
Romankevich V.A., Morozov K.V., Halytsky D.V., Yermolenko I.A., Zacharioudakis Lefteris

 / Applied Aspects of Information Technology

 2025; Vol. 8 No. 4: 465–480

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Applied information technologies in

energy engineering and automation
465

DOI: https://doi.org/10.15276/aait.08.2025.30

UDС 004.05

A method for constructing GL-models of behavior under failure flow

for complex non-basic fault-tolerant multiprocessor systems

Vitaliy A. Romankevich
1)

ORCID: https://orcid.org/0000-0003-4696-5935; zavkaf@scs.kpi.ua. Scopus Author ID: 57193263058

Kostiantyn V. Morozov1)
ORCID: https://orcid.org/0000-0003-0978-6292; mcng@ukr.net. Scopus Author ID: 57222509251

Daniil V. Halytsky1)

ORCID: https://orcid.org/0009-0004-4421-3443; zipper135401@gmail.com. Scopus Author ID: 58553487600

Ihor A. Yermolenko1)

ORCID: https://orcid.org/0009-0008-5298-4888; yermolenkomail@gmail.com

Lefteris Zacharioudakis2)

ORCID: https://orcid.org/0000-0002-9658-3073; l.zacharioudakis@nup.ac.cy. Scopus Author ID: 57422876200
1) National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Peremogy Ave. Kyiv, 03056, Ukraine

2)Neapolis University Pafos, 2, Danais Ave. Pafos, 8042, Cyprus

ABSTRACT

The paper proposes a method for constructing GL-models of the behavior of complex non-basic fault-tolerant multiprocessor
systems under a failure flow. The aim of the study is to develop a universal approach that enables the formation of an integrated GL-
model for systems characterized by multiple independent or weakly coupled operability conditions. Such models can be used, in

particular, to evaluate the reliability parameters of the systems under consideration using statistical simulation methods. The study
focuses on systems whose operability is determined by the simultaneous fulfillment of several relatively simple conditions, for each
of which established methods for constructing GL-models are available (for example, a condition limiting the number of failures
within a certain subset of processors). These include, in particular, hierarchical systems composed of multiple subsystems with their
own levels of fault tolerance, as well as systems containing specialized processors of different types. The proposed method involves
the preliminary construction of auxiliary GL-models for each operability condition; followed by their integration into a unified model
through the sequential merging of their graphs via selected vertices (the merged vertices form a single vertex, while the remaining
vertices and edges are copied). The order of model merging and the choice of corresponding vertices can be defined arbitrarily,

providing flexibility in the structure of the resulting GL-model. Examples of the method’s application are presented, illustrating
various options for determining the sequence of merging auxiliary models and selecting the connecting vertices of their graphs, as
well as the use of different methods for constructing these models. The scientific novelty of the work lies in the generalization and
formalization of the sequential GL-model merging procedure, which makes it possible to combine models of arbitrary structure and
type into a unified model of a complex system without compromising the correctness of its behavior. Experimental results confirm
that, despite structural differences in the graphs of the obtained models, their behavior on identical input vectors coincides completely
and accurately reflects the operation of the fault-tolerant multiprocessor system under a failure flow. It is also shown that the method
imposes no restrictions on the construction techniques of GL-models for individual conditions: models of different types can be
combined, the conditions do not necessarily correspond to basic systems, and the model graphs may be other than a cycle graph.

Furthermore, the paper provides complexity estimates for GL-models constructed by the proposed method, including the number of
vertices and edges in their graphs and the overall complexity of edge functions, depending on the characteristics of the corresponding
auxiliary models. The practical value of the method is that it enables automated construction of comprehensive models for systems
with complex operability conditions and supports efficient reliability evaluation of real multiprocessor systems.

Keywords: Fault-tolerant multiprocessor systems; GL-models; non-basic systems; control systems; reliability evaluation;
statistical experiments

For citation: Romankevich V. A., Morozov K. V., Halytsky D. V., Yermolenko I. A., Zacharioudakis L. “A method for constructing GL-models

of behavior under failure flow for complex non-basic fault-tolerant multiprocessor systems”. Applied Aspects of Information Technology. 2025;

Vol.8 No.4: 465 –480. DOI: https://doi.org/10.15276/aait.08.2025.30

INTRODUCTION

In recent decades, the automation of various

processes has become increasingly widespread [1],

[2]. On the one hand, this makes it possible to
relieve humans from performing monotonous tasks,

© Romankevich V., Morozov K., Halytsky D.,

 Yermolenko I., Zacharioudakis Lefteris, 2025

and on the other, to reduce the impact of the human

factor on the execution of such tasks. Some tasks

cannot be performed by humans at all due to the

limitations of physiological capabilities (for
example, reaction speed), or because of the

undesirability or impossibility of their direct

presence at the site (for instance, space missions,
military unmanned systems, etc.). One of the key

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/deed.uk)

Romankevich V.A., Morozov K.V., Halytsky D.V., Yermolenko I.A., Zacharioudakis Lefteris

 / Applied Aspects of Information Technology

 2025; Vol. 8 No. 4: 465–480

466 Applied information technologies in

energy engineering and automation

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

components of such objects and systems is their

control system (CS), which, based on data obtained

from various sensors, generates the corresponding

control signals for actuating devices [1], [2].
There exist systems whose malfunction may

lead to significant adverse consequences, such as

considerable material losses, threats to human health
or life, and risks to the welfare and stability of a

state [3], [4], [5]. Such systems in general – and their

control systems (CS) in particular – are therefore
subject to increased reliability requirements.

Moreover, the control of these systems often

involves solving problems of substantial

computational complexity. Hence, it is reasonable to
implement the control systems of such objects using

so-called fault-tolerant multiprocessor systems

(FTMS), which consist of a large number of
processors (allowing, in particular, for high

performance levels) and remain operational even in

the event of failures of some processors (thus

ensuring high reliability) [6], [7], [8].

LITERATURE REVIEW AND PROBLEM

STATEMENT

For a developer of fault-tolerant multiprocessor
systems, it is important to be able to assess the

reliability level of the system being designed. This

task is not always straightforward, particularly
because FTMSs used in control systems may have

complex and heterogeneous architectures, consisting

of processors of different types that perform

specialized tasks, and so forth.
Methods for calculating the reliability

parameters of FTMSs can be conventionally divided

into two groups [9], [10]. The first group comprises
methods based on the derivation of complex

analytical expressions, which, on the one hand, often

enable highly accurate evaluation of the reliability
parameters of an FTMS, but on the other hand, are

not universal: for each new type of system, a new

method usually has to be developed [11], [12], [13],

[14], [15], [16]. The second group includes methods
that allow calculating FTMS reliability parameters

by conducting statistical experiments using models

of their behavior under a failure flow [17], [18], [19]
[20]. These methods are universal; however, the

accuracy of the obtained results generally depends

on the number of experiments performed. Therefore,

reducing the complexity of an experiment (in
particular, through simplification of the model)

makes it possible, on the one hand, to decrease the

computation time and, on the other hand, to increase
the accuracy of the results.

As models of FTMS behavior under a failure

flow, GL-models [20], [21] can be employed, which

combine the properties of graphs and Boolean

functions. A GL-model represents an undirected
graph in which each edge is associated with a

Boolean edge function that depends on the so-called

system state vector – a Boolean vector whose
elements correspond to the states of the system’s

processors (1 indicates that a processor is

operational, 0 indicates that it has failed). If an edge
function evaluates to zero, the corresponding edge is

removed from the graph. The connectivity of the

graph for a given vector corresponds to the system’s

state under a specific configuration of processor
states: a connected graph represents an operational

system, whereas a disconnected graph indicates a

system failure. The construction of GL-models for
FTMSs can be performed using various approaches

[22], [23], [24], [25].

Of particular interest are the so-called basic

systems, which are capable of remaining operational
provided that no more than a certain number of their

processors have failed. A basic FTMS, denoted as

K(m, n), consists of n processors and is tolerant to
the failure of no more than m arbitrary processors.

GL-models of basic systems can be constructed on

the basis of cycle graphs [22], [23], which, in
particular, allows for a reduction in the complexity

of the connectivity evaluation procedure. It is worth

noting that the state of a basic FTMS under a failure

flow can be easily determined even without
constructing a GL-model – for example, by simply

counting the number of zeros in the system state

vector.
However, control FTMSs are often non-basic,

meaning that they remain tolerant to certain failures

of a given multiplicity while being intolerant to
other failures of the same multiplicity. Such systems

include, in particular, consecutive k-out-of-n [14],

[16], [26], [27], [28], consecutive k-within-m-out-of-

n [29], [30], consecutive k-out-of-r-from-n [31],
[32], m‑consecutive-k-out-of-n [33], [34], [35],

(n, f, k) [36], [37], <n, f k> [36], [38], consecutive-

(k, l)-out-of-n [15], m-consecutive-k,l-out-of-n [39],
[40], kc-out-of-n [35], (r, s)-out-of-(m, n) [12], [41],

[42], consecutive-kr-out-of-nr [43], as well as other,

potentially even more complex, systems. In such

cases, the determination of the system state can no
longer be reduced to a simple count of zeros in the

state vector.

Romankevich V.A., Morozov K.V., Halytsky D.V., Yermolenko I.A., Zacharioudakis Lefteris

 / Applied Aspects of Information Technology

 2025; Vol. 8 No. 4: 465–480

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Applied information technologies in

energy engineering and automation
467

PROBLEM STATEMENT

The construction of a GL-model for a non-basic

system can be performed by modifying the model of

a certain basic system, in particular, by altering the
structure of its graph (for example, by introducing

additional edges) and/or by changing the expressions

of its edge functions. This approach is especially
convenient in cases where the FTMS does not differ

significantly from the basic one – that is, it behaves

as a basic system in most situations and deviates
only in certain specific cases (for particular

combinations of operational and failed processors),

either becoming non-operational or remaining

functional [24], [44], [45].
However, some real FTMSs may differ

significantly from basic ones. For example, each

processor type in a system may have its own
maximum allowable failure multiplicity. In addition,

additional constraints may also be present – for

instance, a maximum total failure multiplicity, or a

maximum number of allowable failures within a
certain subset of processors. This is particularly

relevant for systems composed of several distinct

subsystems: each subsystem may behave as a basic
system, while the overall system behavior may differ

considerably from that of a basic one. In [25], a

method for constructing GL-models for such
hierarchical systems was proposed. However, the

models obtained by this method are themselves

hierarchical and, consequently, rather complex: first,

calculations must be performed for several auxiliary
models, after which the calculation for the system’s

GL-model is carried out.

A relevant problem is the construction of GL-
models for complex non-basic fault-tolerant

multiprocessor systems for which existing modeling

methods are ineffective, particularly when their
application leads to a significant increase in the

complexity of the edge-function expressions in the

resulting models. This issue is especially

pronounced for systems whose operability is
determined by several independent or weakly

coupled conditions, each of which must be modeled

and combined within a unified framework.

RESEARCH AIM AND OBJECTIVES

The aim of this study is to develop a method for

constructing GL-models of complex non-basic

FTMSs of a special type – namely, those whose
behavior under a failure flow can be described by a

set of relatively simple conditions (for example, the

failure of no more than a certain number of
processors within a specific subset of the system’s

processors), for each of which a separate GL-model

can be constructed by one method or another. It is

assumed that the operability of the system is

maintained only when all of these conditions are
satisfied simultaneously.

To achieve this goal, the following objectives

have been defined:
1) to develop a method for constructing GL-

models of non-basic FTMSs by combining several

auxiliary models formed for individual operability
conditions of the system;

2) to design, based on the proposed method, an

algorithm for constructing such GL-models;

3) to perform an experimental validation of the
correctness of the GL-models constructed using the

proposed method.

METHOD FOR CONSTRUCTING A

GL-MODEL OF A NON-BASIC FTMS

Let us consider a non-basic FTMS that remains

operational only if a certain set of conditions

C1, C2, …, Ck are simultaneously satisfied. For each
of these conditions Ci, a corresponding GL-model Mi

can be constructed in some way (these models will

be referred to as auxiliary models). Thus, the
satisfaction of condition Ci corresponds to the

connectivity of the graph of model Mi.

Since the system is operational only when all
conditions Ci are satisfied, the graph of the GL-

model M of this FTMS must remain connected if the

graphs of all models Mi are connected, and it must

become disconnected if the graph of at least one of
the models Mi becomes disconnected.

Let us now consider two arbitrary graphs, G1

and G2. Let graph G1 contain vertices 𝛼1, 𝛼2, … , 𝛼𝑛1
,

and graph G2 contain vertices 𝛽1, 𝛽2, … , 𝛽𝑛2
. Select

two arbitrary vertices, 𝛼𝑖 and 𝛽𝑗, belonging to

graphs G1 and G2, respectively. Perform the merging

of graphs G1 and G2 through vertices 𝛼𝑖 and 𝛽𝑗, i.e.,

merge these vertices into one, while copying the
remaining vertices and all edges of both graphs. As a

result of this merging, a new graph G is obtained.

The connectivity of graph G1 means that there
exists a path between any pair of its vertices.

Conversely, the lack of connectivity of graph G1

means that there is at least one pair of vertices with

no path between them. Similarly, the connectivity of
graph G2 implies that a path exists between any pair

of its vertices, while the absence of connectivity in

graph G2 indicates that there is at least one pair of
vertices that are not connected by a path.

Let us show that graph G is connected if and

only if both graphs G1 and G2 are connected, and

Romankevich V.A., Morozov K.V., Halytsky D.V., Yermolenko I.A., Zacharioudakis Lefteris

 / Applied Aspects of Information Technology

 2025; Vol. 8 No. 4: 465–480

468 Applied information technologies in

energy engineering and automation

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

that it becomes disconnected if at least one of the

graphs G1 or G2 loses connectivity. Assume that

graphs G1 and G2 are connected. Consider an

arbitrary pair of vertices of graph G. The following
three cases are possible.

1. Both vertices belong to the set

{𝛼1, 𝛼2, … , 𝛼𝑛1
}. In this case, the existence of a path

between these vertices follows from the connectivity

of graph G1.

2. Both vertices belong to the set

{𝛽1, 𝛽2, … , 𝛽𝑛2
}. Similarly, the existence of a path

between these vertices follows from the connectivity

of graph G2.

3. One of the vertices (denoted as 𝛼𝑘) belongs

to the set {𝛼1, 𝛼2, … , 𝛼𝑛1
}, and the other (denoted as

𝛽𝑙) belongs to the set {𝛽1, 𝛽2, … , 𝛽𝑛2
}. From the

connectivity of graph G1, it follows that there exists

a path between vertices 𝛼𝑘 and 𝛼𝑖; from the
connectivity of graph G2, it follows that there exists

a path between vertices 𝛽𝑗 and 𝛽𝑙. Therefore, since

in graph G the vertices 𝛼𝑖 and 𝛽𝑗 are merged into a

single vertex, there also exists a path between

vertices 𝛼𝑘 and 𝛽𝑙.
Thus, if graphs G1 and G2 are connected, graph

G will also be connected.

Next, we show that graph G will be
disconnected if at least one of the graphs G1 or G2 is

disconnected. Let graph G1 be disconnected. In this

case, there exists at least one pair of vertices from

the set {𝛼1, 𝛼2, … , 𝛼𝑛1
} between which no path

exists. It is easy to see that in this situation there will

also be no path from at least one of these vertices to

vertex 𝛼𝑖 (otherwise, a path between the previously

considered vertices would exist through vertex 𝛼𝑖).

Consequently, in graph G, there will also be no path

from this vertex to any vertices from the set

{𝛽1, 𝛽2, … , 𝛽𝑛2
}, since only vertices 𝛼𝑖 and 𝛽𝑗 were

merged and no additional edges were added. Thus,

graph G will be disconnected.
Similarly, it can be shown that if graph G2 is

disconnected, then graph G will also be

disconnected.
The merging procedure described above can be

extended to an arbitrary number of graphs. Let us

apply it to merge the graphs of the auxiliary models

M1, M2, …, Mk.
It is easy to see that the GL-model M obtained

in this way will indicate the operable (fault-free)

state of the system if and only if each of the
conditions C1, C2, …, Ck is satisfied, that is, when

the graphs of all models M1, M2, …, Mk remain

connected. Indeed, on the one hand, the connectivity

of each of the graphs of models M1, M2, …, Mk

ensures the connectivity of the graph of model M.

On the other hand, merging the graphs of the models

through common vertices does not create any
additional paths that could preserve the connectivity

of the graph of model M in the event that it is lost by

at least one of the graphs of models M1, M2, …, Mk.
It should also be noted that the method allows

for an arbitrary choice of both the order in which the

models are merged and the vertices through which
their graphs are joined. Therefore, for the same

FTMS, a large number of alternative GL-model

variants can be obtained. This, in particular, makes it

possible to construct a more convenient graph
structure (for example, to accelerate the connectivity

evaluation procedure or to simplify further model

modifications, if required).

ALGORITHM FOR CONSTRUCTING A

GL-MODEL OF A NON-BASIC FTMS

According to the proposed method, the

algorithm for constructing the GL-model of the
above-described non-basic FTMS can be formulated

as follows.

1. For each of the conditions C1, C2, …, Ck,
construct separate GL-models (denote them as

Ω = {M1, M2, …, Mk}).

2. Remove an arbitrary model Mi from the set
Ω; let M = Mi be the model under construction.

3. If the set Ω is empty, proceed to Step 8.

4. Remove an arbitrary model Mj from the set

Ω.
5. Select an arbitrary vertex α in the graph of

model M and an arbitrary vertex β in the graph of

model Mj.
6. Merge the graphs of models M and Mj

through vertices α and β, resulting in a new model

M.
7. Return to Step 3.

8. The resulting model M is the desired GL-

model of the system.

EXAMPLES AND EXPERIMENTAL RESULTS

Example 1. Let us construct a GL-model of a

system consisting of 12 processors, which is

operable if and only if the following conditions are
simultaneously satisfied (Fig. 1).

1. Among processors 1…6, there are no more

than two faulty ones.

2. Among processors 7…10, there is no more
than one faulty processor.

3. Among processors 4…8, there is no more

than one faulty processor.

Romankevich V.A., Morozov K.V., Halytsky D.V., Yermolenko I.A., Zacharioudakis Lefteris

 / Applied Aspects of Information Technology

 2025; Vol. 8 No. 4: 465–480

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Applied information technologies in

energy engineering and automation
469

4. Among processors 1, 3, 7, 8, and 9, there are

no more than two faulty ones.

5. In the entire system, there are no more than

three faulty processors.
Each of the above conditions corresponds to the

behavior under a failure flow of a certain basic

system. Let us construct GL-models for each of
them, namely: model K1(2, 6) for the set of

processors 1…6, model K2(1, 4) for processors

7…10, model K3(1, 5) for processors 4…8, model
K4(2, 5) for processors 1, 3, 7, 8, 9, and model

K5(3, 12) for processors 1…12. The elements of the

system state vector will be denoted as xi, where i is

the index of the corresponding processor. To
construct these models, we will use the method

described in [22].

Fig. 1. The FTMS considered in Example 1

Source: compiled by the authors

Model K1(2, 6) is based on a cycle graph with

five vertices (denoted as α1, α2, α3, α4, α5) and five

edges (Fig. 2). It has the following edge functions:

𝑓1
1 = 𝑥1 ∨ 𝑥2;

𝑓2
1 = 𝑥1𝑥2 ∨ 𝑥3;

𝑓3
1 = 𝑥1𝑥2𝑥3 ∨ 𝑥4𝑥5𝑥6;

𝑓4
1 = 𝑥4 ∨ 𝑥5;

𝑓5
1 = 𝑥4𝑥5 ∨ 𝑥6.

Model K2(1, 4) is constructed on a cycle graph

with four vertices (β1, β2, β3, β4) and four edges
(Fig. 2). Its edge functions are as follows:

𝑓1
2 = 𝑥7;

𝑓2
2 = 𝑥8;

𝑓3
2 = 𝑥9;

𝑓4
2 = 𝑥10 .

Model K3(1, 5) is built on a cycle graph with
five vertices (γ1, γ2, γ3, γ4, γ5) and five edges (Fig. 2).

The edge functions of this model have the following

form:

𝑓1
3 = 𝑥4;

𝑓2
3 = 𝑥5;

𝑓3
3 = 𝑥6;

𝑓4
3 = 𝑥7;

𝑓5
3 = 𝑥8 .

Model K4(2, 5) is based on a cycle graph with
four vertices (δ1, δ2, δ3, δ4) and four edges (Fig. 2). It

has the following edge functions:

 𝑓1
4 = 𝑥1 ∨ 𝑥3;

𝑓2
4 = 𝑥1𝑥3 ∨ 𝑥7;

𝑓3
4 = 𝑥1𝑥3𝑥7 ∨ 𝑥8𝑥9;

𝑓4
4 = 𝑥8 ∨ 𝑥9.

Fig. 2. GL-models K1(2, 6), K2(1, 4), K3(1, 5), K4(2, 5) and K5(3, 12)
Source: compiled by the authors

Romankevich V.A., Morozov K.V., Halytsky D.V., Yermolenko I.A., Zacharioudakis Lefteris

 / Applied Aspects of Information Technology

 2025; Vol. 8 No. 4: 465–480

470 Applied information technologies in

energy engineering and automation

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Finally, model K5(3, 12) is based on a cycle

graph with ten vertices (ε1, ε2, ε3, ε4, ε5, ε6, ε7, ε8, ε9,

ε10) and ten edges (Fig. 2). Its edge functions are as

follows:

𝑓1
5 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3;

𝑓2
5 = (𝑥1 ∨ 𝑥2)(𝑥1𝑥2 ∨ 𝑥3) ∨ 𝑥4𝑥5𝑥6;

𝑓3
5 = 𝑥1𝑥2𝑥3 ∨ (𝑥4 ∨ 𝑥5)(𝑥4𝑥5 ∨ 𝑥6);

𝑓4
5 = 𝑥4 ∨ 𝑥5 ∨ 𝑥6;

𝑓5
5 = (𝑥1 ∨ 𝑥2)(𝑥1𝑥2 ∨ 𝑥3) ∧

∧ (𝑥1𝑥2𝑥3 ∨ 𝑥4𝑥5𝑥6)(𝑥4 ∨ 𝑥5)(𝑥4𝑥5 ∨ 𝑥6) ∨

∨ 𝑥7𝑥8𝑥9𝑥10𝑥11𝑥12;
𝑓6

5 = 𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6 ∨ (𝑥7 ∨ 𝑥8)(𝑥7𝑥8 ∨ 𝑥9) ∧

∧ (𝑥7𝑥8𝑥9 ∨ 𝑥10𝑥11𝑥12)(𝑥10 ∨ 𝑥11) ∧

∧ (𝑥10𝑥11 ∨ 𝑥12);
𝑓7

5 = 𝑥7 ∨ 𝑥8 ∨ 𝑥9;

𝑓8
5 = (𝑥7 ∨ 𝑥8)(𝑥7𝑥8 ∨ 𝑥9) ∨ 𝑥10𝑥11𝑥12;

𝑓9
5 = 𝑥7𝑥8𝑥9 ∨ (𝑥10 ∨ 𝑥11)(𝑥10𝑥11 ∨ 𝑥12);

𝑓10
5 = 𝑥10 ∨ 𝑥11 ∨ 𝑥12 .

Next, to construct the GL-model of the system

under consideration, we perform a sequential

merging of the previously constructed models. For

example, we may first select model K1(2, 6), and
then merge it with model K2(1, 4) through vertices α2

and β4 (the resulting merged vertex is denoted as

ω1). Then, the obtained model is merged with model
K3(1, 5) through vertices β2 and γ5 (the

corresponding vertex in the new model is denoted as

ω2). After that, we merge the resulting model with
model K4(2, 5) through vertices α4 and δ1, denoting

the merged vertex as ω3. Finally, the obtained model

is merged with model K5(3, 12) through vertices γ4

and ε2 (as in the previous cases, the corresponding

vertex in the new model is denoted as ω4). The GL-

model obtained as a result of these successive
mergers (Fig. 3) represents the behavior of the

considered system under a failure flow, which was

confirmed by the experiments performed with it.
According to the results of experiments

(conducted for all possible Boolean vectors of length

12), the obtained GL-model represents the operable
state of the system for all vectors containing no more

than one zero (it is evident that under such vectors,

none of the operability conditions of the considered

FTMS can be violated), as well as for the following
51 vectors with two zeros: 111111111100,

111111111010, 111111110110, 111111101110,

111111011110, 111110111110, 111101111110,
111011111110, 110111111110, 101111111110,

011111111110, 111111111001, 111111110101,

111111101101, 111111011101, 111110111101,

111101111101, 111011111101, 110111111101,
101111111101, 011111111101, 111110111011,

111101111011, 111011111011, 110111111011,

101111111011, 011111111011, 111110110111,
111101110111, 111011110111, 110111110111,

101111110111, 011111110111, 110111101111,

101111101111, 011111101111, 110111011111,
101111011111, 011111011111, 110110111111,

101110111111, 011110111111, 110101111111,

101101111111, 011101111111, 110011111111,

101011111111, 011011111111, 100111111111,

Fig. 3. The GL-model of the FTMS constructed using the proposed method for Example 1
Source: compiled by the authors

Romankevich V.A., Morozov K.V., Halytsky D.V., Yermolenko I.A., Zacharioudakis Lefteris

 / Applied Aspects of Information Technology

 2025; Vol. 8 No. 4: 465–480

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Applied information technologies in

energy engineering and automation
471

010111111111, 001111111111; and the following 97

vectors with three zeros: 111111111000,

111111110100, 111111101100, 111111011100,

111110111100, 111101111100, 111011111100,
110111111100, 101111111100, 011111111100,

111110111010, 111101111010, 111011111010,

110111111010, 101111111010, 011111111010,
111110110110, 111101110110, 111011110110,

110111110110, 101111110110, 011111110110,

110111101110, 101111101110, 011111101110,
110111011110, 101111011110, 011111011110,

110110111110, 101110111110, 011110111110,

110101111110, 101101111110, 011101111110,

110011111110, 101011111110, 011011111110,
100111111110, 010111111110, 001111111110,

111110111001, 111101111001, 111011111001,

110111111001, 101111111001, 011111111001,
111110110101, 111101110101, 111011110101,

110111110101, 101111110101, 011111110101,

110111101101, 101111101101, 011111101101,

110111011101, 101111011101, 011111011101,
110110111101, 101110111101, 011110111101,

110101111101, 101101111101, 011101111101,

110011111101, 101011111101, 011011111101,
100111111101, 010111111101, 001111111101,

110110111011, 101110111011, 011110111011,

110101111011, 101101111011, 011101111011,
110011111011, 101011111011, 011011111011,

100111111011, 010111111011, 001111111011,

110110110111, 101110110111, 011110110111,

110101110111, 101101110111, 011101110111,

110011110111, 101011110111, 011011110111,

100111110111, 001111110111, 100111101111,
001111101111, 100111011111, 001111011111.

The model indicates an inoperable system state

for all vectors containing four or more zeros (which
directly follows from operability condition 5 of the

system). A detailed analysis confirmed that the

above-mentioned system state vectors with two and
three zeros are indeed exactly those vectors that

correspond to the simultaneous fulfillment of all five

operability conditions of the FTMS considered in

this example.
It should be noted that, as mentioned above,

both the order of model merging and the choice of

vertices through which their graphs are combined
can be arbitrary. For example, one could first select

model K5(3, 12), then merge it with model K4(2, 5)

through vertices ε9 and δ2 (ω1). Next, it can be

merged with model K2(1, 4) through vertices ε4 and
β4 (ω2), and with model K1(2, 6) through vertices ε7

and α1 (ω3). Finally, it can be merged with model

K3(1, 5) through vertices ε2 and γ4 (ω4). The GL-
model obtained as a result of these transformations

(Fig. 4), although differing from the previous one in

the structure of its graph, demonstrates, as confirmed
by experiments, behavior consistent with the

previous model for identical input vectors.

Fig. 4. An alternative GL-model of the FTMS under consideration for Example 1
Source: compiled by the authors

Romankevich V.A., Morozov K.V., Halytsky D.V., Yermolenko I.A., Zacharioudakis Lefteris

 / Applied Aspects of Information Technology

 2025; Vol. 8 No. 4: 465–480

472 Applied information technologies in

energy engineering and automation

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

It should also be noted that the proposed

method does not impose any restrictions on how the

GL-models for each condition are constructed.

Example 2. Let us construct a GL-model of an
FTMS that also consists of 12 processors but has

slightly different operability conditions (all of which

must be satisfied simultaneously).
1. Among processors 1…6, there are no more

than two faulty ones (similarly to the system in

Example 1).
2. Among processors 7…10, there is at most

one faulty processor, or, alternatively, in each of the

pairs (7, 8) and (9, 10), there is at most one faulty

processor (that is, up to two in total), provided that
at least one of processors 7 or 9 is operational.

3. Among processors 4…8, there is at most one

faulty processor, or, if processors 4 and 5 are
operational, there may be up to two faulty ones.

4. Among processors 1, 3, 7, 8, and 9, there are

no more than two faulty ones, or no more than three,

provided that only one faulty processor is present
among processors 1, 3, and 7.

5. In the entire system, there are no more than

three faulty processors, and if among the faulty ones
there are processors 1, 2, 5, or 10, then no more than

two are allowed.

Let us construct the GL-models M1, M2, M3, M4,
and M5 for each of the above conditions. The first

model, M1, corresponds to a basic 2-failure-tolerant

system. To construct it, we use the method described

in [22]. It is based on a cycle graph with six vertices
(α1, α2, α3, α4, α5, α6), six edges (Fig. 5), and the

following edge functions:

𝑓1
1 = 𝑥1 ∨ 𝑥2𝑥3;

𝑓2
1 = 𝑥2 ∨ 𝑥3𝑥4;

𝑓3
1 = 𝑥3 ∨ 𝑥4𝑥5;

𝑓4
1 = 𝑥4 ∨ 𝑥5𝑥6;

𝑓5
1 = 𝑥5 ∨ 𝑥6𝑥1;

𝑓6
1 = 𝑥6 ∨ 𝑥1𝑥2.

The GL-model M2 can be obtained from the

basic model K2(1, 4), constructed in Example 1, by
adding an additional edge β1β3 with the edge

function 𝑓5
2 = 𝑥7 ∨ 𝑥9 [46]. Thus, the model will

contain four vertices (β1, β2, β3, β4), five edges
(Fig. 5), and the following edge functions:

𝑓1
2 = 𝑥7;

𝑓2
2 = 𝑥8;

𝑓3
2 = 𝑥9;

𝑓4
2 = 𝑥10;

𝑓5
2 = 𝑥7 ∨ 𝑥9.

Model M3 is constructed using the method

described in [44], based on the expression

𝑐 = 𝑥4𝑥5, which corresponds to the simultaneous
operability of processors 4 and 5. Accordingly, this

model is based on a cycle graph with five vertices

(γ1, γ2, γ3, γ4, γ5), five edges (Fig. 5), and the
following edge functions:

𝑓1
3 = 𝑥4 ∨ 𝑐𝑥5𝑥6 = 𝑥4 ∨ 𝑥4𝑥5𝑥5𝑥6 = 𝑥4;

𝑓2
3 = 𝑥5 ∨ 𝑐𝑥6𝑥7 = 𝑥5 ∨ 𝑥4𝑥5𝑥6𝑥7 = 𝑥5;

𝑓3
3 = 𝑥6 ∨ 𝑐𝑥7𝑥8 = 𝑥6 ∨ 𝑥4𝑥5𝑥7𝑥8;

𝑓4
3 = 𝑥7 ∨ 𝑐𝑥8𝑥4 = 𝑥7 ∨ 𝑥4𝑥5𝑥8𝑥4 =

= 𝑥7 ∨ 𝑥4𝑥5𝑥8;
𝑓5

3 = 𝑥8 ∨ 𝑐𝑥4𝑥5 = 𝑥7 ∨ 𝑥4𝑥5𝑥4𝑥5 =

= 𝑥7 ∨ 𝑥4𝑥5.

Fig. 5. GL-models M1, M2, M3, M4 and M5
Source: compiled by the authors

Romankevich V.A., Morozov K.V., Halytsky D.V., Yermolenko I.A., Zacharioudakis Lefteris

 / Applied Aspects of Information Technology

 2025; Vol. 8 No. 4: 465–480

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Applied information technologies in

energy engineering and automation
473

Model M4 is obtained by modifying the third

edge function of model K4(2, 5) from Example 1 in

accordance with the method proposed in [45]. As a

result, the GL-model is based on a cycle graph with
four vertices (δ1, δ2, δ3, δ4), four edges, and the

following edge functions:

𝑓1
4 = 𝑥1 ∨ 𝑥3;

𝑓2
4 = 𝑥1𝑥3 ∨ 𝑥7;

𝑓3
4 = (𝑥1 ∨ 𝑥3)(𝑥1𝑥3 ∨ 𝑥7) ∨ 𝑥8𝑥9;

𝑓4
4 = 𝑥8 ∨ 𝑥9.

Model M5 is constructed according to the

method proposed in [24], using the

expressions 𝑐1 = 𝑐2̅ = 𝑥̅1 ∨ 𝑥̅2 ∨ 𝑥̅5 ∨ 𝑥̅10 and
𝑐2 = 𝑐1̅ = 𝑥1𝑥2𝑥5𝑥10. Thus, the GL-model is based

on a cycle graph with eleven vertices

(ε1, ε2, ε3, ε4, ε5, ε6, ε7, ε8, ε9, ε10, ε11) and eleven edges
(Fig. 5), with the following edge functions:

𝑓1
5 = 𝑐1(𝑥1 ∨ 𝑥2) ∨ 𝑐1̅(𝑥1 ∨ 𝑥2 ∨ 𝑥3) =

= 𝑥1 ∨ 𝑥2;
𝑓2

5 = 𝑐1(𝑥1𝑥2 ∨ 𝑥3) ∨

∨ 𝑐1̅((𝑥1 ∨ 𝑥2)(𝑥1𝑥2 ∨ 𝑥3) ∨ 𝑥4𝑥5𝑥6) =

= 𝑥1𝑥2 ∨ 𝑥3;
𝑓3

5 = 𝑐1(𝑥1𝑥2𝑥3 ∨ 𝑥4𝑥5𝑥6) ∨

∨ 𝑐1̅(𝑥1𝑥2𝑥3 ∨ (𝑥4 ∨ 𝑥5)(𝑥4𝑥5 ∨ 𝑥6)) =

= 𝑥1𝑥2𝑥3 ∨ 𝑥5(𝑥4𝑥6 ∨ 𝑥1𝑥2𝑥10(𝑥4 ∨ 𝑥6));

𝑓4
5 = 𝑐1(𝑥4 ∨ 𝑥5) ∨ 𝑐1̅(𝑥4 ∨ 𝑥5 ∨ 𝑥6) =

= 𝑥4 ∨ 𝑥5 ∨ 𝑥1𝑥2𝑥5𝑥6𝑥10;
𝑓5

5 = 𝑐1(𝑥4𝑥5 ∨ 𝑥6) ∨ 𝑐1̅((𝑥1 ∨ 𝑥2) ∧

∧ (𝑥1𝑥2 ∨ 𝑥3)(𝑥1𝑥2𝑥3 ∨ 𝑥4𝑥5𝑥6)(𝑥4 ∨ 𝑥5) ∧

∧ (𝑥4𝑥5 ∨ 𝑥6) ∨ 𝑥7𝑥8𝑥9𝑥10𝑥11𝑥12) =

= (𝑥4𝑥5 ∨ 𝑥6) ∧

∧ (𝑥̅1 ∨ 𝑥̅2 ∨ 𝑥̅5 ∨ 𝑥̅10 ∨ 𝑥3 ∨ 𝑥4𝑥6) ∨

∨ 𝑥1𝑥2𝑥5𝑥7𝑥8𝑥9𝑥10𝑥11𝑥12;
𝑓6

5 = 𝑐1(𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6 ∨ 𝑥7𝑥8𝑥9𝑥10𝑥11𝑥12) ∨

∨ 𝑐1̅(𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6 ∨ (𝑥7 ∨ 𝑥8)(𝑥7𝑥8 ∨ 𝑥9) ∧

∧ (𝑥7𝑥8𝑥9 ∨ 𝑥10𝑥11𝑥12)(𝑥10 ∨ 𝑥11) ∧
∧ (𝑥10𝑥11 ∨ 𝑥12)) =

= 𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6 ∨ 𝑥10((𝑥̅1 ∨ 𝑥̅2 ∨ 𝑥̅5) ∧

∧ 𝑥7𝑥8𝑥9𝑥11𝑥12 ∨ 𝑥1𝑥2𝑥5(𝑥7 ∨ 𝑥8) ∧

∧ (𝑥7𝑥8 ∨ 𝑥9)(𝑥7𝑥8𝑥9 ∨ 𝑥11𝑥12)(𝑥11 ∨ 𝑥12));
𝑓7

5 = 𝑐1(𝑥7 ∨ 𝑥8) ∨ 𝑐1̅(𝑥7 ∨ 𝑥8 ∨ 𝑥9) =

= 𝑥7 ∨ 𝑥8 ∨ 𝑥1𝑥2𝑥5𝑥9𝑥10;
𝑓8

5 = 𝑐1(𝑥7𝑥8 ∨ 𝑥9) ∨ 𝑐1̅ ∧

∧ ((𝑥7 ∨ 𝑥8)(𝑥7𝑥8 ∨ 𝑥9) ∨ 𝑥10𝑥11𝑥12) =

= (𝑥7𝑥8 ∨ 𝑥9)(𝑥̅1 ∨ 𝑥̅2 ∨ 𝑥̅5 ∨ 𝑥̅10 ∨ 𝑥7 ∨ 𝑥8) ∨

∨ 𝑥1𝑥2𝑥5𝑥10𝑥11𝑥12;
𝑓9

5 = 𝑐1(𝑥7𝑥8𝑥9 ∨ 𝑥10𝑥11𝑥12) ∨

∨ 𝑐1̅(𝑥7𝑥8𝑥9 ∨ (𝑥10 ∨ 𝑥11)(𝑥10𝑥11 ∨ 𝑥12)) =

= 𝑥7𝑥8𝑥9 ∨ (𝑥̅1 ∨ 𝑥̅2 ∨ 𝑥̅5)𝑥10𝑥11𝑥12 ∨

∨ 𝑥1𝑥2𝑥5𝑥10(𝑥11 ∨ 𝑥12);
𝑓10

5 = 𝑐1(𝑥10 ∨ 𝑥11) ∨ 𝑐1̅(𝑥10 ∨ 𝑥11 ∨ 𝑥12) =

= 𝑥10 ∨ 𝑥11;
𝑓11

5 = 𝑐1(𝑥10𝑥11 ∨ 𝑥12) ∨ 𝑐1̅ =

= 𝑥10(𝑥11 ∨ 𝑥1𝑥2𝑥5) ∨ 𝑥12 .
To construct the GL-model of the FTMS, we

perform a merging of the graphs of the auxiliary
models developed above. For example, let us

combine the graphs of models M1, M2, M3, M4, and

M5 by merging the vertices α2 and β3 (the resulting
vertex denoted as ω1), β2 and γ5 (ω2), α6 and δ2 (ω3),

and γ3 and ε11 (ω4). The GL-model obtained as a

result of this merging is shown in Fig. 6.

Fig. 6. The GL-model of the FTMS constructed using the proposed method for Example 2
Source: compiled by the authors

Romankevich V.A., Morozov K.V., Halytsky D.V., Yermolenko I.A., Zacharioudakis Lefteris

 / Applied Aspects of Information Technology

 2025; Vol. 8 No. 4: 465–480

474 Applied information technologies in

energy engineering and automation

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Experimental verification has confirmed that, as

in Example 1, the model accurately represents the

operable state of the system for those and only those

vectors that correspond to the simultaneous
fulfillment of all the above conditions. The full set of

such system state vectors is omitted here for brevity.

A comparison was also performed between the
complexity of the GL-models constructed using the

proposed method and that of the models obtained by

known approaches, in particular by blocking system
state vectors through the modification of the edge-

function expressions of basic models using the

corresponding zero and one constituents. As baseline

models, we considered the models K(1, 12), K(2, 12),
and K(3, 12), constructed according to [22].

The complexity (number of logical operations)

of the edge-function expressions for each model in
Examples 1 and 2 is presented in Tables 1 and 2,

respectively. As the results show, the GL-models

constructed using the method proposed in this work

have significantly simpler edge-function
expressions.

Table 1. Number of logical operations in the edge-

function expressions of the GL-models for

Example 1

Model Disj. Conj. Inv. Binary

ops.

Total

ops.

Proposed 41 56 0 97 97

Modified
K(1, 12)

245 2695 684 2940 3624

Modified

K(2, 12)
273 1104 426 1377 1803

Modified

K(3, 12)
1715 199 1279 1914 3193

Source: compiled by the authors

Table 2. Number of logical operations in the

edge-function expressions of the GL-models for

Example 2

Model Disj. Conj. Inv. Binary

ops.

Total

ops.

Proposed 55 83 10 138 148

Modified
K(1, 12)

120 1320 304 1440 1744

Modified

K(2, 12)
153 384 186 537 723

Modified

K(3, 12)
2320 254 1739 2574 4313

Source: compiled by the authors

DISCUSSION OF RESULTS

The GL-models constructed using the proposed
method exhibit a rather complex structure, in

particular, being based on graphs that do not belong

to the class of cycle graphs. This somewhat
complicates the procedure of assessing the model

graph’s connectivity compared to methods that

generate models based on cycle graphs (e.g., [24],

[44], [45]), since such an assessment can no longer
be reduced to a simple count of removed edges. On

the other hand, the complexity of their edge

functions remains moderate, as the method directly
employs the expressions of the edge functions from

the auxiliary models. This feature distinguishes the

proposed approach from, for instance, the method
described in [24], where the edge functions typically

become more complex because a single expression

combines several functions from different models.

In general, it can be readily observed that the
complexity of a GL-model obtained using the

proposed method can be estimated as follows. The

number of edges in the model graph:

𝑒 = ∑ 𝑒𝑖

𝑁

𝑖=1

,

where N is the number of auxiliary models, and ei is

the number of edges in the graph of the i-th auxiliary

model (the edges of all auxiliary model graphs are
preserved). The number of vertices in the model graph:

𝑣 = ∑ 𝑣𝑖

𝑁

𝑖=1

− 𝑁 + 1,

where vi is the number of vertices of the i-th auxiliary

model (since N – 1 pairs of vertices are merged). The
total complexity of the model’s edge functions:

𝑐 = ∑ ∑ 𝑐𝑗
𝑖

𝑒𝑖

𝑗=1

𝑁

𝑖=1

,

where 𝑐𝑗
𝑖 denotes the complexity of the j-th edge

function of the i-th model (all edge functions of the

auxiliary models remain unchanged).

To assess the connectivity of the graph of a GL-

model, depth-first search (DFS) or breadth-first

search (BFS) algorithms may be applied. The

computational complexity of these algorithms is

known to be O(e + v), where e is the number of

edges in the graph and v is the number of vertices.

Taking into account the above estimates for the

numbers of edges and vertices in a GL-model

constructed using the proposed method, it may be

concluded that the complexity of connectivity

Romankevich V.A., Morozov K.V., Halytsky D.V., Yermolenko I.A., Zacharioudakis Lefteris

 / Applied Aspects of Information Technology

 2025; Vol. 8 No. 4: 465–480

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Applied information technologies in

energy engineering and automation
475

evaluation for its graph is comparable to that of the

auxiliary GL-models (provided that analogous

connectivity-check algorithms are used).

Considering also the complexity of computing the

model’s edge-function expressions, it follows that

the overall computational cost of using the resulting

model is likewise comparable to the cost of using the

auxiliary GL-models individually.

It should also be noted that since the graph of the

GL-model is initially connected (i.e., prior to

evaluating the edge functions), the inequality

e ≥ v – 1 holds (the number of edges cannot be

smaller than that of a spanning tree, for which

e = v – 1). Therefore, v ≤ e + 1, and the complexity of

the connectivity-check algorithm may be expressed as

O(e). On the other hand, evaluating the model still

requires computing all e edge functions. Thus, even in

comparison with the simple edge-counting procedure

(which is applicable for cycle-graph-based models),

using a connectivity-check algorithm for a graph that

does not belong to the class of cycle graphs in the

GL-model constructed by the proposed method does

not lead to a significant increase in the overall

computational complexity.

It is also worth noting that the proposed method

does not impose any restrictions on the ways in

which the auxiliary GL-models are constructed. For

instance, when applying this method, it is possible to

combine models built using different approaches

simultaneously (e.g., models of basic systems

constructed according to [22] and [23]). Moreover,

the conditions do not necessarily have to correspond

to basic systems (i.e., those defined by the failure of

no more than a certain number of arbitrary

processors), and the graphs of the auxiliary models

are not required to be based on cycle graphs (as was,

for example, required in [24]).

As a result of applying the proposed method to

an FTMS, a single GL-model is obtained, which, if

necessary, can be further modified using known

techniques or employed as an auxiliary component

for constructing a more complex model (e.g., in

accordance with [25]). This would not be feasible in

the case of analyzing the connectivity of separate

GL-models corresponding to individual conditions.

It should be noted that, as demonstrated in

Example 1, the merging of auxiliary model graphs

can indeed be performed in various ways (depending

on the selected pairs of vertices for merging). This

makes it possible, in particular, to form an optimal

structure of the resulting GL-model graph – for

instance, to simplify computations or to improve the

convenience of subsequent modifications. One

possible optimization criterion in this context may

be the minimization of the model graph’s diameter.

CONCLUSIONS

This study proposes a method for constructing

GL-models of non-basic fault-tolerant

multiprocessor systems whose operability requires

the simultaneous fulfillment of multiple conditions.

Each of these conditions can be associated with a

specific GL-model built using one of the known

methods. Constructing models of such systems by

existing techniques is nontrivial and often proves to

be extremely complex and inefficient from a

practical standpoint, since such FTMSs may

significantly differ from basic ones. In particular,

this may lead to highly complex edge-function

expressions in the resulting GL-models. Even for

relatively small systems considered in the examples,

the overall complexity (i.e., the total number of

logical operations) of the edge functions in the GL-

models obtained using the proposed method was

several times lower compared to the corresponding

models constructed by conventional methods

(through blocking of the respective system state

vectors). For more complex systems, this difference

may become even more significant.

The proposed method is based on combining the

graphs of auxiliary GL-models constructed for each

of the system’s operability conditions. In this process,

the edges of these model graphs along with their

corresponding edge functions are preserved, while

pairs of arbitrarily selected vertices are merged.

Examples are provided to demonstrate the

application of the proposed method for constructing

GL-models of fault-tolerant multiprocessor systems

whose operability requires the simultaneous

fulfillment of multiple specified conditions.

Furthermore, experiments have been conducted to

confirm that the constructed models adequately

reflect the behavior of the corresponding systems

under failure flow conditions.

Additionally, the paper presents complexity

estimates for the GL-models obtained using the

proposed method, including the number of edges

and vertices in the graphs and the overall complexity

of the edge function expressions, which are

determined by the characteristics of the

corresponding auxiliary GL-models.

Romankevich V.A., Morozov K.V., Halytsky D.V., Yermolenko I.A., Zacharioudakis Lefteris

 / Applied Aspects of Information Technology

 2025; Vol. 8 No. 4: 465–480

476 Applied information technologies in

energy engineering and automation

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

REFERENCES

1. Kotov, D. O. “A generalized model of an adaptive information-control system of a car with multi-

sensor channels of information interaction”. Applied Aspects of Information Technology. 2022; 5 (1): 25‒34.

DOI: https://doi.org/10.15276/aait.05.2022.2.

2. Nazarova, O. S., Osadchyy, V. V. & Rudim, B. Y. “Computer simulation of the microprocessor

liquid level automatic control system”. Applied Aspects of Information Technology. 2023; 6 (2): 163‒174.

DOI: https://doi.org/10.15276/aait.06.2023.12.

3. Kovalev, I. S., Drozd, O. V., Rucinski, A., Drozd, M. O., Antoniuk, V. V. & Sulima Y. Y.

“Development of Computer System Components in Critical Applications: Problems, Their Origins and

Solutions”. Herald of Advanced Information Technology. 2020; 3 (4): 252‒262. DOI:

https://doi.org/10.15276/hait.04.2020.4.

4. Antoniuk, V. V., Drozd, M. O. & Drozd, O. B. “Power-oriented checkability and monitoring of the

current consumption in FPGA projects of the critical applications”. Applied Aspects of Information

Technology. 2019; 2 (2): 105‒114. DOI: https://doi.org/10.15276/aait.02.2019.2.

5. Drozd, O., Ivanova, O., Zashcholkin, K., Romankevich, V. & Drozd, Yu. “Checkability Important

for Fail-Safety of FPGA-based Components in Critical Systems”. CEUR Workshop Proceedings. 2021;

2853: 471‒480, https://www.scopus.com/pages/publications/85104838273.

6. Abbaspour, A., Mokhtari, S., Sargolzaei, A. & Yen, K. K. “A survey on active fault-tolerant control

systems”. Electronics. 2020; 9 (9): 1‒23, https://www.scopus.com/pages/publications/85090902832. DOI:

https://doi.org/10.3390/electronics9091513.

7. Joshi, H. & Sinha, N. K. “Adaptive fault tolerant control design for stratospheric airship with

actuator faults”. IFAC-PapersOnLine. 2022; 55 (1): 819‒825,

https://www.scopus.com/pages/publications/85132157930.

DOI: https://doi.org/10.1016/j.ifacol.2022.04.134.

8. Nedeljkovic, J. N., Dosic, S. M. & Nikolic, G. S. “A Survey of Hardware Fault Tolerance

Techniques”. 2023 58th International Scientific Conference on Information, Communication and Energy

Systems and Technologies, ICEST 2023 – Proceedings. 2023: 223‒226, https://www.scopus.com/pages/

publications/85167870342. DOI: https://doi.org/10.1109/ICEST58410.2023.10187275.

9. Billinton, R. & Allan, R. N. “Reliability Evaluation of Engineering Systems. Concepts and

Techniques”. Springer New York. 1992. DOI: https://doi.org/10.1007/978-1-4899-0685-4.

10. Kuo, W. & Zuo, M. “Optimal Reliability Modeling”. John Willey & Sons. 2002.

11. Hu, B. & Seiler, P. “Pivotal decomposition for reliability analysis of fault tolerant control systems on

unmanned aerial vehicles”. Reliability Engineering & System Safety. 2015; 140: 130‒141,

https://www.scopus.com/pages/publications/84928741612. DOI: https://doi.org/10.1016/j.ress.2015.04.005.

12. Lu, J., Yi, H., Li, X. & Balakrishnan, N. “Joint Reliability of Two Consecutive-(1, l) or (2, k)-out-of-

(2, n): F Type Systems and Its Application in Smart Street Light Deployment”. Methodology and Computing

in Applied Probability. 2023; 25 (1): 33, https://www.scopus.com/pages/publications/85148634528 .

13. Jianu, M., Daus, L., Dragoi, V. F. & Beiu, V. “Reliability polynomials of consecutive-k-out-of-n:F

systems have unbounded roots”. Networks. 2023; 82 (3): 222‒228,

https://www.scopus.com/pages/publications/85163222383. DOI: https://doi.org/10.1002/net.22168.

14. Yin, J., Balakrishnan, N. & Cui, L. “Efficient reliability computation of consecutive- k-out-of-n: F

systems with shared components”. Proceedings of the Institution of Mechanical Engineers, Part O: Journal

of Risk and Reliability. 2024; 238 (1): 122‒135, https://www.scopus.com/pages/publications/85142023916.

DOI: https://doi.org/10.1177/1748006X221130540.

15. Yin, J., Cui, L. & Balakrishnan N. “Reliability of consecutive-(k,l)-out-of-n: F systems with shared

components under non-homogeneous Markov dependence”. Reliability Engineering & System Safety. 2022;

224: 108549, https://www.scopus.com/pages/publications/85129557917.

DOI: https://doi.org/10.1016/j.ress.2022.108549

16. Yi, H., Cui, L. & Gao, H. “Reliabilities of Some Multistate Consecutive-k Systems”. IEEE

Transactions on Reliability. 2020; 69 (2): 414‒429. DOI: https://doi.org/10.1109/TR.2019.2897726.

Romankevich V.A., Morozov K.V., Halytsky D.V., Yermolenko I.A., Zacharioudakis Lefteris

 / Applied Aspects of Information Technology

 2025; Vol. 8 No. 4: 465–480

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Applied information technologies in

energy engineering and automation
477

17. Dagal, I. “Probabilistic fault tree analysis and dynamic redundancy optimization for next-generation

avionic flight control systems”. Reliability Engineering and System Safety. 2026; 266: 111841,

https://www.scopus.com/pages/publications/105020942559. DOI: https://doi.org/10.1016/j.ress.2025.111841.

18. Wu, J., Chen, C., Ma, Y., Xiu, Z., Cheng, Z., Pan, Y. & Song, S. “Integrated Fault Tree and Case

Analysis for Equipment Conventional Fault IETM Diagnosis”. Sensors. 2025; 25 (17): 5231,

https://www.scopus.com/pages/publications/105015822431. DOI: https://doi.org/10.3390/s25175231.

19. Dong, H., Xie, H. & Xu, H. “Reliability evaluation of motor controllers based on FMEA and DFTA”.

Hangkong Dongli Xuebao/Journal of Aerospace Power. 2025; 40 (9): 20230656,

https://www.scopus.com/pages/publications/105011205376. DOI: https://doi.org/10.13224/j.cnki.jasp.20230656.

20. Romankevich, A. M., Karachun, L. F. & Romankevich, V. A. “Graph-logical models for the analysis

of complex fault-tolerant computing systems” (in Russian). Elektronnoe Modelirovanie. 2001; 23 (1): 102‒111.

21. Romankevich, A., Feseniuk, A., Maidaniuk, I. & Romankevich, V. “Fault-tolerant multiprocessor

systems reliability estimation using statistical experiments with GL-models”. Advances in Intelligent Systems

and Computing. 2019; 754: 186‒193, https://www.scopus.com/pages/publications/85047465084.

DOI: https://doi.org/10.1007/978-3-319-91008-6_19.

22. Romankevich, V. A., Potapova, E. R., Bakhtari, Hedayatollah & Nazarenko, V. V. “GL-model of the

behavior of fault-tolerant multiprocessor systems with the minimal number of lost edges”. Visnyk NTUU

“KPI”. Informatyka, Upravlinnia ta Obchysliuvalna Tekhnika. 2006; 45: 93‒100.

23. Romankevich, A. M., Romankevich, V. A., Kononova, A. A. & Rabah Al Shbul. “On some features

of GL-models K(2, n)”. Visnyk NTUU “KPI”. Informatyka, Upravlinnia ta Obchysliuvalna Tekhnika. 2004;

41: 85‒92.

24. Romankevich, V. A., Morozov, K. V., Romankevich, A. M., Morozova, A. V. & Zacharioudakis, L.

“On the method of building of non-basic GL-models which are formed on combination of edge functions of

basic models”. Applied Aspects of Information Technology. 2024; 7 (2): 175‒188.

DOI: https://doi.org/10.15276/aait.07.2024.13.

25. Romankevich, A. M., Morozov, K. V. & Romankevich, V. A. “Graph-Logic Models of Hierarchical

Fault-Tolerant Multiprocessor Systems”. IJCSNS International Journal of Computer Science and Network

Security. 2019; 19 (7): 151‒156.

26. Eryilmaz, S. & Kan, C. “The mean number of failed components in discrete time consecutive k-out-

of-n: F system and its application to parameter estimation and optimal age-based preventive replacement”.

Reliability Engineering and System Safety. 2025; 263: 111229. DOI:

https://doi.org/10.1016/j.ress.2025.111229. https://www.scopus.com/pages/publications/105005869605.

27. Yin, J. & Cui, L. “Reliability for consecutive-k-out-of-n:F systems with shared components between

adjacent subsystems”. Reliability Engineering & System Safety. 2021; 210: 107532. DOI:

https://doi.org/10.1016/j.ress.2021.107532. https://www.scopus.com/pages/publications/85100736521.

28. Chopra, G. & Ram, M. “Linear Consecutive-k-out-of-n:G System Reliability Analysis”. Journal of

Reliability and Statistical Studies. 2022; 15 (2): 669‒692. DOI: https://doi.org/10.13052/jrss0974-8024.15211.

29. Zhu, X., Boushaba, M. & Reghioua, M. “Reliability and Joint Reliability Importance in a

Consecutive-k-Within-m-out-of-n:F System with Markov-Dependent Components”. IEEE Transactions on

Reliability. 2016; 65 (2): 802‒815, https://www.scopus.com/pages/publications/84943426081.

DOI: https://doi.org/10.1109/TR.2015.2484079.

30. Torrado, N. “Tail behaviour of consecutive 2-within-m-out-of-n systems with nonidentical

components”. Applied Mathematical Modelling. 2015; 39 (15): 4586‒4592,

https://www.scopus.com/pages/publications/84937631892. DOI: https://doi.org/10.1016/j.apm.2014.12.042.

31. Chachra, A., Ram, M. & Kumar, A. “A pythagorean fuzzy approach to consecutive k-out-of-r-from-n

system reliability modelling”. International Journal of System Assurance Engineering and Management. 2024,

https://www.scopus.com/pages/publications/85200035598. DOI: https://doi.org/10.1007/s13198-024-02435-3.

32. Amirian, Y., Khodadadi, A. & Chatrabgoun, O. “Exact Reliability for a Consecutive Circular k-out-of-

r-from-n:F System with Equal and Unequal Component Probabilities”. International Journal of Reliability,

Quality and Safety Engineering. 2020; 27 (1), https://www.scopus.com/pages/publications/85069848232. DOI:

https://doi.org/10.1142/S0218539320500035.

Romankevich V.A., Morozov K.V., Halytsky D.V., Yermolenko I.A., Zacharioudakis Lefteris

 / Applied Aspects of Information Technology

 2025; Vol. 8 No. 4: 465–480

478 Applied information technologies in

energy engineering and automation

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

33. Triantafyllou, I. “m-Consecutive-k-out-of-n: F Structures with a Single Change Point”. Mathematics.

2020; 8 (12): 2203, https://www.scopus.com/pages/publications/85097534209.

DOI: https://doi.org/10.3390/math8122203.

34. Nashwan, I. “Reliability and Failure Probability Functions of the m-Consecutive-k-out-of-n: F Linear

and Circular Systems”. Baghdad Science Journal. 2021; 18 (2): 430,

https://www.scopus.com/pages/publications/85100161580. DOI: https://doi.org/10.21123/bsj.2021.18.2.0430.

35. Triantafyllou, I. S. “Combined m-Consecutive-k-Out-of-n: F and Consecutive kc-Out-of-n:F

Structures with Cold Standby Redundancy”. Mathematics. 2023; 11 (12): 1‒13,

https://www.scopus.com/pages/publications/85164204439. DOI: https://doi.org/10.3390/math11122597.

36. Cui, L., Wang, M. & Jiang, W. “Reliability analysis of A combination of (n,f,k) and <n,f,k>

systems”. Reliability Engineering and System Safety. 2024; 249: 110191,

https://www.scopus.com/pages/publications/85193451324. DOI: https://doi.org/10.1016/j.ress.2024.110191.

37. Amrutkar, K.P. & Kamalja, K.K. “Efficient algorithm for reliability and importance measures of

linear weighted-(n,f,k) and (n,f,k) systems”. Computers and Industrial Engineering. 2017; 107: 85‒99,

https://www.scopus.com/pages/publications/85015035867. DOI: https://doi.org/10.1016/j.cie.2017.02.011.

38. Triantafyllou, I.S. “Reliability Study of <n, f, 2> Systems: A Generating Function Approach”.

International Journal of Mathematical, Engineering and Management Sciences. 2021; 6 (1): 44‒65,

https://www.scopus.com/pages/publications/85097568436.

DOI: https://doi.org/10.33889/IJMEMS.2021.6.1.005.

39. Zhu, X., Boushaba, M., Coit, D. W. & Benyahia, A. “Reliability and importance measures for m-

consecutive-k,l-out-of-n system with non-homogeneous Markov-dependent components”. Reliability

Engineering and System Safety, Elsevier. 2017; 167 (C): 1‒9,

https://www.scopus.com/pages/publications/85019236438. DOI: https://doi.org/10.1016/j.ress.2017.05.023.

40. Özbey, F. “Reliability evaluation of m-consecutive- k, l-out-of-n: F system subjected to shocks”.

Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. 2022;

236 (6): 1135‒1146, https://www.scopus.com/pages/publications/85116069008.

DOI: https://doi.org/10.1177/1748006X211048992

41. Nakamura, T., Yamamoto, H. & Akiba, T. “Reliability of a toroidal connected-(r,s)-out-of-(m,n):F

lattice system”. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and

Reliability. 2022; 236 (2): 329‒338, https://www.scopus.com/pages/publications/85077453315.

DOI: https://doi.org/10.1177/1748006X19893533.

42. Nakamura, T., Homma, I. & Yamamoto, H. “Birnbaum importance-based simulated annealing

algorithm for solving the component assignment problem of linear connected-(r, s)-out-of-(m, n):F lattice

systems”. International Journal of System Assurance Engineering and Management. 2024; 15 (4):

1407‒1414, https://www.scopus.com/pages/publications/85144872424.

DOI: https://doi.org/10.1007/s13198-022-01848-2.

43. Lin, C., Cui L. R., Coit D. W. & Lv, M. “Reliability modeling on consecutive-kr-out-of-nr:F linear

zigzag structure and circular polygon structure”. IEEE Transactions on Reliability. 2016; 65 (3): 1509‒1521,

https://www.scopus.com/pages/publications/84973885922. DOI: https://doi.org/10.1109/TR.2016.2570545.

44. Romankevich, V. A., Morozov, K. V., Romankevich, A. M., Halytsky D. V. & Zhurba A. V. “GL-

Models for Analyzing Multiprocessor Systems tolerant to one and two Failures”. Applied Aspects of

Information Technology. 2025; 8 (1): 113‒128. DOI: https://doi.org/10.15276/aait.08.2025.9.

45. Romankevich, V. A., Morozov, K. V. & Feseniuk, A. P. “On a method for modifying edge functions

of GL-models”. Radioelektronni i Komp’iuterni Systemy. 2014; 6: 95‒99.

46. Romankevich, A. M., Ivanov, V. V. & Romankevich, V. A. “Analysis of fault-tolerant multimodular

systems with complex fault distribution based on cyclic GL-models”. Elektronnoe Modelirovanie. 2004; 26

(5): 67–81.

Conflicts of Interest: The authors declare that they have no conflict of interest regarding this study, including financial, personal,
authorship or other, which could influence the research and its results presented in this article

Received 13.10.2025
Received after revision 28.11.2025
Accepted 05.12.2025

Romankevich V.A., Morozov K.V., Halytsky D.V., Yermolenko I.A., Zacharioudakis Lefteris

 / Applied Aspects of Information Technology

 2025; Vol. 8 No. 4: 465–480

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Applied information technologies in

energy engineering and automation
479

DOI: https://doi.org/10.15276/aait.08.2025.30

УДК 004.05

Метод побудови GL-моделей поведінки в потоці відмов складних

небазових відмовостійких багатопроцесорних систем

Романкевич Віталій Олексійович
1)

ORCID: https://orcid.org/0000-0003-4696-5935; zavkaf@scs.kpi.ua. Scopus Author ID: 57193263058

Морозов Костянтин В’ячеславович1)

ORCID: https://orcid.org/0000-0003-0978-6292; mcng@ukr.net. Scopus Author ID: 57222509251

Галицький Данііл Володимирович1)
ORCID: https://orcid.org/0009-0004-4421-3443; zipper135401@gmail.com; Scopus Author ID: 58553487600

Єрмоленко Ігор Андрійович1)
ORCID: https://orcid.org/0009-0008-5298-4888; yermolenkomail@gmail.com

Захаріудакіс Лефтеріс2)
ORCID: https://orcid.org/0000-0002-9658-3073; l.zacharioudakis@nup.ac.cy. Scopus Author ID: 57422876200

1) Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»
пр. Перемоги, 37. Київ, 03056, Україна

2) Університет Неаполіс Пафос, Данаіс Авеню, 2. Пафос, 8042, Кіпр

АНОТАЦІЯ

У роботі запропоновано метод побудови GL-моделей поведінки складних небазових відмовостійких
багатопроцесорних систем у потоці відмов. Метою дослідження є створення універсального підходу, який уможливлює

формування цілісної GL-моделі для систем із кількома незалежними або слабко пов’язаними умовами роботоздатності. Такі
моделі можуть бути використані, зокрема, для оцінки параметрів надійності зазначених систем із застосуванням
статистичних методів моделювання. Розглядаються системи, роботоздатність яких визначається одночасним виконанням
кількох відносно простих умов, для кожної з яких відомі способи побудови GL-моделей (наприклад, умова обмеження
кількості відмов серед певної підмножини процесорів). До таких систем належать, зокрема, ієрархічні системи, що
складаються з кількох підсистем із власним рівнем відмовостійкості, а також системи, які містять спеціалізовані процесори
різних типів. Запропонований метод передбачає попереднє формування допоміжних GL-моделей для кожної з умов
роботоздатності, після чого вони поєднуються в єдину модель шляхом послідовного об’єднання їхніх графів через вибрані

вершини (об’єднані вершини формують одну, решта вершин і ребра копіюються). Послідовність об’єднання моделей і вибір
відповідних вершин можуть задаватися довільно, що забезпечує гнучкість структури побудованої GL-моделі.
Продемонстровано приклади застосування методу, у межах яких розглянуто різні варіанти вибору послідовності об’єднання
допоміжних моделей і вершин з’єднання їхніх графів, а також використання різних методів для побудови цих моделей.
Наукова новизна роботи полягає в узагальненні та формалізації процедури послідовного об’єднання GL-моделей, що
дозволяє поєднувати моделі довільної структури та типу для формування єдиної моделі складної системи без втрати
коректності її поведінки. Експериментальні результати підтверджують, що, незважаючи на різницю в структурі графів
отриманих моделей, їхня поведінка на однакових вхідних векторах повністю збігається й адекватно відображає

функціонування відмовостійкої багатопроцесорної системи в потоці відмов. Показано також, що метод не накладає
обмежень на способи побудови GL-моделей для окремих умов: можуть поєднуватися моделі різних типів, умови не
обов’язково відповідають базовим системам, а графи моделей можуть не бути циклічними. Крім того, подано оцінки
складності GL-моделей, побудованих запропонованим способом, зокрема кількості вершин і ребер їхніх графів та загальної
складності реберних функцій, залежно від характеристик відповідних допоміжних моделей. Практична цінність полягає в
тому, що метод дозволяє автоматизувати побудову комплексних моделей для систем зі складними умовами роботоздатності
та використовувати їх для ефективної оцінки надійності реальних багатопроцесорних систем.

Ключові слова: відмовостійкі багатопроцесорні системи; GL-моделі; небазові системи; системи керування; оцінка
надійності; статистичні експерименти

ABOUT AUTHORS

Vitaliy A. Romankevich - Doctor of Engineering Sciences, Professor, Head of System Programming and Specialized Computer

System Department. National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Peremogy Ave. Kyiv,

03056, Ukraine

ORCID: https://orcid.org/0000-0003-4696-5935; zavkaf@scs.kpi.ua. Scopus Author ID: 57193263058

Research field: Fault-tolerant multiprocessor systems reliability estimation; GL-models; Self-diagnosable systems; Diagnosis of

multiprocessor systems; Discrete mathematics

Романкевич Віталій Олексійович - доктор технічних наук, професор, завідувач кафедри Системного програмування і

спеціалізованих комп’ютерних систем. Національний технічний університет України «Київський політехнічний інститут

імені Ігоря Сікорського», пр. Перемоги, 37. Київ, 03056, Україна

mailto:zavkaf@scs.kpi.ua

Romankevich V.A., Morozov K.V., Halytsky D.V., Yermolenko I.A., Zacharioudakis Lefteris

 / Applied Aspects of Information Technology

 2025; Vol. 8 No. 4: 465–480

480 Applied information technologies in

energy engineering and automation

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Kostiantyn V. Morozov - PhD, Assistant, System Programming and Specialized Computer System Department. National Technical

University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Peremogy Ave. Kyiv, 03056, Ukraine

ORCID: https://orcid.org/0000-0003-0978-6292, mcng@ukr.net. Scopus Author ID: 57222509251

Research field: GL-models; Fault-tolerant multiprocessor systems reliability estimation; Self-diagnosable multiprocessor systems

Морозов Костянтин В’ячеславович – кандидат технічних наук, асистент кафедри Системного програмування і

спеціалізованих комп’ютерних систем. Національний технічний університет України «Київський політехнічний інститут

імені Ігоря Сікорського», пр. Перемоги, 37. Київ, 03056, Україна

 Daniil V. Halytsky - postgraduate student, System Programming and Specialized Computer System Department, National Technical

University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Peremogy Ave. Kyiv, 03056, Ukraine

ORCID: https://orcid.org/0009-0004-4421-3443; zipper135401@gmail.com. Scopus Author ID: 58553487600

Research field: GL-models building and processing optimization, Parallel computing and multi-core system optimization, Algorithm

design for distributed and high-performance computing, Graph algorithms and their applications in complex systems, Computational

efficiency in large-scale data processing.

Галицький Данііл Володимирович - аспірант, кафедра Системного програмування і спеціалізованих комп’ютерних

систем, Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», пр.

Перемоги, 37. Київ, 03056, Україна

Ihor A. Yermolenko - postgraduate student, System Programming and Specialized Computer System Department. National

Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Peremogy Ave. Kyiv, 03056, Ukraine

ORCID: https://orcid.org/0009-0008-5298-4888; yermolenkomail@gmail.com

Research field: GL-models; Fault-tolerant multiprocessor systems reliability estimation

Єрмоленко Ігор Андрійович - аспірант, кафедра Системного програмування і спеціалізованих комп’ютерних систем.

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», пр. Перемоги,

37. Київ, 03056, Україна

Lefteris Zacharioudakis - PhD (Eng), Assistant professor, Neapolis University Pafos, 2, Danais Ave., Pafos, 8042, Cyprus

ORCID: https://orcid.org/0000-0002-9658-3073; l.zacharioudakis@nup.ac.cy. Scopus Author ID: 57422876200

Research field: Principles of CyberSecurity, Operating systems, Information Security, Cryptography, Penetration Testing

Захаріудакіс Лефтеріс – кандидат технічних наук, доцент, Університет Неаполіс Пафос, Данаіс Авеню, 2, Пафос, 8042,

Кіпр

mailto:mcng@ukr.net

	Kostiantyn V. Morozov1)
	Daniil V. Halytsky1)
	Ihor A. Yermolenko1)
	Lefteris Zacharioudakis2)
	Морозов Костянтин В’ячеславович1)
	Галицький Данііл Володимирович1)
	Єрмоленко Ігор Андрійович1)
	Захаріудакіс Лефтеріс2)

