε3, ε4, ε5, ε6, ε7, ε8, ε9, ε10, ε11) and eleven edges 
(Fig. 5), with the following edge functions: 

𝑓1
5 = 𝑐1(𝑥1 ∨ 𝑥2) ∨ 𝑐1̅(𝑥1 ∨ 𝑥2 ∨ 𝑥3) =  

= 𝑥1 ∨ 𝑥2;  
𝑓2

5 = 𝑐1(𝑥1𝑥2 ∨ 𝑥3) ∨  

∨ 𝑐1̅((𝑥1 ∨ 𝑥2)(𝑥1𝑥2 ∨ 𝑥3) ∨ 𝑥4𝑥5𝑥6) =  

= 𝑥1𝑥2 ∨ 𝑥3;  
𝑓3

5 = 𝑐1(𝑥1𝑥2𝑥3 ∨ 𝑥4𝑥5𝑥6) ∨  

∨ 𝑐1̅(𝑥1𝑥2𝑥3 ∨ (𝑥4 ∨ 𝑥5)(𝑥4𝑥5 ∨ 𝑥6)) =  

= 𝑥1𝑥2𝑥3 ∨ 𝑥5(𝑥4𝑥6 ∨ 𝑥1𝑥2𝑥10(𝑥4 ∨ 𝑥6));  

𝑓4
5 = 𝑐1(𝑥4 ∨ 𝑥5) ∨ 𝑐1̅(𝑥4 ∨ 𝑥5 ∨ 𝑥6) =  

= 𝑥4 ∨ 𝑥5 ∨ 𝑥1𝑥2𝑥5𝑥6𝑥10;  
𝑓5

5 = 𝑐1(𝑥4𝑥5 ∨ 𝑥6) ∨ 𝑐1̅((𝑥1 ∨ 𝑥2) ∧  

∧ (𝑥1𝑥2 ∨ 𝑥3)(𝑥1𝑥2𝑥3 ∨ 𝑥4𝑥5𝑥6)(𝑥4 ∨ 𝑥5) ∧  

∧ (𝑥4𝑥5 ∨ 𝑥6) ∨ 𝑥7𝑥8𝑥9𝑥10𝑥11𝑥12) =  

= (𝑥4𝑥5 ∨ 𝑥6) ∧  

∧ (𝑥̅1 ∨ 𝑥̅2 ∨ 𝑥̅5 ∨ 𝑥̅10 ∨ 𝑥3 ∨ 𝑥4𝑥6) ∨  

∨ 𝑥1𝑥2𝑥5𝑥7𝑥8𝑥9𝑥10𝑥11𝑥12;  
𝑓6

5 = 𝑐1(𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6 ∨ 𝑥7𝑥8𝑥9𝑥10𝑥11𝑥12) ∨  

∨ 𝑐1̅(𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6 ∨ (𝑥7 ∨ 𝑥8)(𝑥7𝑥8 ∨ 𝑥9) ∧  

∧ (𝑥7𝑥8𝑥9 ∨ 𝑥10𝑥11𝑥12)(𝑥10 ∨ 𝑥11) ∧  
∧ (𝑥10𝑥11 ∨ 𝑥12)) =  

= 𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6 ∨ 𝑥10((𝑥̅1 ∨ 𝑥̅2 ∨ 𝑥̅5) ∧  

∧ 𝑥7𝑥8𝑥9𝑥11𝑥12 ∨ 𝑥1𝑥2𝑥5(𝑥7 ∨ 𝑥8) ∧  

∧ (𝑥7𝑥8 ∨ 𝑥9)(𝑥7𝑥8𝑥9 ∨ 𝑥11𝑥12)(𝑥11 ∨ 𝑥12));  
𝑓7

5 = 𝑐1(𝑥7 ∨ 𝑥8) ∨ 𝑐1̅(𝑥7 ∨ 𝑥8 ∨ 𝑥9) =  

= 𝑥7 ∨ 𝑥8 ∨ 𝑥1𝑥2𝑥5𝑥9𝑥10;  
𝑓8

5 = 𝑐1(𝑥7𝑥8 ∨ 𝑥9) ∨ 𝑐1̅ ∧  

∧ ((𝑥7 ∨ 𝑥8)(𝑥7𝑥8 ∨ 𝑥9) ∨ 𝑥10𝑥11𝑥12) =  

= (𝑥7𝑥8 ∨ 𝑥9)(𝑥̅1 ∨ 𝑥̅2 ∨ 𝑥̅5 ∨ 𝑥̅10 ∨ 𝑥7 ∨ 𝑥8) ∨  

∨ 𝑥1𝑥2𝑥5𝑥10𝑥11𝑥12;  
𝑓9

5 = 𝑐1(𝑥7𝑥8𝑥9 ∨ 𝑥10𝑥11𝑥12) ∨  

∨ 𝑐1̅(𝑥7𝑥8𝑥9 ∨ (𝑥10 ∨ 𝑥11)(𝑥10𝑥11 ∨ 𝑥12)) =  

= 𝑥7𝑥8𝑥9 ∨ (𝑥̅1 ∨ 𝑥̅2 ∨ 𝑥̅5)𝑥10𝑥11𝑥12 ∨  

∨ 𝑥1𝑥2𝑥5𝑥10(𝑥11 ∨ 𝑥12);  
𝑓10

5 = 𝑐1(𝑥10 ∨ 𝑥11) ∨ 𝑐1̅(𝑥10 ∨ 𝑥11 ∨ 𝑥12) =  

= 𝑥10 ∨ 𝑥11;  
𝑓11

5 = 𝑐1(𝑥10𝑥11 ∨ 𝑥12) ∨ 𝑐1̅ =  

= 𝑥10(𝑥11 ∨ 𝑥1𝑥2𝑥5) ∨ 𝑥12 .  
To construct the GL-model of the FTMS, we 

perform a merging of the graphs of the auxiliary 
models developed above. For example, let us 

combine the graphs of models M1, M2, M3, M4, and 

M5 by merging the vertices α2 and β3 (the resulting 
vertex denoted as ω1), β2 and γ5 (ω2), α6 and δ2 (ω3), 

and γ3 and ε11 (ω4). The GL-model obtained as a 

result of this merging is shown in Fig. 6. 

 

 

Fig. 6. The GL-model of the FTMS constructed using the proposed method for Example 2 
Source: compiled by the authors  
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Experimental verification has confirmed that, as 

in Example 1, the model accurately represents the 

operable state of the system for those and only those 

vectors that correspond to the simultaneous 
fulfillment of all the above conditions. The full set of 

such system state vectors is omitted here for brevity. 

A comparison was also performed between the 
complexity of the GL-models constructed using the 

proposed method and that of the models obtained by 

known approaches, in particular by blocking system 
state vectors through the modification of the edge-

function expressions of basic models using the 

corresponding zero and one constituents. As baseline 

models, we considered the models K(1, 12), K(2, 12), 
and K(3, 12), constructed according to [22]. 

The complexity (number of logical operations) 

of the edge-function expressions for each model in 
Examples 1 and 2 is presented in Tables 1 and 2, 

respectively. As the results show, the GL-models 

constructed using the method proposed in this work 

have significantly simpler edge-function 
expressions. 

Table 1. Number of logical operations in the edge-

function expressions of the GL-models for 

Example 1 

Model Disj. Conj. Inv. Binary 

ops. 

Total 

ops. 

Proposed 41 56 0 97 97 

Modified 
K(1, 12) 

245 2695 684 2940 3624 

Modified 

K(2, 12) 
273 1104 426 1377 1803 

Modified 

K(3, 12) 
1715 199 1279 1914 3193 

Source: compiled by the authors 

Table 2. Number of logical operations in the 

edge-function expressions of the GL-models for 

Example 2 

Model Disj. Conj. Inv. Binary 

ops. 

Total 

ops. 

Proposed 55 83 10 138 148 

Modified 
K(1, 12) 

120 1320 304 1440 1744 

Modified 

K(2, 12) 
153 384 186 537 723 

Modified 

K(3, 12) 
2320 254 1739 2574 4313 

Source: compiled by the authors 

 

DISCUSSION OF RESULTS 

The GL-models constructed using the proposed 
method exhibit a rather complex structure, in 

particular, being based on graphs that do not belong 

to the class of cycle graphs. This somewhat 
complicates the procedure of assessing the model 

graph’s connectivity compared to methods that 

generate models based on cycle graphs (e.g., [24], 

[44], [45]), since such an assessment can no longer 
be reduced to a simple count of removed edges. On 

the other hand, the complexity of their edge 

functions remains moderate, as the method directly 
employs the expressions of the edge functions from 

the auxiliary models. This feature distinguishes the 

proposed approach from, for instance, the method 
described in [24], where the edge functions typically 

become more complex because a single expression 

combines several functions from different models. 

In general, it can be readily observed that the 
complexity of a GL-model obtained using the 

proposed method can be estimated as follows. The 

number of edges in the model graph: 

𝑒 = ∑ 𝑒𝑖

𝑁

𝑖=1

, 

where N is the number of auxiliary models, and ei is 

the number of edges in the graph of the i-th auxiliary 

model (the edges of all auxiliary model graphs are 
preserved). The number of vertices in the model graph: 

𝑣 = ∑ 𝑣𝑖

𝑁

𝑖=1

− 𝑁 + 1, 

where vi is the number of vertices of the i-th auxiliary 

model (since N – 1 pairs of vertices are merged). The 
total complexity of the model’s edge functions: 

𝑐 = ∑ ∑ 𝑐𝑗
𝑖

𝑒𝑖

𝑗=1

𝑁

𝑖=1

, 

where 𝑐𝑗
𝑖  denotes the complexity of the j-th edge 

function of the i-th model (all edge functions of the 

auxiliary models remain unchanged).  

To assess the connectivity of the graph of a GL-

model, depth-first search (DFS) or breadth-first 

search (BFS) algorithms may be applied. The 

computational complexity of these algorithms is 

known to be O(e + v), where e is the number of 

edges in the graph and v is the number of vertices. 

Taking into account the above estimates for the 

numbers of edges and vertices in a GL-model 

constructed using the proposed method, it may be 

concluded that the complexity of connectivity 
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evaluation for its graph is comparable to that of the 

auxiliary GL-models (provided that analogous 

connectivity-check algorithms are used). 

Considering also the complexity of computing the 

model’s edge-function expressions, it follows that 

the overall computational cost of using the resulting 

model is likewise comparable to the cost of using the 

auxiliary GL-models individually. 

It should also be noted that since the graph of the 

GL-model is initially connected (i.e., prior to 

evaluating the edge functions), the inequality  

e ≥ v – 1 holds (the number of edges cannot be 

smaller than that of a spanning tree, for which  

e = v – 1). Therefore, v ≤ e + 1, and the complexity of 

the connectivity-check algorithm may be expressed as 

O(e). On the other hand, evaluating the model still 

requires computing all e edge functions. Thus, even in 

comparison with the simple edge-counting procedure 

(which is applicable for cycle-graph-based models), 

using a connectivity-check algorithm for a graph that 

does not belong to the class of cycle graphs in the 

GL-model constructed by the proposed method does 

not lead to a significant increase in the overall 

computational complexity. 

It is also worth noting that the proposed method 

does not impose any restrictions on the ways in 

which the auxiliary GL-models are constructed. For 

instance, when applying this method, it is possible to 

combine models built using different approaches 

simultaneously (e.g., models of basic systems 

constructed according to [22] and [23]). Moreover, 

the conditions do not necessarily have to correspond 

to basic systems (i.e., those defined by the failure of 

no more than a certain number of arbitrary 

processors), and the graphs of the auxiliary models 

are not required to be based on cycle graphs (as was, 

for example, required in [24]). 

As a result of applying the proposed method to 

an FTMS, a single GL-model is obtained, which, if 

necessary, can be further modified using known 

techniques or employed as an auxiliary component 

for constructing a more complex model (e.g., in 

accordance with [25]). This would not be feasible in 

the case of analyzing the connectivity of separate 

GL-models corresponding to individual conditions. 

It should be noted that, as demonstrated in 

Example 1, the merging of auxiliary model graphs 

can indeed be performed in various ways (depending 

on the selected pairs of vertices for merging). This 

makes it possible, in particular, to form an optimal 

structure of the resulting GL-model graph – for 

instance, to simplify computations or to improve the 

convenience of subsequent modifications. One 

possible optimization criterion in this context may 

be the minimization of the model graph’s diameter. 

CONCLUSIONS 

This study proposes a method for constructing 

GL-models of non-basic fault-tolerant 

multiprocessor systems whose operability requires 

the simultaneous fulfillment of multiple conditions. 

Each of these conditions can be associated with a 

specific GL-model built using one of the known 

methods. Constructing models of such systems by 

existing techniques is nontrivial and often proves to 

be extremely complex and inefficient from a 

practical standpoint, since such FTMSs may 

significantly differ from basic ones. In particular, 

this may lead to highly complex edge-function 

expressions in the resulting GL-models. Even for 

relatively small systems considered in the examples, 

the overall complexity (i.e., the total number of 

logical operations) of the edge functions in the GL-

models obtained using the proposed method was 

several times lower compared to the corresponding 

models constructed by conventional methods 

(through blocking of the respective system state 

vectors). For more complex systems, this difference 

may become even more significant. 

The proposed method is based on combining the 

graphs of auxiliary GL-models constructed for each 

of the system’s operability conditions. In this process, 

the edges of these model graphs along with their 

corresponding edge functions are preserved, while 

pairs of arbitrarily selected vertices are merged. 

Examples are provided to demonstrate the 

application of the proposed method for constructing 

GL-models of fault-tolerant multiprocessor systems 

whose operability requires the simultaneous 

fulfillment of multiple specified conditions. 

Furthermore, experiments have been conducted to 

confirm that the constructed models adequately 

reflect the behavior of the corresponding systems 

under failure flow conditions. 

Additionally, the paper presents complexity 

estimates for the GL-models obtained using the 

proposed method, including the number of edges 

and vertices in the graphs and the overall complexity 

of the edge function expressions, which are 

determined by the characteristics of the 

corresponding auxiliary GL-models. 
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АНОТАЦІЯ 

У роботі запропоновано метод побудови GL-моделей поведінки складних небазових відмовостійких 
багатопроцесорних систем у потоці відмов. Метою дослідження є створення універсального підходу, який уможливлює 

формування цілісної GL-моделі для систем із кількома незалежними або слабко пов’язаними умовами роботоздатності. Такі 
моделі можуть бути використані, зокрема, для оцінки параметрів надійності зазначених систем із застосуванням 
статистичних методів моделювання. Розглядаються системи, роботоздатність яких визначається одночасним виконанням 
кількох відносно простих умов, для кожної з яких відомі способи побудови GL-моделей (наприклад, умова обмеження 
кількості відмов серед певної підмножини процесорів). До таких систем належать, зокрема, ієрархічні системи, що 
складаються з кількох підсистем із власним рівнем відмовостійкості, а також системи, які містять спеціалізовані процесори 
різних типів. Запропонований метод передбачає попереднє формування допоміжних GL-моделей для кожної з умов 
роботоздатності, після чого вони поєднуються в єдину модель шляхом послідовного об’єднання їхніх графів через вибрані 

вершини (об’єднані вершини формують одну, решта вершин і ребра копіюються). Послідовність об’єднання моделей і вибір 
відповідних вершин можуть задаватися довільно, що забезпечує гнучкість структури побудованої GL-моделі. 
Продемонстровано приклади застосування методу, у межах яких розглянуто різні варіанти вибору послідовності об’єднання 
допоміжних моделей і вершин з’єднання їхніх графів, а також використання різних методів для побудови цих моделей.  
Наукова новизна роботи полягає в узагальненні та формалізації процедури послідовного об’єднання GL-моделей, що 
дозволяє поєднувати моделі довільної структури та типу для формування єдиної моделі складної системи без втрати 
коректності її поведінки. Експериментальні результати підтверджують, що, незважаючи на різницю в структурі графів 
отриманих моделей, їхня поведінка на однакових вхідних векторах повністю збігається й адекватно відображає 

функціонування відмовостійкої багатопроцесорної системи в потоці відмов. Показано також, що метод не накладає 
обмежень на способи побудови GL-моделей для окремих умов: можуть поєднуватися моделі різних типів, умови не 
обов’язково відповідають базовим системам, а графи моделей можуть не бути циклічними. Крім того, подано оцінки 
складності GL-моделей, побудованих запропонованим способом, зокрема кількості вершин і ребер їхніх графів та загальної 
складності реберних функцій, залежно від характеристик відповідних допоміжних моделей. Практична цінність полягає в 
тому, що метод дозволяє автоматизувати побудову комплексних моделей для систем зі складними умовами роботоздатності 
та використовувати їх для ефективної оцінки надійності реальних багатопроцесорних систем. 
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