Hahanov V. ., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.
| Applied Aspects of Information Technology
2025; Vol.8 No.4: 442-452

DOI: https://doi.org/10.15276/aait.08.2025.28
UDC 004.582

Vector logic structures and functions of computing

Vladimir 1. Hahanov"

ORCID: https://orcid.org/0000-0001-5312-5841; hahanov@icloud.com. Scopus Author ID: 7801667873

Svetlana V. Chumachenko®

ORCID: https://orcid.org/0000-0001-8913-1194; svetlana.chumachenko@nure.ua. Scopus Author ID: 57188710840

Eugenia I. Litvinova®

ORCID: https://orcid.org/0000-0002-9797-5271; eugenia.litvinova@nure.ua. Scopus Author 1D: 25650378900

Hanna V. Hahanova®

ORCID: https://orcid.org/0000-0002-4528-6861; anna.hahanova@nure.ua. Scopus Author 1D: 8326375900
Volodymyr I. Obrizan”

ORCID: https://orcid.org/0000-0002-1835-4056; vladimir.obrizan@nure.ua. Scopus Author 1D: 15127546800
Nataliya H. Maksymova®

ORCID: https://orcid.org/0009-0006-0293-655X; nataliya.maksymova@nure.ua. Scopus Author ID: 59669839800
1 Kharkiv National University of Radio Electronics, 14, Nauky Ave. Kharkiv, 61166, Ukraine

ABSTRACT

Vector logic computing is a cost-effective mechanism for intelligent in-memory computing, utilizing read-write transactions to
address practical problems in the analysis and management of physical, social, and business processes based on monitoring. The
concept of a mechanism is introduced as a harmonious relationship between the model and the algorithm for computing. The
investigation aims to significantly reduce time and energy costs associated with simulation processes in the physical, social, and
digital worlds. The means to achieve this goal is using vector-logical in-memory computing mechanisms, which significantly
simplify algorithms due to the exponential redundancy of data structures. The mechanisms for reducing the algorithm's
computational complexity, which is typically exponential due to the use of data structures based on vector logic, are considered. An
analysis of functions and structures is conducted from the perspective of algorithmic simplicity for modeling and simulation
purposes. Several mechanisms based on Cartesian logic are proposed for modeling a logical vector from the structure of a digital
circuit. A Boolean vector is used to create a test map in three matrix operations. A cloud-based MOSI service is offered that
simulates the behavior and faults of digital circuits and their functionalities using truth table addresses.

Keywords: Element structure; vector logic functionality; vector logics; logic vector; Cartesian logic; intelligent computing; test
map; fault simulation; good-value simulation; in-memory modeling for simulation; prompt engineering

For citation: Hahanov V. I., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H. “Vector logic structures and
functions of computing”. Applied Aspects of Information Technology. 2025; Vol.8 No.4: 442-452. DOI: https://doi.org/10.15276/aait.08.2025.28

METRIC OF COMPUTING STRUCTURES represent functionality to organize calculations

AND FUNCTIONS without processor instructions? In addition, the logic
circuit not only requires expensive synthesis
procedures but also presents algorithmic difficulties
for its modeling, testing, verification, and diagnosis.
What is offered instead is to return to the truth table
(logical vector), which does not require synthesis,
but only needs to perform modeling procedures in
any memory. At the same time, all verification
problems are solved on the logical vector by
algorithms of linear computational complexity due
to the exponential redundancy of the model. The
guestion remains what to do with the many digital
circuits that exist in cyberspace. You can re-engineer
them by transforming the circuit into a functionality
represented by a logical vector and then solving all
verification problems using linear-complexity
algorithms. Several mechanisms for constructing a

Structures and functions are the most common
forms of the model, which, together with algorithms
for their analysis, make up the mechanisms of
modern computing. Their harmonious relations are
considered to replace one form with another, thereby
saving time and energy in organizing the
computational process in memory. Historically, the
digital circuit emerged when it was necessary to
synthesize a high-speed combinational circuit from a
truth table, given the need to save slow but
expensive memory. Memory today is an affordable,
cheap, energy-saving product, the speed of which is
measured in the nanosecond range. Why synthesize
a logic circuit when a logic vector in memory can

©':|aza“°"v|'_|' ngma(:hir/]k?\ﬂs.kutvmovsEéozs logical vector for the combinational structure of
ahanova H., Obrizan V., Maksymova N., elements are proposed.

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/deed.uk)

442 Computer engineering and cybersecurity ISSN 2663-0176 (Print)
ISSN 2663-7731 (Online)

Hahanov V. I., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.
/' Applied Aspects of Information Technology

2025; Vol.8 No.4: 442452

The results of building a functional testing map
using the constructed logical vector of the scheme
are also presented. The MOSI software application
is open to students and professionals who want to
learn about prompt engineering in solving design
and test problems. The GUI enables you to create a
circuit on a 20-element screen in 9 minutes, which is
a very technologically advanced and cost-effective
approach when students conduct a laboratory
workshop. Modelling of the logical vector of a
combinational circuit for good value and faults, as
addressed, is proposed for simulation in the in-
memory computing architecture. The logical vector
is the most technological, compact and
comprehensive representation of the scheme for the
economical solution of all design and test tasks
Cartesian logic is proposed, which, due to
exponential redundancy, 2"*™, is an effective
intelligent mechanism for solving combinatorial
problems (modeling, simulation, testing,
diagnostics) by algorithms of linear computational
complexity. It is a logical vector (matrix) because it
models Cartesian logical relations between bits of
logical vectors or addresses in a truth table.

Cartesian logic addresses the following issues:

1) Modeling circuit logic vectors without an
algorithm that ensures good behavior.

2) Fault modeling testing map of logic without
a fault modeling algorithm.

The article discusses the issues of reducing the
cost and time of verifying digital projects by
modeling the logical vector of a digital circuit,
which enables the significant simplification of
value-driven simulation algorithms and reduces the
synthesis of a test map to three matrix operations.

The practical significance of the study lies in an
economical (in terms of time and energy) vector-
logical solution to design and test problems in the
architecture of in-memory computing based on read-
write transactions, eliminating the need for processor
instructions. The theoretical material can be helpful
for engineers and students to understand the
processes of modeling and simulation in vector-
logical verification of digital projects.

Structures and functions [1], [2], [3] are the
most common forms of the model, which, together
with the algorithms for their analysis, make up the
computing mechanisms. A logical vector is a
universal form for specifying structures and
functions, which also allows you to convert these
entities into each other. In this case, a logical vector,
a truth table, and a matrix are a scalable form of

specifying functionality or structure. A logical
vector metric is an explicit setting of the
combinatorics of all relationships by bit addresses,
which allows you to simulate input conditions
without processing algorithms. We assume that the
world consists only of functions and structures; in
this case, the logical vector serves as a universal
model for analyzing physical and social processes
using known binary modeling methods [3], [4]. The
metrics of a function and its structures are their
similarities and differences (Fig. 1), which
determine the areas of their possible application as
components of a computing mechanism [5].

‘ Computing

] |

‘ Structure <—>‘ ‘ Function, logic
1 ‘ ‘ Relationships Between Input and
Output Variables

\ Needs synthesis 2 \ \ Needs modeling

\ Ergonomic for humans 3 \ \ Ergonomic for computing

\ Need an algorithm for analysis i \ \ No need for algorithm of analysis

5 ‘ Latency is determined by a read-
write transaction on memory

Fomplex algorithms for design and 6 ‘ ‘ Zero or low algorithms for design
test and test
. ‘ ‘The form of the model is a matrix,
logical vector, or truth table
8 ‘ ‘ Complete explicit solution
combinatorics
Fig. 1. Metrics of computing structures and

functions
Source: compiled by the authors

‘ Relationships between (logical)
primitives

‘ Structural depth forms a large
delay

‘The form of the model is a matrix,
logical vector, or truth table

‘ Combinatorics requires an

n? algorithms

Analogues of relations between functions and
structures are 1) functionality and 2) logical circuits
[6], [7], [8]. The first one today does not need any
additional processing related to the synthesis of
technological elements into a permitted system. It is
sufficient to place it in any memory and use it as a
model for simulating binary input sets [9], [10], [11],
[12]. The second model requires funds and time for
its synthesis, as well as processor instructions,
hardware description languages, and complex
algorithms for verifying synthesized logic circuits
[13], [14]. The latency of the resulting logic circuit
during its operation can be greater than the write and
read operations on memory [15] required using the
vector logic model. The lack of a processor for the
operation of the vector-logical model makes it
economical in terms of time and energy costs. This
fact suggests that in-memory computing, combined
with vector logic, is the future of mass computing
[16], which can be quickly implemented at any point

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Computer engineering and cybersecurity

443

Hahanov V. ., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.
| Applied Aspects of Information Technology

2025; Vol.8 No.4: 442452

in space, provided there is material available for
organizing memory. Given that a logical vector is a
deterministic form of a qubit [14], [15], it is possible
to create quantum computers with a long
decoherence time to organize memory in the
presence of a stable structure of elementary
particles. The proposal to abandon logical schemes
in favor of logical vectors is a gain in computing
time and energy due to the exponential structures of
explicit data represented by vectors, truth tables, or
matrices [16], [17], [18], [19].

Two problems arise:

1) how to construct a logical vector of a process
or phenomenon;

2) how to model [20], [21], [22], [23], [24],
[25] a vector according to the existing logical circuit.

The first option involves the unitary encoding
of process patterns on the universe of found
primitives, with their subsequent entry into the row
variables of the truth table. After that, all
combinatorial problems related to analyzing big data
using the resulting truth table are solved. The second
option is to propose several mechanisms for
processing digital structures to obtain the logical
vector of the scheme [26], [27]. A recursive
algorithm for modeling the logical vector of a circuit
using Cartesian logic applied to the elements of a
digital structure is proposed in this work. Another
algorithm is based on the use of a matrix that models
each line of the circuit as a set of elements loaded
into the simulated output. The third algorithm
utilizes the logical vectors of the elements to
populate the table of good behavior for all lines in
the circuit during a comprehensive test. In this case,
the input effects of the circuit elements are
considered as the addresses of the bits of the logical
vector, which form the state of the processed line
using the read-write transaction [27], [28]. As an
example for verifying the proposed algorithms, the
Schneider circuit is considered which represents a
logical structure with converging branches. All the
proposed algorithms are implemented in Python
code and are made available as a cloud service for
free access to students.

The purpose of the study is to reduce the time
of verification of a digital circuit by building a
logical vector that allows you to create a functional
testing map in three matrix operations.

Objectives:

1) development of Cartesian logic mechanisms
for constructing a logical vector of the circuit;

2) development of three methods for
constructing a logical vector of the scheme based on
the use of vector models of elements;

3) simulation of a test map of a logical circuit
using the constructed logical vector;

4) verification of the developed mechanisms
using the Schneider circuit as an example.

1. MODELING A CIRCUIT LOGICAL
VECTOR USING THE CARTESIAN LOGIC

The procedure for constructing a logic vector is
illustrated using the example of the Schneider circuit
(Fig. 2), which contains reconvergent fan-outs on a
four-input element. This can be achieved by
converting all elements of the circuit to two-input
ones. Therefore, the right side of Fig. 2 shows the
decomposition of the last component of the circuit
into three elements, two of which are or-elements,
and the third element is or-not.

Decompasition 4-or-not |

8 | 8| vi| 1
9
9| 12| [el
10| 10| z
11| 1 |

Fig. 2. Schneider circuit and four-input element

decomposition
Source: compiled by the authors

A logical vector is a representation of a process
or phenomenon, function, or structure by a sequence
of zeros and ones of length 2™, where n is the
number of bits of binary variables to form the
addresses of the vector bits. This definition makes
the logical vector independent of the truth table. But
a mandatory implicit attribute of a vector is the
standard addresses, which are easily generated for
any vector. The Cartesian product of one vector with
itself forms a reflexive (Fig. 3) relation L= YXY,
which generates a Cartesian matrix, in this case,
activity, or a logical vector L of dimension 27+1,

1 [alfnencd
o Gl | |8

5-0110 0l

v |0 (L

5 1 ||

1 ||

ool [l [l | 1 |l
1

ol 1/ 1l 1l 1l ololol1lololol2lololof ofa1lalalol1falalolalalalalol ool

Fig. 3. Xor-relation of the vectors.
Source: compiled by the authors

®-0110 ol 1l 21l 1|
o |/ lalay @z

Cartesian product of two different vectors
0001[x10111=0111011101111000 forms or
synthesizes a new vector of dimension 2™*™ =
2™ x 2™, The circuit vector design of such

444

Computer engineering and cybersecurity

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Hahanov V. I., Chumachenko S. V., Litvinova E. 1.,

Hahanova H. V., Obrizan V. 1.,

Maksymova N. H.

/' Applied Aspects of Information Technology

2025; Vol.8 No.4: 442452

Cartesian logic operation is invariant to the length of
logical vectors.

All of them are truth tables or logical vectors.
Nobody ever needs a digital circuit. It only causes
problems — expensive synthesis and complex
verification algorithms. All that is required is the
output state, as the model's reaction to the input
word. All of this can be done in memory, free of a
processor, based on read-write transactions over the
bits of a logical vector. But you need to get it for
this. The complexity of the algorithm (Fig. 4) lies in
the recoding of the addresses of truth tables to the
numbering of input variables (231-123, 243-234)
for the correct arrangement of single values in the
logical vector. The last element (four-input)
broken down into three two-input elements, where
the first two are or elements. Therefore, in the two
Cartesian matrices, the generating function is the
logical vector 0111. The computational complexity
of the algorithm is quadratic. Model redundancy is
also defined by the square of the length of the
element's logical vector. Essentially, each circuit
element is processed separately, considering the
numbering of the circuit line, and then all elements
are iteratively bound to the input circuit variables.
The algorithm can construct a logical vector for both
the entire circuit and its fragments, ending with the
outputs of the elements. Build procedures are used
only by read-write transactions. Empty cells in the
matrices denote zeros. The vectors of the logical
elements of the circuit are read into matrices from
left to right, from top to bottom, at essential
coordinates.

1236 10 11 I 267 1o 11 [P31-8 10 o1 0 fus 123900 (o3 fao jus [2510 1o i1 M
(R of 1 [RISM of 1] [T 1] of of of [Ly 1l of of of [WELEEM o 1l
BN of 1/ of [BNol 1ol [Jolof /1] [olof 11l :“’ ‘;““’}

0 o
8 1/ ojo [EW10l0 110 ol of of [1l0ofolo
8 ¢/ ol o (B8 +fofol [sfolololol Bsfololofol i ° "0

il ol 1] of

1 135 |io (i1
(RELM of 1]
(W °| 1| of
[BY 1| of of

ﬂ|1|1\01'\1\‘\°\
|1

A AL

|

|

| |
Fig. 4. Constructing a Logical Vector using

Cartesian Logic
Source: compiled by the authors

What are the disadvantages of the proposed
algorithm for constructing a logical vector of the
circuit:

1) modeling of two-input circuit elements. Logic
with many inputs must be decomposed into two-
input elements;

2) it is necessary to recode the addresses of the
truth table and the bits of the logical vector of each
element by the numbers of the external inputs of the
circuit;

3) a complex data structure for the execution of
the algorithm, which is associated with the
construction of a Cartesian matrix for each element.

2. PARALLEL MODELING OF CIRCUIT
ELEMENTS

Construction of a logical vector of a circuit
using the parallel method: modeling of the outputs
of logical elements in one pass through the table of
logical vectors of each line of the circuit. The table
of dimension N x 2", n is the number of input lines
of the circuit; N is the number of lines of the circuit.
A single line (table column) is modeled in parallel,
corresponding to the output of one element on all
test cases, and splitting the circuit line modeling
table into sub-tables complicates the modeling
algorithm, but reduces the total memory for data
structures and the number of bit read-write
operations. The source data is represented by the
circuit structure and logical vectors for each
element. The lines of the circuit must be numbered:
first, all external inputs are numbered, and then the
outputs of elements whose inputs are already
numbered; last, the external outputs of the circuit are
numbered. The proposed method frees the algorithm
from the need to renumber addresses for logical
vector coordinates. Here, all the coordinates of all
logical vectors have a common addressing on the
scale of a single local or global truth table. Here are
two options for parallel modeling of the circuit. The
first option (Fig. 5) involves decomposing a four-
input element by adding an inverter at each of its
outputs. In practice, Cartesian logic and local truth
tables are used here, which assemble logical vectors
for each line of the circuit under the auspices of the
external inputs of the circuit. The superposition of
logical vectors within local truth tables is an
efficient handling of circuit fragments that depend
on the same input variables.

The second variant of parallel modeling of logic
gates uses a four-input element without
decomposition into two-input elements. The data
structures of modeling the circuit elements to obtain
a logical vector are represented by the modeling
table and logical vectors of each circuit element
(Fig. 6). There are only two such vectors for this
scheme: 1000 and 1000 0000 0000 0000. Empty
cells in the table correspond to 0-values. Using the
input actions as the addresses of the bits of a logical
vector, we determine the reaction of each element to
the input action.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Computer engineering and cybersecurity

445

Hahanov V. I., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.
| Applied Aspects of Information Technology

2025; Vol.8 No.4: 442452

| 135 [0 /11 | 236 10 |i1 | 247 |io |11 Logical vector of the circuit |
| 1000 [CIUETIN| 1000 JCINEYINM| 1000 [CINEN| 11234 Y |z |7 [IZ la
ICH 0| 1 of |KM ol 1| o KM o| 1/ o]
IEW 1/ o o/ |EW 1]/ 0| o] |EW 1| o] o]

12318 11239 [loo oz [fo |12 142310 [loo los [1z0 |11 Jl1642-11 oo Jloz |20 a2

IRl 1] of of of [REEHM 1] of of of [KEN 1/ of of of [REIH 1! of of o | 0100
BN o of 1l 1l 1| N ol of + | EMolol 1l [EWol ol a1l &
[EN 1/ of of of of W 1! 0] of o of BN 1l of o of of [EY 1| o of of of | 0110

| 0111

LRI 001
LU (010
LN 011
RTUN (00]

Decomposition 4-or-not
R 101
(ET 110

2l - : E’H’ 1
9 100
9| Tl
10| 10| E. H.
1 "
‘ I [N 111

Fig. 5. Data structures for parallel elemen

modeling
Source: compiled by the authors

| 1111

Il — — — —— — == == = = ===

In one iteration represented in the column of the
modeling ta, we determine all the states of the actual
component ble. Eight iterations are required to
obtain the logical vector of the circuit.

Parallel Schneider circuit element modeling

ol 2l sl ol 51761571751 51 %l a1 2™
of jof ofllof 1| Al | | | | 1|
of jofjof il t1 *| | | | |1

of jof tflof | [1f 1] tl] |

of jof [aflitf | | | tltl | |

of [#]oflof t| | | [1]l

of [w o i +1 | | [l |1

of wf[afjol | | |] |
Y Y
tljofjofof | 1]t | | |
tljof ol [+ 14 | |1l

ol of wliof | 1]t || |
235

ol ool | 1 [| [l
0T Y

23 5 T
01—

Logic vector for 5, 6, 7, 8, 9, 10, 11 is 1000
Logic vector for 12 is 1000 0000 0000 0000

Fig. 6. Data structures for parallel modeling of

elements
Source: compiled by the authors

The method of parallel modeling of input sets as
addresses of bits in a logical vector, using a table of
all circuit lines, is invariant to the number of inputs
of circuit elements. Moreover, increasing the

number of inputs on the circuit element increases the
simulation speed, which becomes more parallel in a
sense. In the extreme, if you represent the circuit as
a single logical vector, then modeling the circuit to
determine the logical state of the output is performed
in a single read-write transaction. This is also a
bonus, which is obtained when building a logical
vector of the circuit. But the most crucial advantage
of the vector is that its use makes the modeling of
the test map free from the algorithm (Fig. 7). To
build it, you need to perform only two matrix
operations, using only the logical vector of the
circuit [25], [26], [27]. The resulting test map is a
matrix of relationships between test suites and
combinations of digital functionality input faults
being tested.
Based on this, the following tasks can be

addressed:

1) determine the minimum test for single constant
faults;

2) identify faults that can be checked on specified
test sets;

3) develop schemes for diagnosing faults and
testing online functionality;

4) automatically generate a testbench that
includes the minimum number of test cases to verify
critical functional modes.

Prompt computing — testing card per 1 matrix operation via logic vector |
TF | oooof 0001 0019 0011 0100] 0101 0119 0111 1000] 1001 1019 1011 1100] 1107 111 1111]

1010 |
1011 |
1100 |
101 | |
1110 | | I | I I | | I I | | oooll
111 | 0.1 .00l 0. .00l 00l 000 o..| 0.0/ 0.0./ 0.00 00.| 00.0 ooo.l

Fig. 7. Modeling of the test map in two matrix

operations
Source: compiled by the authors

1

[
|
I
I
[
I
I
I
11 00. I
1 00.0|

0000 | | eal el laal ol aal aa aaal a2l 14 2a3a] 12,0 12.f 131 |
0001 | | .ol | | | | | | | | | | I [112]
ooto| | |l IO 0 0 0 0 b 1 faal |
oo11 || ool = 1 | S [[[
o100 | | | I o.l | S [111l |
o101 | | S R Y S S 5 | |
oo | | [t lweol 10 114l |
o || U ' PO (| |
w000 || (S S N M 0 o (I |
1001 | | | | | | a1l | | 0.0l |

| R | I |

| U | IS |

| [aal IS |

| B0 [IS

|

|

In the test map (matrix), undetected faults in
input variables are represented by dots, while
detected ones are represented by symbols 0 and 1.

The map is constructed through three matrix
operations [25], [26], [27]:

1) an XOR operation is performed on the bits of
the logical vector to obtain an activity matrix;

2) obtaining a matrix of deductive vectors based
on the recoding of the activity matrix from the
standard addresses of the truth table;

446

Computer engineering and cybersecurity

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Hahanov V. ., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.
/' Applied Aspects of Information Technology

2025; Vol.8 No.4: 442452

3) formation of vectors of tested faults in
1-coordinates of the test map. All specified faults are
inverses of the bits in the test sets.

3. VECTOR MODELING VS. CIRCUIT
SYNTHESIS

Which is better, vector modeling or circuit
synthesis? Let us consider three wvariants of
Schneider's circuit (Fig. 8):

1) the original, synthesized heuristically,
represented by eight components and a structure
with reconverging fanout;

2) a circuit represented by one element, the
vector-logical model of which is obtained using the
method of Cartesian logic;

3) synthesized the Schneider circuit from the
obtained logical vector by constructing conjunctive
terms of the DNF from the unit coordinates of the
vector. From the point of view of implementing
proper functionality, all circuits are equivalent. From
the point of view of implementing this circuit in a
software or hardware product, the metric complexity
of this action (algorithm) is determined by the 18-4-
10 ratio. From the perspective of diagnostics,
modeling, and testing these products, the complexity
of their processing algorithms is determined by the
8-1-3 ratio. A 3-1-2 ratio determines the latency of
each circuit in generating an output signal. The
energy expenditure for the formation of the output
result is 8-1-3. The conclusion is that the best
implementation of the functionality is a logical
vector placed in memory. Why, then, synthesize
functionality into the logical elements of Emil Post's
basis? The answer is simple — this is a tribute to the
history of computing in the field of synthesis, which
is studied by all universities worldwide. In addition,
the student must be familiar with the fundamental
concepts that enable the invention of new
mechanisms for synthesis and analysis, which will
be significantly more effective than the algorithms
currently used to implement functionality. Modeling
and synthesis can help each other by organizing
harmonious relationships. Modeling involves
organizing a smart model in memory, which can be
enhanced in performance if this verified model is
synthesized to implement functionality as a System-
on-Chip (SoC) in high-speed quantum or matrix
mechanisms, or ASIC chips. Modeling is a one-time
procedure for creating a model of a process or
phenomenon in memory, aimed at using it to model
input binary sets to obtain a binary result
representing a diagnosis or prognosis at the output of
the circuit. Synthesis is a one-time procedure for

implementing a verified functionality model into a
system of crystal elements, as allowed by ASIC,
VLSI, FPGA, CPU, or GPU.

Conclusion: Modeling and synthesis are in a
harmonious relationship and help each other to
implement cost-effective computing in terms of
energy and time consumption.

Logical vector of the circuit ‘

Fig. 8. Three Schneider Circuit Models

Source: compiled by the authors

4. HARMONY OF MODELING AND
SYNTHESIS IN COMPUTING

Intelligent computing (Fig. 9) is a combination
of three procedures: modeling (creating or
synthesizing a model), simulation (forecasting or
diagnosing on a developed or synthesized model),
actuation (managing objects, processes or services
on a created or synthesized model of a model),
which generates four types of computing. The
friendship between a computer and a human is a
natural language interface for the user and a binary
language interface for the computer. This is the trend
of the fifth industrial revolution. Where there is a
place for human creativity is in creating moral
management mechanisms for computing, focused on
saving energy and time while delivering high-quality
cyber-socio-physical services. Summary — you need
to feed the computer with binary data, vectors, and
matrices. In response, we will develop an
algorithmic framework for inference for the user or
robot (autonomous agent). Intelligent computing
design is the creation of a digitized binary model of
a process or phenomenon to simulate any input
situation to obtain inference in the form of control
signals, prognosis, or diagnosis. Modeling is the
energy consumption mechanism that is convenient
for the verification and modeling of physical
phenomena. Synthesis is a low-latency mechanism
for modeling and managing autonomous agents in
real time. A mistake in synthesis costs millions of
dollars, while an error in modeling expenses
amounts to hundreds of dollars. Therefore, the
collaboration between modeling and synthesis is
purely pragmatic, determined by the economics of
computing. Modeling helps synthesis eliminate
errors. In turn, synthesis can be helpful in modeling

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Computer engineering and cybersecurity

447

Hahanov V. I., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.
| Applied Aspects of Information Technology

2025; Vol.8 No.4: 442452

the hardware implementation of algorithms for
complex projects, thereby minimizing the time
required for their verification. These are the
harmonious relations between the mechanisms of
synthesis and modeling.

intelligent computing

|
Resource | Quality |

2. Synthesis (low latency)

a |l control |
esis Synthesis |||
|[B simutation |||
Diagnose, prognose | [If]

Synthesis |
Input Data |
Data |
Actuator signals |

Tue ||
Synthesis |}
| simulation |}
Actuation ||
Prompt I
Fig. 9. Harmony of modeling and synthesis in

Actuation |
computing
Source: compiled by the authors

CONCLUSION

The new mechanisms for modeling the logical
vector of a digital circuit, which enables the creation
of a map for testing the circuit's logical functionality
are presented.

The mechanisms are free from the use of
processor instructions and are focused on processing
input data as logical vector addresses. At the same
time, an in-memory computing architecture based on
read-write transactions is employed, which enables
energy savings of 36.3% and time savings of 22.6 %
[29]. Additionally, the resulting logical vector of the
circuit is the simplest and fastest parallel model for
modeling good or faulty functionality. It is
concluded that for modern high-speed memories
(0.6 ns) [30], building a circuit vector is the most
effective solution for implementing subsequent
functionality in the SoC. Nobody needs the circuit
today. Today, it has practically no advantages over
memory in terms of speed and energy consumption.
The circuit poses a challenge in solving verification
and diagnosis problems related to defects.
Functionality written to memory as a logical vector
is free from synthesis and processor instructions. It
is technologically advanced for modeling, testing,
verification, and diagnostics. The logical vector is
the basis of the new logical, economical mass
computing (Fig. 10) for the maintenance of all

existing spaces. The best data structures that a
computer loves are the logical vector and its
derivatives, truth tables, and matrices, which create a
cost-effective and algorithmically efficient
computing. The three components are all that is
needed for binary processor-free in-memory
modeling for simulation [13], [25], [26], [27] of any
digitized process or phenomenon, represented as a
vector, table, or matrix.

Intelligent vector logic in-memory computing

‘ Algorithm | Cyber space

Latency |

Energy | H | Physical space
Complexity | H Smart | Social space
Redundancy T H model | Natural space

Design and test (modeling for simulation)

Fig. 10. Map of vector-logical computing
Source: compiled by the authors

The MOSI software application (Fig. 11)
supports modeling the logical vector of the circuit
and building a functionality test map with up to 16
input variables. The application GUI supports any
logic presented in vector form. The number of
circuit elements and their types is limited only by the
user's imagination.

.
T Logcvooor W Guroromut R FDLcote
[oirg ey oot stz [Mooty st st |
[oaing cocive e J Fat o e imator] Fut s s st |
YT T ([T

.
[emvenngomrnion [l Nodong oot g v] Hocerg srostiopovec |

Fig. 11. MOSI software application
Source: compiled by the authors
The

Modeling for Simulation software
application is implemented in Python, contains
approximately 10,000 lines of code, and can be
installed on any computer or tablet. It is used as a
cloud service or web application in the educational
process for computer engineering students.

The authors of the study invite businessmen and
scientists to capitalize on the vector-logical in-
memory modeling for simulation in the EDA
market.

REFERENCES

1. “IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)”. In IEEE STD 1481-
2009. 2010. p. 1-658. DOI: https://doi.org/10.1109/ieeestd.2009.5430852.

2. Esmaieli, E., Sedaghat, Y. & Peiravi, A. “Fanout-based reliability model for SER estimation in
combinational circuits”. In IEEE Transactions on Circuits and Systems |: Regular Papers. 2025; 72 (1):
228-240, https://lwww.scopus.com/pages/publications/85204697423.

448

Computer engineering and cybersecurity

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Hahanov V. ., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.
/' Applied Aspects of Information Technology
2025; Vol.8 No.4: 442-452

DOI: https://doi.org/10.1109/tcsi.2024.3458864.

3. Hwang, M.-E., Jung, S.-O. & Roy, K. “Slope Interconnect Effort: Gate-Interconnect Interdependent
Delay Modeling for Early CMOS Circuit Simulation”. In IEEE Transactions on Circuits and Systems I:
Regular Papers. 2009; 56 (7): 1428-1441, https://www.scopus.com/pages/publications/67651156228. DOI:
https://doi.org/10.1109/tcsi.2008.2006217.

4. Huang, W., Du, J., Hua, W., Bi, K. & Fan, Q. “A Hybrid Model-Based Diagnosis Approach for
Open-Switch Faults in PMSM Drives”. In IEEE Transactions on Power Electronics. 2022; 37 (4):
3728-3732, https://www.scopus.com/pages/publications/85118596722.

DOI: https://doi.org/10.1109/tpel.2021.3123144.

5. Fu, R., Wille, R., Yoshikawa, N. & Ho, T.-Y. “Efficient Cartesian Genetic Programming-Based
Automatic Synthesis Framework for Reversible Quantum-Flux-Parametron Logic Circuits”. In IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2025; 44 (9): 3369-3380,
https://www.scopus.com/pages/publications/85219316394. DOI: https://doi.org/10.1109/tcad.2025.3546884.

6. Berndt, A. et al. “Accuracy and Size Trade-off of a Cartesian Genetic Programming Flow for Logic
Optimization”. 2021 34th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design
(SBCCI). Campinas, Brazil. 2021. p. 1-6, https://www.scopus.com/pages/publications/85116273904.
DOI: https://doi.org/10.1109/sbcci53441.2021.9529968.

7. Dunaeva, O., Autsou, S., Kudelina, K. & Roosileht, M. “Utilizing the fuzzy logic algorithm for
cartesian robot control system in conditions of mechanical damage transmission”. IECON 2024 - 50th
Annual Conference of the IEEE Industrial Electronics Society. Chicago, IL, USA. 2024. p. 1-5,
https://www.scopus.com/pages/publications/105000880837.

DOI: https://doi.org/10.1109/iecon55916.2024.10905445.

8. Khan, G. M., Zafari, F. & Mahmud, S. A. “Very short-term load forecasting using Cartesian Genetic
Programming Evolved Recurrent Neural Networks (CGPRNN)”. 2013 12th International Conference on
Machine Learning and Applications. Miami, FL, USA. 2013. p. 152-155,
https://www.scopus.com/pages/publications/84899412752. DOI: https://doi.org/10.1109/icmla.2013.181.

9. Inglese, P., Vatajelu, E.-l. & Di Natale, G. “Side channel and fault analyses on memristor-based
logic in-memory”. In IEEE Design & Test. 2024; 41 (3): 29-35,
https://www.scopus.com/pages/publications/85174850554.

DOI: https://doi.org/10.1109/mdat.2023.3324522.

10.Ye, J., Zhu, J., Cao, J., Bi, H., Ding, Y. & Chen, B. “A novel parallel in-memory logic array based
on programmable diodes”. In IEEE Journal of the Electron Devices Society. 2024; 12: 738-744,
https://www.scopus.com/pages/publications/85203846301. DOI: https://doi.org/10.1109/jeds.2024.3457021.

11.Chen, X., Song, T. & Han, Y. “RRAM-based analog in-memory computing: invited paper”. 2021
IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). AB, Canada. 2021. p. 1-6,
https://www.scopus.com/pages/publications/85123977793.

DOI: https://doi.org/10.1109/nanoarch53687.2021.9642235.

12.Nguyen, V.-T., Trinh, Q.-K., Zhang, R. & Nakashima, Y. “XNOR-BSNN: In-memory computing
model for deep binarized spiking neural network”. International Conference on High Performance Big Data
and Intelligent Systems (HPBD&IS), Macau, China, 2021, p. 17-21,
https://www.scopus.com/pages/publications/85124890965.

DOI: https://doi.org/10.1109/hpbdis53214.2021.9658467.

13.Hahanov, V., Litvinova, E., Davitadze, Z., Chumachenko, S., Devadze, D. & Hacimahmud, A. V.
“Truth table based intelligent computing”. 31st International Conference on Mixed Design of Integrated
Circuits and System (MIXDES). Gdansk, Poland. 2024. p. 199-204,
https://www.scopus.com/pages/publications/85201818702.

DOI: https://doi.org/10.23919/mixdes62605.2024.10614035.

14.Privman, V. & Solenov, D. “Decoherence of dynamically manipulated qubits”. 2006 Sixth IEEE
Conference on Nanotechnology. Cincinnati, OH, USA. 2006. p. 842-845.
DOI: https://doi.org/10.1109/nan0.2006.1717240.

ISSN 2617-4316 (Print) Computer engineering and cybersecurity 449
ISSN 2663-7723 (Online)

Hahanov V. ., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.
| Applied Aspects of Information Technology
2025; Vol.8 No.4: 442-452

15.Durmus, M. A., Demiralay, K., Khan, M. M., Atalay, S. E. & Sarpkaya, I. “Moiré localization
induced enhancement in the decoherence time of interlayer excitons in WSe2-MoSe2 Heterobilayers”.
Conference on Lasers and Electro-Optics (CLEO). Charlotte, NC, USA. 2024. p. 1-2. DOI:
https://doi.org/10.1364/cleo_fs.2024.fw4b.2.

16.Zhu, S. et al. “Intelligent computing: the latest advances, challenges, and future”. Intell Comput.
2023; 2: 0006, https://www.scopus.com/pages/publications/85206596534. DOI:
https://doi.org/10.34133/icomputing.0006.

17.Tarek, A., Alveed A. & Farhan, A. “A proof theoretic exploration of mathematical induction in
computational paradigm”. Congress in Computer Science, Computer Engineering, & Applied Computing
(CSCE). Las Vegas, NV, USA. 2023. p. 963-972, https://www.scopus.com/pages/publications/
85191183588. DOI: https://doi.org/10.1109/csce60160.2023.00162.

18.Kamide, N. “Natural deduction with explosion and excluded middle”. IEEE 53rd International
Symposium on Multiple-Valued Logic (ISMVL). Matsue, Japan. 2023. p. 24-29,
https://www.scopus.com/pages/publications/85164603572.

DOI: https://doi.org/10.1109/ismvl57333.2023.00016.

19.Chang, S. -H., Liu, C.-N. J. & Kiister, A. “Behavioral level simulation framework to support error-
aware CNN training with in-memory computing”. 18th International Conference on Synthesis, Modeling,
Analysis and Simulation Methods and Applications to Circuit Design (SMACD). Villasimius, Italy. 2022.
p. 1-4, https://www.scopus.com/pages/publications/85134722352.

DOI: https://doi.org/10.1109/smacd55068.2022.9816307.

20.Li, S., Zhang, N., Zhang, W., Yang, R., Chang Y. & Xiong, B. “framework independent modeling
for SRAM-based in-memory computing”. 2nd International Symposium of Electronic Design Automation
(ISEDA). Xi'an, China. 2024. p. 777-777, https://www.scopus.com/pages/publications/85201735286.
DOI: https://doi.org/10.1109/iseda62518.2024.106177909.

21.Westphal J. & Hardy, J. “Logic as a vector system”. In Journal of Logic and Computation. 2005;
15 (5): 751765, https://mww.scopus.com/pages/publications/26444498543.

DOI: https://doi.org/10.1093/logcom/exi040.

22.Mizraji, E. “Vector logic: a natural algebraic representation of the fundamental logical gates™.
In Journal of Logic and Computation. 2008; 18 2): 97-121,
https://www.scopus.com/pages/publications/38749097766. DOI: https://doi.org/10.1093/logcom/exm057.

23.Mizraji, E. “Vector logic allows counterfactual virtualization by the square root of NOT”. In Logic
Journal of the IGPL. 2020; 29 (5): 859-870, https://www.scopus.com/pages/publications/85110955658.
DOI: https://doi.org/10.1093/jigpal/jzaa026.

24.Hahanov, V., Gharibi, W., Chumachenko, S. & Litvinova E. “Vector synthesis of fault testing map
for logic”. IAES International Journal of Robotics and Automation (IJRA). 2024; 13 (3): 293-306,
https://www.scopus.com/pages/publications/85202981781. DOI: https://doi.org/10.11591/ijra.v13i3.pp293-
306.

25.Hahanov, V., Litvinova, E., Hahanova, H., Chumachenko, S., Davitadze, Z., Hahanova, I., Kulak,
H., Ponomarova, V. & Abdullayev V. H. “Vector-logical in-memory simulation of faults as truth table
addresses”. 2024 |EEE East-West Design & Test Symposium (EWDTS). Yerevan, Armenia. 2024.
p. 1-6, https://www.scopus.com/pages/publications/86000014942.

DOI: https://doi.org/10.1109/ewdts63723.2024.10873615.

26.Hahanov, V., Devadze, D., Hahanov, I., Chumachenko, S., Litvinova, E., Obrizan, V., Pashkov, D.,
Mishchenko, A. & Maksymova, N. “Prompt-testing of logic”. IEEE East-West Design & Test Symposium
(EWDTS). Yerevan, Armenia. 2024. p. 1-5, https://www.scopus.com/pages/publications/86000011281.
DOI: https://doi.org/10.1109/ewdts63723.2024.10873774.

27.Hahanov, V., Chumachenko, S., Litvinova, E., Hahanov, |., Ponomarova, V., Khakhanova, H. &
Kulak, G. “Faults-as-address simulation”. IAES International Journal of Robotics and Automation. 2024; 13
(4): 452-468, https://www.scopus.com/pages/publications/85212867387.

DOI: https://doi.org/10.11591/ijra.v13i4.pp452-468.

450 Computer engineering and cybersecurity ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Hahanov V. ., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.
/' Applied Aspects of Information Technology
2025; Vol.8 No.4: 442-452

28.Ubar, R., Raik, J., Jenihhin, M. & Jutman, A. “Structural decision diagrams in digital test: theory and
applications”. Birkhauser Cham, Computer Science Foundations and Applied Logic Series. 2024.
DOI: https://doi.org/10.1007/978-3-031-44734-1.

29.Ahn, B., Jang, J., Na, H., Seo, M., Son, H. & Song, Y. H. “Al accelerator embedded computational
storage for large-scale DNN models”. IEEE 4th International Conference on Artificial Intelligence Circuits
and Systems (AICAS). Incheon, Korea Republic. 2022. p. 483-486,
https://www.scopus.com/pages/publications/85139051812.
DOI: https://doi.org/10.1109/aicas54282.2022.9869991.

30.Wu, B., Zhu, H., Chen, K., Yan C. & Liu, W. “MLiM: High-Performance Magnetic Logic in-
Memory Scheme with Unipolar Switching SOT-MRAM?”. In IEEE Transactions on Circuits and Systems |I:
Regular Papers. 2023; 70 (6): 2412-2424, https://www.scopus.com/pages/publications/85151381814.
DOI: https://doi.org/10.1109/tcsi.2023.3254607.

Conflicts of Interest: The authors declare that they have no conflict of interest regarding this study, including financial, personal,
authorship or other, which could influence the research and its results presented in this article

Received 08.10.2025
Received after revision 28.11.2025
Accepted 03.12.2025

DOI: https://doi.org/10.15276/aait.08.2025.28
YK 004.582

BekTOpHI JIOTiYHI CTPYKTYpPH Ta (PYHKIII 00YHCTICHHS

XaxanoB Bosogumup IBaHoBHY”

ORCID: https://orcid.org/0000-0001-5312-5841; hahanov@icloud.com. Scopus Author ID: 7801667873
Yymauenko CBitsiana BikTopisna®

ORCID: https://orcid.org/0000-0001-8913-1194; svetlana.chumachenko@nure.ua. Scopus Author ID: 57188710840
JlutBunoBa €Brenist IBanisna’

ORCID: https://orcid.org/0000-0002-9797-5271; eugenia.litvinova@nure.ua. Scopus Author ID: 25650378900

Xaxanosa I'anna BostogumupiBaa®
ORCID: https://orcid.org/0000-0002-4528-6861; anna.hahanova@nure.ua. Scopus Author ID: 8326375900

OGpizan Boxoxumup Iropouu?

ORCID: https://orcid.org/0000-0002-1835-4056; vladimir.obrizan@nure.ua. Scopus Author ID: 15127546800
Makcumona Haranis Feopri’iBHal)

ORCID: https://orcid.org/0009-0006-0293-655X; nataliya.maksymova@nure.ua. Scopus Author 1D: 59669839800
) XapkiBchkuii HalliOHANBHUI YHIBEpCUTET paioenekTpoHiku, np. Hayku, 14. Xapkis, 61166, Yxpaina

AHOTALISA

BekTopHO-710ri4HI OOYKCIICHHS € EKOHOMIYHO e(eKTHMBHHM MEXaHi3MOM IHTEIEKTYalbHHX OOYHCICHb Yy HaM’sTi, IO
BHUKOPUCTOBYE TPAH3AKIIIl YNTAHHSI-3AMUCY IS PO3B’S3aHHs MPAKTHYHUX 33]a4 aHA3y Ta KepyBaHHs (i3UUHUMH, COLaTbHUMH i
Oi3Hec-TporiecaMi Ha OCHOBI MOHITOpHHTY. [TOHATTSI MexaHi3My BBOAMTBCS SIK TapMOHIMHA B3a€MOMis MK MOACIIIO Ta
nropuT™MoM o0uucieHb. JloCHiKeHHs. CIpSIMOBaHE Ha CYTTEBE 3HIKCHHS YacOBMX 1 CHEPreTHYHMX BHTPAT, NOB’S3aHUX i3
mpoliecaM MOJCIIOBAaHHS Y (i3UYHOMY, COLiaNbHOMY Ta HU(POBOMY CBiTax.3aco00OM MOCSATHEHHsI i€l METH € BHKOPHCTAHHS
BEKTOPHO-JIOTIYHUX MEXaHi3MIiB OOYHCIICHb Yy TaM’sTi, $Ki ICTOTHO CHpPOIIYIOTh aJTOPUTMU 3aBASKH CKCIOHEHIHHil
HAJUTMIIKOBOCTI CTPYKTYP AaHHX. PO3TISIHYTO MeXaHi3MH 3MEHIICHHS] O0YHCITIOBAIBHOI CKIIaJHOCTI aNrOPUTMIB, 110 3a3BU4ail Mae
SKCIIOHCHIIHUI XapakTep 4epe3 3aCTOCYBAaHHsS CTPYKTYp AaHMX Ha OCHOBI BeKTOpHOI Jsoriku. IIpoBemeHo anamiz QyHKIH i
CTPYKTYp 3 TODJISAAY aJrOPUTMIYHOI MPOCTOTH MAJIsl 3aJad MOJENIOBAHHS Ta CHMYISIi. 3alporOHOBAHO KillbKa MeEXaHi3MiB,
moOyZOBaHWX Ha KapTe3iaHCBKiM JIOTIIi, AT MOAETIOBAHHS JIOTTYHOI'O BEKTOpA 31 CTPYKTYpH HUGpPoBOi cxemu. byneBmii BeKTOp
BHUKOPUCTOBYETHCS JUIsl CTBOPEHHS TECTOBOI KapTH 3a JIOIMOMOTOI0 TPhOX MAaTpUUYHKX omnepaniil. Po3pobreno xmapuuii cepsic MOSI,
SIKAI MOJICITIOE TTOBEIIHKY Ta BiJMOBU IUPPOBUX CXeM 1 IXHIX (PYHKIIOHATIBHOCTEH, BUKOPUCTOBYIOUH aIpPECH TaOIHUIlb iCTHHHOCT.

ISSN 2617-4316 (Print) Computer engineering and cybersecurity 451
ISSN 2663-7723 (Online)

Hahanov V. I., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.

| Applied Aspects of Information Technology
2025; Vol.8 No.4: 442-452

KiouoBi cioBa: koMm'ioTepHa rpa; iHppadepBOHA Kamepa, pO3Ii3HABaHHS IMIAONOHIB; 6a3a JaHMX, NMPOCTOPOBHH OMNHC

cyrio0iB JroauHY; Qi3UdHI BIPaBU

ABOUT THE AUTHORS

Vladimir Ilvanovych Hahanov - Doctor of Engineering Sciences, Professor, IEEE Senior Member, Design Automation
Department. Kharkiv National University of Radio Electronics. 14, Nauky Ave. Kharkiv, 61166, Ukraine

ORCID: https://orcid.org/0000-0001-5312-5841; hahanov@icloud.com. Scopus Author ID: 7801667873

Research field: Cybersecurity; Design Automation; Intelligent Systems

XaxanoB Boaomumup IBaHOBHY - TOKTOp TeXHIUYHMX Hayk, npodecop, crapumii wieH |EEE. Kadenpa aBromatnzanii
MPOEKTYBaHHs. XapKiBCbKUI HalliOHAJIBHUH yHIBEpCUTET paxioenekTponiky, np. Hayku, 14. Xapkis, 61166, Ykpaina

Svetlana Viktorivna Chumachenko - Head of the Design Automation Department, Member of EMC, Member of STC,
Executive Secretary of CEUR-WS IT Conference Chairs. Kharkiv National University of Radio Electronics. 14, Nauky
Ave. Kharkiv, 61166, Ukraine

ORCID: https://orcid.org/0000-0001-8913-1194; svetlana.chumachenko@nure.ua. Scopus Author ID: 57188710840
Research field: Design Automation; Information Technologies; Intelligent Decision Support

Yymauenko Cpiriiana BiktopiBHa - 3aBimyBau kadenpu ABromartmsanii mpoexrtyBauus, wieH EMC, uren HTK,
BignosiganeHuit cexkperap CEUR-WS IT Conference Chairs. XapkiBcbkuil —Hal[ioHaJdbHHH YHiBepCHUTET
panioenextponiku, p. Hayku, 14. Xapkis, 61166, Ykpaina

Eugenia lvanivna Litvinova - Professor, Scientific Secretary of the Specialized Scientific Council, Design Automation
Department. Kharkiv National University of Radio Electronics. 14, Nauky Ave. Kharkiv, 61166, Ukraine

ORCID: https://orcid.org/0000-0002-9797-5271; eugenia.litvinova@nure.ua. Scopus Author I1D: 25650378900

Research field: Automated Design Systems; Information Systems; Intelligent Modeling

JlutBiHoBa €Brenis IBaniBHa - mpodecop, yueHuid cekperap creriaigizoBaHoi BUeHOI paau, Kadeapa ABTOMaTH3ALIl
MPOEKTYBaHH:. XapKiBCbKUH HAI[lOHAJIBHUH YHIBEpCUTET pajlioeseKTpoHiku, np. Hayku, 14. Xapkis, 61166, Ykpaina

Hanna Volodymyrivha Hahanova - Doctor of Engineering Sciences, Professor, Design Automation Department.
Kharkiv National University of Radio Electronics. 14, Nauky Ave. Kharkiv, 61166, Ukraine

ORCID: https://orcid.org/0000-0002-4528-6861; anna.hahanova@nure.ua. Scopus Author ID: 8326375900

Research field: Design Automation; Computational Intelligence; Software Engineering

XaxanoBa I'anna BoJiogumMupiBHa - JOKTOp TEXHIUHMX HaykK, mpodecop kadenpu ABTOMATH3ALI] MPOEKTYBaHHS.
XapkiBCbKHUil HaLliOHAJILHUI YHIBEPCUTET paaioeneKTpoHiku, np. Hayku, 14. Xapkis, 61166, Ykpaina

Volodymyr Ihorovych Obrizan - PhD in Computer Engineering, Member of IEEE, Senior Lecturer, Design Automation
Department. Kharkiv National University of Radio Electronics. 14, Nauky Ave. Kharkiv, 61166, Ukraine

ORCID: https://orcid.org/0000-0002-1835-4056; vladimir.obrizan@nure.ua. Scopus Author ID: 15127546800

Research field: Computer Engineering; Automation of Design; Software Reliability

Oopizan Bosogumup IropoBuy - KaHIUIAaT TEXHIYHMX HayK, CTapliui Buknazad kadeapu AsTomaTH3arii
MPOEKTYBaHHs. XapKiBCbKUI HAI[iOHAJBHUI YHIBEpCUTET paaioenekTponiku, np. Hayku, 14. Xapkis, 61166, Ykpaina

Nataliya Heorhievna Maksymova - IT Consultant | IT Project Manager | Lecturer, Design Automation Department.
Kharkiv National University of Radio Electronics. 14, Nauky Ave. Kharkiv, 61166, Ukraine

ORCID: https://orcid.org/0009-0006-0293-655X; nataliya.maksymova@nure.ua. Scopus Author ID: 59669839800
Research field: IT Project Management; Information Systems; Digital Transformation

MaxkcumoBa Haranisn TIeopriiBna - IT-koHcynbTaHT, KepiBHHK IT-poekTiB, Buknazad kadeapun ABTOMaTH3AIl
MPOEKTYBaHHs. XapKiBCbKHUI HAI[iOHAJIBHUI YHIBEPCUTET pajioenekTpoHiku, np. Hayku, 14. Xapkis, 61166, Ykpaina

452

Computer engineering and cybersecurity ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

	3. VECTOR MODELING VS. CIRCUIT SYNTHESIS
	4. HARMONY OF MODELING AND SYNTHESIS IN COMPUTING
	CONCLUSION

