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ABSTRACT 

Vector logic computing is a cost-effective mechanism for intelligent in-memory computing, utilizing read-write transactions to 

address practical problems in the analysis and management of physical, social, and business processes based on monitoring. The 

concept of a mechanism is introduced as a harmonious relationship between the model and the algorithm for computing. The 

investigation aims to significantly reduce time and energy costs associated with simulation processes in the physical, social, and 

digital worlds. The means to achieve this goal is using vector-logical in-memory computing mechanisms, which significantly 

simplify algorithms due to the exponential redundancy of data structures. The mechanisms for reducing the algorithm's 

computational complexity, which is typically exponential due to the use of data structures based on vector logic, are considered. An 

analysis of functions and structures is conducted from the perspective of algorithmic simplicity for modeling and simulation 

purposes. Several mechanisms based on Cartesian logic are proposed for modeling a logical vector from the structure of a digi tal 

circuit. A Boolean vector is used to create a test map in three matrix operations. A cloud-based MOSI service is offered that 

simulates the behavior and faults of digital circuits and their functionalities using truth table addresses. 
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METRIC OF COMPUTING STRUCTURES 

AND FUNCTIONS 

Structures and functions are the most common 

forms of the model, which, together with algorithms 

for their analysis, make up the mechanisms of 

modern computing. Their harmonious relations are 

considered to replace one form with another, thereby 

saving time and energy in organizing the 

computational process in memory. Historically, the 

digital circuit emerged when it was necessary to 

synthesize a high-speed combinational circuit from a 

truth table, given the need to save slow but 

expensive memory. Memory today is an affordable, 

cheap, energy-saving product, the speed of which is 

measured in the nanosecond range. Why synthesize 

a logic circuit when a logic vector in memory can  
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represent functionality to organize calculations 

without processor instructions? In addition, the logic 

circuit not only requires expensive synthesis 

procedures but also presents algorithmic difficulties 

for its modeling, testing, verification, and diagnosis. 

What is offered instead is to return to the truth table 

(logical vector), which does not require synthesis, 

but only needs to perform modeling procedures in 

any memory. At the same time, all verification 

problems are solved on the logical vector by 

algorithms of linear computational complexity due 

to the exponential redundancy of the model. The 

question remains what to do with the many digital 

circuits that exist in cyberspace. You can re-engineer 

them by transforming the circuit into a functionality 

represented by a logical vector and then solving all 

verification problems using linear-complexity 

algorithms. Several mechanisms for constructing a 

logical vector for the combinational structure of 

elements are proposed.  
This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/deed.uk) 
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The results of building a functional testing map 

using the constructed logical vector of the scheme 

are also presented. The MOSI software application 

is open to students and professionals who want to 

learn about prompt engineering in solving design 

and test problems. The GUI enables you to create a 

circuit on a 20-element screen in 9 minutes, which is 

a very technologically advanced and cost-effective 

approach when students conduct a laboratory 

workshop.  Modelling of the logical vector of a 

combinational circuit for good value and faults, as 

addressed, is proposed for simulation in the in-

memory computing architecture. The logical vector 

is the most technological, compact and 

comprehensive representation of the scheme for the 

economical solution of all design and test tasks 

Cartesian logic is proposed, which, due to 

exponential redundancy, 2𝑛+𝑚, is an effective 

intelligent mechanism for solving combinatorial 

problems (modeling, simulation, testing, 

diagnostics) by algorithms of linear computational 

complexity. It is a logical vector (matrix) because it 

models Cartesian logical relations between bits of 

logical vectors or addresses in a truth table. 

 Cartesian logic addresses the following issues: 

       1) Modeling circuit logic vectors without an 

algorithm that ensures good behavior.  

2) Fault modeling testing map of logic without 

a fault modeling algorithm.  

The article discusses the issues of reducing the 

cost and time of verifying digital projects by 

modeling the logical vector of a digital circuit, 

which enables the significant simplification of 

value-driven simulation algorithms and reduces the 

synthesis of a test map to three matrix operations. 

The practical significance of the study lies in an 

economical (in terms of time and energy) vector-

logical solution to design and test problems in the 

architecture of in-memory computing based on read-

write transactions, eliminating the need for processor 

instructions. The theoretical material can be helpful 

for engineers and students to understand the 

processes of modeling and simulation in vector-

logical verification of digital projects. 

Structures and functions [1], [2], [3] are the 

most common forms of the model, which, together 

with the algorithms for their analysis, make up the 

computing mechanisms. A logical vector is a 

universal form for specifying structures and 

functions, which also allows you to convert these 

entities into each other. In this case, a logical vector, 

a truth table, and a matrix are a scalable form of 

specifying functionality or structure. A logical 

vector metric is an explicit setting of the 

combinatorics of all relationships by bit addresses, 

which allows you to simulate input conditions 

without processing algorithms. We assume that the 

world consists only of functions and structures; in 

this case, the logical vector serves as a universal 

model for analyzing physical and social processes 

using known binary modeling methods [3], [4]. The 

metrics of a function and its structures are their 

similarities and differences (Fig. 1), which 

determine the areas of their possible application as 

components of a computing mechanism [5].  

 
Fig. 1. Metrics of computing structures and 

functions 
Source: compiled by the authors 

Analogues of relations between functions and 

structures are 1) functionality and 2) logical circuits 

[6], [7], [8]. The first one today does not need any 

additional processing related to the synthesis of 

technological elements into a permitted system. It is 

sufficient to place it in any memory and use it as a 

model for simulating binary input sets [9], [10], [11], 

[12]. The second model requires funds and time for 

its synthesis, as well as processor instructions, 

hardware description languages, and complex 

algorithms for verifying synthesized logic circuits 

[13], [14]. The latency of the resulting logic circuit 

during its operation can be greater than the write and 

read operations on memory [15] required using the 

vector logic model. The lack of a processor for the 

operation of the vector-logical model makes it 

economical in terms of time and energy costs. This 

fact suggests that in-memory computing, combined 

with vector logic, is the future of mass computing 

[16], which can be quickly implemented at any point 
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in space, provided there is material available for 

organizing memory. Given that a logical vector is a 

deterministic form of a qubit [14], [15], it is possible 

to create quantum computers with a long 

decoherence time to organize memory in the 

presence of a stable structure of elementary 

particles. The proposal to abandon logical schemes 

in favor of logical vectors is a gain in computing 

time and energy due to the exponential structures of 

explicit data represented by vectors, truth tables, or 

matrices [16], [17], [18], [19]. 

Two problems arise:  

1) how to construct a logical vector of a process 

or phenomenon;  

2) how to model [20], [21], [22], [23], [24], 

[25] a vector according to the existing logical circuit. 

The first option involves the unitary encoding 

of process patterns on the universe of found 

primitives, with their subsequent entry into the row 

variables of the truth table. After that, all 

combinatorial problems related to analyzing big data 

using the resulting truth table are solved. The second 

option is to propose several mechanisms for 

processing digital structures to obtain the logical 

vector of the scheme [26], [27]. A recursive 

algorithm for modeling the logical vector of a circuit 

using Cartesian logic applied to the elements of a 

digital structure is proposed in this work. Another 

algorithm is based on the use of a matrix that models 

each line of the circuit as a set of elements loaded 

into the simulated output. The third algorithm 

utilizes the logical vectors of the elements to 

populate the table of good behavior for all lines in 

the circuit during a comprehensive test. In this case, 

the input effects of the circuit elements are 

considered as the addresses of the bits of the logical 

vector, which form the state of the processed line 

using the read-write transaction [27], [28]. As an 

example for verifying the proposed algorithms, the 

Schneider circuit is considered which represents a 

logical structure with converging branches. All the 

proposed algorithms are implemented in Python 

code and are made available as a cloud service for 

free access to students. 

The purpose of the study is to reduce the time 

of verification of a digital circuit by building a 

logical vector that allows you to create a functional 

testing map in three matrix operations.  

Objectives:  

1) development of Cartesian logic mechanisms 

for constructing a logical vector of the circuit;  

2) development of three methods for 

constructing a logical vector of the scheme based on 

the use of vector models of elements;  

3) simulation of a test map of a logical circuit 

using the constructed logical vector;  

4) verification of the developed mechanisms 

using the Schneider circuit as an example. 

1. MODELING A CIRCUIT LOGICAL 

VECTOR USING THE CARTESIAN LOGIC 

The procedure for constructing a logic vector is 

illustrated using the example of the Schneider circuit 
(Fig. 2), which contains reconvergent fan-outs on a 

four-input element. This can be achieved by 

converting all elements of the circuit to two-input 

ones. Therefore, the right side of Fig. 2 shows the 
decomposition of the last component of the circuit 

into three elements, two of which are or-elements, 

and the third element is or-not. 

 
Fig. 2. Schneider circuit and four-input element 

decomposition 
Source: compiled by the authors 

A logical vector is a representation of a process 
or phenomenon, function, or structure by a sequence 

of zeros and ones of length 2𝑛, where n is the 

number of bits of binary variables to form the 

addresses of the vector bits. This definition makes 
the logical vector independent of the truth table. But 

a mandatory implicit attribute of a vector is the 

standard addresses, which are easily generated for 
any vector. The Cartesian product of one vector with 

itself forms a reflexive (Fig. 3) relation L= Y⊠Y, 

which generates a Cartesian matrix, in this case, 

activity, or a logical vector L of dimension 2𝑛+1. 

 
Fig. 3. Xor-relation of the vectors. 

Source: compiled by the authors 

Cartesian product of two different vectors 

0001⊠0111=0111011101111000 forms or 

synthesizes a new vector of dimension 2𝑛+𝑚 =
2𝑛 × 2𝑚. The circuit vector design of such  
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Cartesian logic operation is invariant to the length of 

logical vectors. 

All of them are truth tables or logical vectors. 

Nobody ever needs a digital circuit. It only causes 

problems ‒ expensive synthesis and complex 

verification algorithms. All that is required is the 

output state, as the model's reaction to the input 

word. All of this can be done in memory, free of a 

processor, based on read-write transactions over the 

bits of a logical vector. But you need to get it for 

this. The complexity of the algorithm (Fig. 4) lies in 

the recoding of the addresses of truth tables to the 

numbering of input variables (231–123, 243–234) 

for the correct arrangement of single values in the 

logical vector. The last element (four-input) is 

broken down into three two-input elements, where 

the first two are or elements. Therefore, in the two 

Cartesian matrices, the generating function is the 

logical vector 0111. The computational complexity 

of the algorithm is quadratic. Model redundancy is 

also defined by the square of the length of the 

element's logical vector. Essentially, each circuit 

element is processed separately, considering the 

numbering of the circuit line, and then all elements 

are iteratively bound to the input circuit variables. 

The algorithm can construct a logical vector for both 

the entire circuit and its fragments, ending with the 

outputs of the elements. Build procedures are used 

only by read-write transactions. Empty cells in the 

matrices denote zeros. The vectors of the logical 

elements of the circuit are read into matrices from 

left to right, from top to bottom, at essential 

coordinates. 

 
Fig. 4. Constructing a Logical Vector using 

Cartesian Logic 
Source: compiled by the authors 

What are the disadvantages of the proposed 

algorithm for constructing a logical vector of the 

circuit:  

1) modeling of two-input circuit elements. Logic 

with many inputs must be decomposed into two-

input elements;  

2) it is necessary to recode the addresses of the 
truth table and the bits of the logical vector of each 
element by the numbers of the external inputs of the 
circuit;  

3) a complex data structure for the execution of 
the algorithm, which is associated with the 
construction of a Cartesian matrix for each element. 

2. PARALLEL MODELING OF CIRCUIT 

ELEMENTS 

Construction of a logical vector of a circuit 
using the parallel method: modeling of the outputs 
of logical elements in one pass through the table of 
logical vectors of each line of the circuit. The table 

of dimension N × 2n , n is the number of input lines 
of the circuit; N is the number of lines of the circuit. 
A single line (table column) is modeled in parallel, 
corresponding to the output of one element on all 
test cases, and splitting the circuit line modeling 
table into sub-tables complicates the modeling 
algorithm, but reduces the total memory for data 
structures and the number of bit read-write 
operations. The source data is represented by the 
circuit structure and logical vectors for each 
element. The lines of the circuit must be numbered: 
first, all external inputs are numbered, and then the 
outputs of elements whose inputs are already 
numbered; last, the external outputs of the circuit are 
numbered. The proposed method frees the algorithm 
from the need to renumber addresses for logical 
vector coordinates. Here, all the coordinates of all 
logical vectors have a common addressing on the 
scale of a single local or global truth table. Here are 
two options for parallel modeling of the circuit. The 
first option (Fig. 5) involves decomposing a four-
input element by adding an inverter at each of its 
outputs. In practice, Cartesian logic and local truth 
tables are used here, which assemble logical vectors 
for each line of the circuit under the auspices of the 
external inputs of the circuit. The superposition of 
logical vectors within local truth tables is an 
efficient handling of circuit fragments that depend 
on the same input variables. 

The second variant of parallel modeling of logic 
gates uses a four-input element without 
decomposition into two-input elements. The data 
structures of modeling the circuit elements to obtain 
a logical vector are represented by the modeling 
table and logical vectors of each circuit element 
(Fig. 6). There are only two such vectors for this 
scheme: 1000 and 1000 0000 0000 0000. Empty 
cells in the table correspond to 0-values. Using the 
input actions as the addresses of the bits of a logical 
vector, we determine the reaction of each element to 
the input action.  
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Fig. 5. Data structures for parallel element 

modeling 
Source: compiled by the authors 

In one iteration represented in the column of the 

modeling ta, we determine all the states of the actual 
component ble. Eight iterations are required to 

obtain the logical vector of the circuit. 

 
Fig. 6. Data structures for parallel modeling of 

elements 
Source: compiled by the authors 

The method of parallel modeling of input sets as 

addresses of bits in a logical vector, using a table of 
all circuit lines, is invariant to the number of inputs 

of circuit elements. Moreover, increasing the 

number of inputs on the circuit element increases the 

simulation speed, which becomes more parallel in a 
sense. In the extreme, if you represent the circuit as 

a single logical vector, then modeling the circuit to 

determine the logical state of the output is performed 

in a single read-write transaction. This is also a 
bonus, which is obtained when building a logical 

vector of the circuit. But the most crucial advantage 

of the vector is that its use makes the modeling of 
the test map free from the algorithm (Fig. 7). To 

build it, you need to perform only two matrix 

operations, using only the logical vector of the 

circuit [25], [26], [27]. The resulting test map is a 
matrix of relationships between test suites and 

combinations of digital functionality input faults 

being tested.  
Based on this, the following tasks can be 

addressed:  

1) determine the minimum test for single constant 
faults;  

2) identify faults that can be checked on specified 

test sets;  

3) develop schemes for diagnosing faults and 
testing online functionality;  

4) automatically generate a testbench that 

includes the minimum number of test cases to verify 
critical functional modes. 

 
Fig. 7. Modeling of the test map in two matrix 

operations 
Source: compiled by the authors 

In the test map (matrix), undetected faults in 
input variables are represented by dots, while 

detected ones are represented by symbols 0 and 1. 

 The map is constructed through three matrix 
operations [25], [26], [27]:  

1) an XOR operation is performed on the bits of 

the logical vector to obtain an activity matrix;  
2) obtaining a matrix of deductive vectors based 

on the recoding of the activity matrix from the 

standard addresses of the truth table; 
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3) formation of vectors of tested faults in  

1-coordinates of the test map. All specified faults are 
inverses of the bits in the test sets. 

3. VECTOR MODELING VS. CIRCUIT 

SYNTHESIS 

Which is better, vector modeling or circuit 

synthesis? Let us consider three variants of 
Schneider's circuit (Fig. 8):  

1) the original, synthesized heuristically, 

represented by eight components and a structure 

with reconverging fanout;  
2) a circuit represented by one element, the 

vector-logical model of which is obtained using the 

method of Cartesian logic;  
3) synthesized the Schneider circuit from the 

obtained logical vector by constructing conjunctive 

terms of the DNF from the unit coordinates of the 

vector. From the point of view of implementing 
proper functionality, all circuits are equivalent. From 

the point of view of implementing this circuit in a 

software or hardware product, the metric complexity 
of this action (algorithm) is determined by the 18-4-

10 ratio. From the perspective of diagnostics, 

modeling, and testing these products, the complexity 
of their processing algorithms is determined by the 

8-1-3 ratio. A 3-1-2 ratio determines the latency of 

each circuit in generating an output signal. The 

energy expenditure for the formation of the output 
result is 8-1-3. The conclusion is that the best 

implementation of the functionality is a logical 

vector placed in memory. Why, then, synthesize 
functionality into the logical elements of Emil Post's 

basis? The answer is simple – this is a tribute to the 

history of computing in the field of synthesis, which 
is studied by all universities worldwide. In addition, 

the student must be familiar with the fundamental 

concepts that enable the invention of new 

mechanisms for synthesis and analysis, which will 
be significantly more effective than the algorithms 

currently used to implement functionality. Modeling 

and synthesis can help each other by organizing 
harmonious relationships. Modeling involves 

organizing a smart model in memory, which can be 

enhanced in performance if this verified model is 

synthesized to implement functionality as a System-
on-Chip (SoC) in high-speed quantum or matrix 

mechanisms, or ASIC chips. Modeling is a one-time 

procedure for creating a model of a process or 
phenomenon in memory, aimed at using it to model 

input binary sets to obtain a binary result 

representing a diagnosis or prognosis at the output of 
the circuit. Synthesis is a one-time procedure for 

implementing a verified functionality model into a 

system of crystal elements, as allowed by ASIC, 
VLSI, FPGA, CPU, or GPU.  

Conclusion: Modeling and synthesis are in a 

harmonious relationship and help each other to 

implement cost-effective computing in terms of 
energy and time consumption. 

 
Fig. 8. Three Schneider Circuit Models 

Source: compiled by the authors 

4. HARMONY OF MODELING AND 

SYNTHESIS IN COMPUTING 

Intelligent computing (Fig. 9) is a combination 

of three procedures: modeling (creating or 
synthesizing a model), simulation (forecasting or 

diagnosing on a developed or synthesized model), 

actuation (managing objects, processes or services 
on a created or synthesized model of a model), 

which generates four types of computing. The 

friendship between a computer and a human is a 

natural language interface for the user and a binary 
language interface for the computer. This is the trend 

of the fifth industrial revolution. Where there is a 

place for human creativity is in creating moral 
management mechanisms for computing, focused on 

saving energy and time while delivering high-quality 

cyber-socio-physical services. Summary – you need 
to feed the computer with binary data, vectors, and 

matrices. In response, we will develop an 

algorithmic framework for inference for the user or 

robot (autonomous agent). Intelligent computing 
design is the creation of a digitized binary model of 

a process or phenomenon to simulate any input 

situation to obtain inference in the form of control 
signals, prognosis, or diagnosis. Modeling is the 

energy consumption mechanism that is convenient 

for the verification and modeling of physical 

phenomena. Synthesis is a low-latency mechanism 
for modeling and managing autonomous agents in 

real time. A mistake in synthesis costs millions of 

dollars, while an error in modeling expenses 
amounts to hundreds of dollars. Therefore, the 

collaboration between modeling and synthesis is 

purely pragmatic, determined by the economics of 
computing. Modeling helps synthesis eliminate 

errors. In turn, synthesis can be helpful in modeling 
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the hardware implementation of algorithms for 

complex projects, thereby minimizing the time 
required for their verification. These are the 

harmonious relations between the mechanisms of 

synthesis and modeling. 

 
Fig. 9. Harmony of modeling and synthesis in 

computing 
Source: compiled by the authors 

CONCLUSION 

The new mechanisms for modeling the logical 

vector of a digital circuit, which enables the creation 

of a map for testing the circuit's logical functionality 

are presented.  

The mechanisms are free from the use of 

processor instructions and are focused on processing 

input data as logical vector addresses. At the same 

time, an in-memory computing architecture based on 

read-write transactions is employed, which enables 

energy savings of 36.3% and time savings of 22.6 % 

[29]. Additionally, the resulting logical vector of the 

circuit is the simplest and fastest parallel model for 

modeling good or faulty functionality. It is 

concluded that for modern high-speed memories  

(0.6 ns) [30], building a circuit vector is the most 

effective solution for implementing subsequent 

functionality in the SoC. Nobody needs the circuit 

today. Today, it has practically no advantages over 

memory in terms of speed and energy consumption. 

The circuit poses a challenge in solving verification 

and diagnosis problems related to defects. 

Functionality written to memory as a logical vector 

is free from synthesis and processor instructions. It 

is technologically advanced for modeling, testing, 

verification, and diagnostics. The logical vector is 

the basis of the new logical, economical mass 

computing (Fig. 10) for the maintenance of all 

existing spaces. The best data structures that a 

computer loves are the logical vector and its 

derivatives, truth tables, and matrices, which create a 

cost-effective and algorithmically efficient 

computing. The three components are all that is 

needed for binary processor-free in-memory 

modeling for simulation [13], [25], [26], [27] of any 

digitized process or phenomenon, represented as a 

vector, table, or matrix. 

 
Fig. 10. Map of vector-logical computing 

                  Source: compiled by the authors 

The MOSI software application (Fig. 11) 

supports modeling the logical vector of the circuit 

and building a functionality test map with up to 16 

input variables. The application GUI supports any 

logic presented in vector form. The number of 

circuit elements and their types is limited only by the 

user's imagination. 

 
Fig. 11. MOSI software application 

Source: compiled by the authors 
The Modeling for Simulation software 

application is implemented in Python, contains 

approximately 10,000 lines of code, and can be 

installed on any computer or tablet. It is used as a 

cloud service or web application in the educational 

process for computer engineering students. 

The authors of the study invite businessmen and 

scientists to capitalize on the vector-logical in-

memory modeling for simulation in the EDA 

market. 
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АНОТАЦІЯ 

Векторно-логічні обчислення є економічно ефективним механізмом інтелектуальних обчислень у пам’яті, що 

використовує транзакції читання-запису для розв’язання практичних задач аналізу та керування фізичними, соціальними й 

бізнес-процесами на основі моніторингу. Поняття механізму вводиться як гармонійна взаємодія між моделлю та 

алгоритмом обчислень. Дослідження спрямоване на суттєве зниження часових і енергетичних витрат, пов’язаних із 

процесами моделювання у фізичному, соціальному та цифровому світах.Засобом досягнення цієї мети є використання 

векторно-логічних механізмів обчислень у пам’яті, які істотно спрощують алгоритми завдяки експоненційній 

надлишковості структур даних. Розглянуто механізми зменшення обчислювальної складності алгоритмів, що зазвичай має 

експоненційний характер через застосування структур даних на основі векторної логіки. Проведено аналіз функцій і 

структур з погляду алгоритмічної простоти для задач моделювання та симуляції. Запропоновано кілька механізмів, 

побудованих на картезіанській логіці, для моделювання логічного вектора зі структури цифрової схеми. Булевий вектор 

використовується для створення тестової карти за допомогою трьох матричних операцій. Розроблено хмарний сервіс MOSI, 

який моделює поведінку та відмови цифрових схем і їхніх функціональностей, використовуючи адреси таблиць істинності. 
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