
Hahanov V. I., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.

 / Applied Aspects of Information Technology

 2025; Vol.8 No.4: 442–452

442

Computer engineering and cybersecurity ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

DOI: https://doi.org/10.15276/аait.08.2025.28

UDC 004.582

Vector logic structures and functions of computing

Vladimir I. Hahanov
1)

ORCID: https://orcid.org/0000-0001-5312-5841; hahanov@icloud.com. Scopus Author ID: 7801667873

Svetlana V. Chumachenko
1)

ORCID: https://orcid.org/0000-0001-8913-1194; svetlana.chumachenko@nure.ua. Scopus Author ID: 57188710840

Eugenia I. Litvinova
1)

ORCID: https://orcid.org/0000-0002-9797-5271; eugenia.litvinova@nure.ua. Scopus Author ID: 25650378900

Hanna V. Hahanova
1)

ORCID: https://orcid.org/0000-0002-4528-6861; anna.hahanova@nure.ua. Scopus Author ID: 8326375900

Volodymyr I. Obrizan
1)

ORCID: https://orcid.org/0000-0002-1835-4056; vladimir.obrizan@nure.ua. Scopus Author ID: 15127546800

Nataliya H. Maksymova
1)

ORCID: https://orcid.org/0009-0006-0293-655X; nataliya.maksymova@nure.ua. Scopus Author ID: 59669839800
1) Kharkiv National University of Radio Electronics, 14, Nauky Ave. Kharkiv, 61166, Ukraine

ABSTRACT

Vector logic computing is a cost-effective mechanism for intelligent in-memory computing, utilizing read-write transactions to

address practical problems in the analysis and management of physical, social, and business processes based on monitoring. The

concept of a mechanism is introduced as a harmonious relationship between the model and the algorithm for computing. The

investigation aims to significantly reduce time and energy costs associated with simulation processes in the physical, social, and

digital worlds. The means to achieve this goal is using vector-logical in-memory computing mechanisms, which significantly

simplify algorithms due to the exponential redundancy of data structures. The mechanisms for reducing the algorithm's

computational complexity, which is typically exponential due to the use of data structures based on vector logic, are considered. An

analysis of functions and structures is conducted from the perspective of algorithmic simplicity for modeling and simulation

purposes. Several mechanisms based on Cartesian logic are proposed for modeling a logical vector from the structure of a digi tal

circuit. A Boolean vector is used to create a test map in three matrix operations. A cloud-based MOSI service is offered that

simulates the behavior and faults of digital circuits and their functionalities using truth table addresses.

Keywords: Element structure; vector logic functionality; vector logics; logic vector; Cartesian logic; intelligent computing; test

map; fault simulation; good-value simulation; in-memory modeling for simulation; prompt engineering

For citation: Hahanov V. I., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H. “Vector logic structures and

functions of computing”. Applied Aspects of Information Technology. 2025; Vol.8 No.4: 442–452. DOI: https://doi.org/10.15276/aait.08.2025.28

METRIC OF COMPUTING STRUCTURES

AND FUNCTIONS

Structures and functions are the most common

forms of the model, which, together with algorithms

for their analysis, make up the mechanisms of

modern computing. Their harmonious relations are

considered to replace one form with another, thereby

saving time and energy in organizing the

computational process in memory. Historically, the

digital circuit emerged when it was necessary to

synthesize a high-speed combinational circuit from a

truth table, given the need to save slow but

expensive memory. Memory today is an affordable,

cheap, energy-saving product, the speed of which is

measured in the nanosecond range. Why synthesize

a logic circuit when a logic vector in memory can

© Hahanov V., Chumachenko S., Litvinova E.,

 Hahanova H., Obrizan V., Maksymova N., 2025

represent functionality to organize calculations

without processor instructions? In addition, the logic

circuit not only requires expensive synthesis

procedures but also presents algorithmic difficulties

for its modeling, testing, verification, and diagnosis.

What is offered instead is to return to the truth table

(logical vector), which does not require synthesis,

but only needs to perform modeling procedures in

any memory. At the same time, all verification

problems are solved on the logical vector by

algorithms of linear computational complexity due

to the exponential redundancy of the model. The

question remains what to do with the many digital

circuits that exist in cyberspace. You can re-engineer

them by transforming the circuit into a functionality

represented by a logical vector and then solving all

verification problems using linear-complexity

algorithms. Several mechanisms for constructing a

logical vector for the combinational structure of

elements are proposed.
This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/deed.uk)

Hahanov V. I., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.

 / Applied Aspects of Information Technology

 2025; Vol.8 No.4: 442–452

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer engineering and cybersecurity 443

The results of building a functional testing map

using the constructed logical vector of the scheme

are also presented. The MOSI software application

is open to students and professionals who want to

learn about prompt engineering in solving design

and test problems. The GUI enables you to create a

circuit on a 20-element screen in 9 minutes, which is

a very technologically advanced and cost-effective

approach when students conduct a laboratory

workshop. Modelling of the logical vector of a

combinational circuit for good value and faults, as

addressed, is proposed for simulation in the in-

memory computing architecture. The logical vector

is the most technological, compact and

comprehensive representation of the scheme for the

economical solution of all design and test tasks

Cartesian logic is proposed, which, due to

exponential redundancy, 2𝑛+𝑚, is an effective

intelligent mechanism for solving combinatorial

problems (modeling, simulation, testing,

diagnostics) by algorithms of linear computational

complexity. It is a logical vector (matrix) because it

models Cartesian logical relations between bits of

logical vectors or addresses in a truth table.

 Cartesian logic addresses the following issues:

 1) Modeling circuit logic vectors without an

algorithm that ensures good behavior.

2) Fault modeling testing map of logic without

a fault modeling algorithm.

The article discusses the issues of reducing the

cost and time of verifying digital projects by

modeling the logical vector of a digital circuit,

which enables the significant simplification of

value-driven simulation algorithms and reduces the

synthesis of a test map to three matrix operations.

The practical significance of the study lies in an

economical (in terms of time and energy) vector-

logical solution to design and test problems in the

architecture of in-memory computing based on read-

write transactions, eliminating the need for processor

instructions. The theoretical material can be helpful

for engineers and students to understand the

processes of modeling and simulation in vector-

logical verification of digital projects.

Structures and functions [1], [2], [3] are the

most common forms of the model, which, together

with the algorithms for their analysis, make up the

computing mechanisms. A logical vector is a

universal form for specifying structures and

functions, which also allows you to convert these

entities into each other. In this case, a logical vector,

a truth table, and a matrix are a scalable form of

specifying functionality or structure. A logical

vector metric is an explicit setting of the

combinatorics of all relationships by bit addresses,

which allows you to simulate input conditions

without processing algorithms. We assume that the

world consists only of functions and structures; in

this case, the logical vector serves as a universal

model for analyzing physical and social processes

using known binary modeling methods [3], [4]. The

metrics of a function and its structures are their

similarities and differences (Fig. 1), which

determine the areas of their possible application as

components of a computing mechanism [5].

Fig. 1. Metrics of computing structures and

functions
Source: compiled by the authors

Analogues of relations between functions and

structures are 1) functionality and 2) logical circuits

[6], [7], [8]. The first one today does not need any

additional processing related to the synthesis of

technological elements into a permitted system. It is

sufficient to place it in any memory and use it as a

model for simulating binary input sets [9], [10], [11],

[12]. The second model requires funds and time for

its synthesis, as well as processor instructions,

hardware description languages, and complex

algorithms for verifying synthesized logic circuits

[13], [14]. The latency of the resulting logic circuit

during its operation can be greater than the write and

read operations on memory [15] required using the

vector logic model. The lack of a processor for the

operation of the vector-logical model makes it

economical in terms of time and energy costs. This

fact suggests that in-memory computing, combined

with vector logic, is the future of mass computing

[16], which can be quickly implemented at any point

Hahanov V. I., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.

 / Applied Aspects of Information Technology

 2025; Vol.8 No.4: 442–452

444

Computer engineering and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

in space, provided there is material available for

organizing memory. Given that a logical vector is a

deterministic form of a qubit [14], [15], it is possible

to create quantum computers with a long

decoherence time to organize memory in the

presence of a stable structure of elementary

particles. The proposal to abandon logical schemes

in favor of logical vectors is a gain in computing

time and energy due to the exponential structures of

explicit data represented by vectors, truth tables, or

matrices [16], [17], [18], [19].

Two problems arise:

1) how to construct a logical vector of a process

or phenomenon;

2) how to model [20], [21], [22], [23], [24],

[25] a vector according to the existing logical circuit.

The first option involves the unitary encoding

of process patterns on the universe of found

primitives, with their subsequent entry into the row

variables of the truth table. After that, all

combinatorial problems related to analyzing big data

using the resulting truth table are solved. The second

option is to propose several mechanisms for

processing digital structures to obtain the logical

vector of the scheme [26], [27]. A recursive

algorithm for modeling the logical vector of a circuit

using Cartesian logic applied to the elements of a

digital structure is proposed in this work. Another

algorithm is based on the use of a matrix that models

each line of the circuit as a set of elements loaded

into the simulated output. The third algorithm

utilizes the logical vectors of the elements to

populate the table of good behavior for all lines in

the circuit during a comprehensive test. In this case,

the input effects of the circuit elements are

considered as the addresses of the bits of the logical

vector, which form the state of the processed line

using the read-write transaction [27], [28]. As an

example for verifying the proposed algorithms, the

Schneider circuit is considered which represents a

logical structure with converging branches. All the

proposed algorithms are implemented in Python

code and are made available as a cloud service for

free access to students.

The purpose of the study is to reduce the time

of verification of a digital circuit by building a

logical vector that allows you to create a functional

testing map in three matrix operations.

Objectives:

1) development of Cartesian logic mechanisms

for constructing a logical vector of the circuit;

2) development of three methods for

constructing a logical vector of the scheme based on

the use of vector models of elements;

3) simulation of a test map of a logical circuit

using the constructed logical vector;

4) verification of the developed mechanisms

using the Schneider circuit as an example.

1. MODELING A CIRCUIT LOGICAL

VECTOR USING THE CARTESIAN LOGIC

The procedure for constructing a logic vector is

illustrated using the example of the Schneider circuit
(Fig. 2), which contains reconvergent fan-outs on a

four-input element. This can be achieved by

converting all elements of the circuit to two-input

ones. Therefore, the right side of Fig. 2 shows the
decomposition of the last component of the circuit

into three elements, two of which are or-elements,

and the third element is or-not.

Fig. 2. Schneider circuit and four-input element

decomposition
Source: compiled by the authors

A logical vector is a representation of a process
or phenomenon, function, or structure by a sequence

of zeros and ones of length 2𝑛, where n is the

number of bits of binary variables to form the

addresses of the vector bits. This definition makes
the logical vector independent of the truth table. But

a mandatory implicit attribute of a vector is the

standard addresses, which are easily generated for
any vector. The Cartesian product of one vector with

itself forms a reflexive (Fig. 3) relation L= Y⊠Y,

which generates a Cartesian matrix, in this case,

activity, or a logical vector L of dimension 2𝑛+1.

Fig. 3. Xor-relation of the vectors.

Source: compiled by the authors

Cartesian product of two different vectors

0001⊠0111=0111011101111000 forms or

synthesizes a new vector of dimension 2𝑛+𝑚 =
2𝑛 × 2𝑚. The circuit vector design of such

Hahanov V. I., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.

 / Applied Aspects of Information Technology

 2025; Vol.8 No.4: 442–452

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer engineering and cybersecurity 445

Cartesian logic operation is invariant to the length of

logical vectors.

All of them are truth tables or logical vectors.

Nobody ever needs a digital circuit. It only causes

problems ‒ expensive synthesis and complex

verification algorithms. All that is required is the

output state, as the model's reaction to the input

word. All of this can be done in memory, free of a

processor, based on read-write transactions over the

bits of a logical vector. But you need to get it for

this. The complexity of the algorithm (Fig. 4) lies in

the recoding of the addresses of truth tables to the

numbering of input variables (231–123, 243–234)

for the correct arrangement of single values in the

logical vector. The last element (four-input) is

broken down into three two-input elements, where

the first two are or elements. Therefore, in the two

Cartesian matrices, the generating function is the

logical vector 0111. The computational complexity

of the algorithm is quadratic. Model redundancy is

also defined by the square of the length of the

element's logical vector. Essentially, each circuit

element is processed separately, considering the

numbering of the circuit line, and then all elements

are iteratively bound to the input circuit variables.

The algorithm can construct a logical vector for both

the entire circuit and its fragments, ending with the

outputs of the elements. Build procedures are used

only by read-write transactions. Empty cells in the

matrices denote zeros. The vectors of the logical

elements of the circuit are read into matrices from

left to right, from top to bottom, at essential

coordinates.

Fig. 4. Constructing a Logical Vector using

Cartesian Logic
Source: compiled by the authors

What are the disadvantages of the proposed

algorithm for constructing a logical vector of the

circuit:

1) modeling of two-input circuit elements. Logic

with many inputs must be decomposed into two-

input elements;

2) it is necessary to recode the addresses of the
truth table and the bits of the logical vector of each
element by the numbers of the external inputs of the
circuit;

3) a complex data structure for the execution of
the algorithm, which is associated with the
construction of a Cartesian matrix for each element.

2. PARALLEL MODELING OF CIRCUIT

ELEMENTS

Construction of a logical vector of a circuit
using the parallel method: modeling of the outputs
of logical elements in one pass through the table of
logical vectors of each line of the circuit. The table

of dimension N × 2n , n is the number of input lines
of the circuit; N is the number of lines of the circuit.
A single line (table column) is modeled in parallel,
corresponding to the output of one element on all
test cases, and splitting the circuit line modeling
table into sub-tables complicates the modeling
algorithm, but reduces the total memory for data
structures and the number of bit read-write
operations. The source data is represented by the
circuit structure and logical vectors for each
element. The lines of the circuit must be numbered:
first, all external inputs are numbered, and then the
outputs of elements whose inputs are already
numbered; last, the external outputs of the circuit are
numbered. The proposed method frees the algorithm
from the need to renumber addresses for logical
vector coordinates. Here, all the coordinates of all
logical vectors have a common addressing on the
scale of a single local or global truth table. Here are
two options for parallel modeling of the circuit. The
first option (Fig. 5) involves decomposing a four-
input element by adding an inverter at each of its
outputs. In practice, Cartesian logic and local truth
tables are used here, which assemble logical vectors
for each line of the circuit under the auspices of the
external inputs of the circuit. The superposition of
logical vectors within local truth tables is an
efficient handling of circuit fragments that depend
on the same input variables.

The second variant of parallel modeling of logic
gates uses a four-input element without
decomposition into two-input elements. The data
structures of modeling the circuit elements to obtain
a logical vector are represented by the modeling
table and logical vectors of each circuit element
(Fig. 6). There are only two such vectors for this
scheme: 1000 and 1000 0000 0000 0000. Empty
cells in the table correspond to 0-values. Using the
input actions as the addresses of the bits of a logical
vector, we determine the reaction of each element to
the input action.

Hahanov V. I., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.

 / Applied Aspects of Information Technology

 2025; Vol.8 No.4: 442–452

446

Computer engineering and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Fig. 5. Data structures for parallel element

modeling
Source: compiled by the authors

In one iteration represented in the column of the

modeling ta, we determine all the states of the actual
component ble. Eight iterations are required to

obtain the logical vector of the circuit.

Fig. 6. Data structures for parallel modeling of

elements
Source: compiled by the authors

The method of parallel modeling of input sets as

addresses of bits in a logical vector, using a table of
all circuit lines, is invariant to the number of inputs

of circuit elements. Moreover, increasing the

number of inputs on the circuit element increases the

simulation speed, which becomes more parallel in a
sense. In the extreme, if you represent the circuit as

a single logical vector, then modeling the circuit to

determine the logical state of the output is performed

in a single read-write transaction. This is also a
bonus, which is obtained when building a logical

vector of the circuit. But the most crucial advantage

of the vector is that its use makes the modeling of
the test map free from the algorithm (Fig. 7). To

build it, you need to perform only two matrix

operations, using only the logical vector of the

circuit [25], [26], [27]. The resulting test map is a
matrix of relationships between test suites and

combinations of digital functionality input faults

being tested.
Based on this, the following tasks can be

addressed:

1) determine the minimum test for single constant
faults;

2) identify faults that can be checked on specified

test sets;

3) develop schemes for diagnosing faults and
testing online functionality;

4) automatically generate a testbench that

includes the minimum number of test cases to verify
critical functional modes.

Fig. 7. Modeling of the test map in two matrix

operations
Source: compiled by the authors

In the test map (matrix), undetected faults in
input variables are represented by dots, while

detected ones are represented by symbols 0 and 1.

 The map is constructed through three matrix
operations [25], [26], [27]:

1) an XOR operation is performed on the bits of

the logical vector to obtain an activity matrix;
2) obtaining a matrix of deductive vectors based

on the recoding of the activity matrix from the

standard addresses of the truth table;

Hahanov V. I., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.

 / Applied Aspects of Information Technology

 2025; Vol.8 No.4: 442–452

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer engineering and cybersecurity 447

3) formation of vectors of tested faults in

1-coordinates of the test map. All specified faults are
inverses of the bits in the test sets.

3. VECTOR MODELING VS. CIRCUIT

SYNTHESIS

Which is better, vector modeling or circuit

synthesis? Let us consider three variants of
Schneider's circuit (Fig. 8):

1) the original, synthesized heuristically,

represented by eight components and a structure

with reconverging fanout;
2) a circuit represented by one element, the

vector-logical model of which is obtained using the

method of Cartesian logic;
3) synthesized the Schneider circuit from the

obtained logical vector by constructing conjunctive

terms of the DNF from the unit coordinates of the

vector. From the point of view of implementing
proper functionality, all circuits are equivalent. From

the point of view of implementing this circuit in a

software or hardware product, the metric complexity
of this action (algorithm) is determined by the 18-4-

10 ratio. From the perspective of diagnostics,

modeling, and testing these products, the complexity
of their processing algorithms is determined by the

8-1-3 ratio. A 3-1-2 ratio determines the latency of

each circuit in generating an output signal. The

energy expenditure for the formation of the output
result is 8-1-3. The conclusion is that the best

implementation of the functionality is a logical

vector placed in memory. Why, then, synthesize
functionality into the logical elements of Emil Post's

basis? The answer is simple – this is a tribute to the

history of computing in the field of synthesis, which
is studied by all universities worldwide. In addition,

the student must be familiar with the fundamental

concepts that enable the invention of new

mechanisms for synthesis and analysis, which will
be significantly more effective than the algorithms

currently used to implement functionality. Modeling

and synthesis can help each other by organizing
harmonious relationships. Modeling involves

organizing a smart model in memory, which can be

enhanced in performance if this verified model is

synthesized to implement functionality as a System-
on-Chip (SoC) in high-speed quantum or matrix

mechanisms, or ASIC chips. Modeling is a one-time

procedure for creating a model of a process or
phenomenon in memory, aimed at using it to model

input binary sets to obtain a binary result

representing a diagnosis or prognosis at the output of
the circuit. Synthesis is a one-time procedure for

implementing a verified functionality model into a

system of crystal elements, as allowed by ASIC,
VLSI, FPGA, CPU, or GPU.

Conclusion: Modeling and synthesis are in a

harmonious relationship and help each other to

implement cost-effective computing in terms of
energy and time consumption.

Fig. 8. Three Schneider Circuit Models

Source: compiled by the authors

4. HARMONY OF MODELING AND

SYNTHESIS IN COMPUTING

Intelligent computing (Fig. 9) is a combination

of three procedures: modeling (creating or
synthesizing a model), simulation (forecasting or

diagnosing on a developed or synthesized model),

actuation (managing objects, processes or services
on a created or synthesized model of a model),

which generates four types of computing. The

friendship between a computer and a human is a

natural language interface for the user and a binary
language interface for the computer. This is the trend

of the fifth industrial revolution. Where there is a

place for human creativity is in creating moral
management mechanisms for computing, focused on

saving energy and time while delivering high-quality

cyber-socio-physical services. Summary – you need
to feed the computer with binary data, vectors, and

matrices. In response, we will develop an

algorithmic framework for inference for the user or

robot (autonomous agent). Intelligent computing
design is the creation of a digitized binary model of

a process or phenomenon to simulate any input

situation to obtain inference in the form of control
signals, prognosis, or diagnosis. Modeling is the

energy consumption mechanism that is convenient

for the verification and modeling of physical

phenomena. Synthesis is a low-latency mechanism
for modeling and managing autonomous agents in

real time. A mistake in synthesis costs millions of

dollars, while an error in modeling expenses
amounts to hundreds of dollars. Therefore, the

collaboration between modeling and synthesis is

purely pragmatic, determined by the economics of
computing. Modeling helps synthesis eliminate

errors. In turn, synthesis can be helpful in modeling

Hahanov V. I., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.

 / Applied Aspects of Information Technology

 2025; Vol.8 No.4: 442–452

448

Computer engineering and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

the hardware implementation of algorithms for

complex projects, thereby minimizing the time
required for their verification. These are the

harmonious relations between the mechanisms of

synthesis and modeling.

Fig. 9. Harmony of modeling and synthesis in

computing
Source: compiled by the authors

CONCLUSION

The new mechanisms for modeling the logical

vector of a digital circuit, which enables the creation

of a map for testing the circuit's logical functionality

are presented.

The mechanisms are free from the use of

processor instructions and are focused on processing

input data as logical vector addresses. At the same

time, an in-memory computing architecture based on

read-write transactions is employed, which enables

energy savings of 36.3% and time savings of 22.6 %

[29]. Additionally, the resulting logical vector of the

circuit is the simplest and fastest parallel model for

modeling good or faulty functionality. It is

concluded that for modern high-speed memories

(0.6 ns) [30], building a circuit vector is the most

effective solution for implementing subsequent

functionality in the SoC. Nobody needs the circuit

today. Today, it has practically no advantages over

memory in terms of speed and energy consumption.

The circuit poses a challenge in solving verification

and diagnosis problems related to defects.

Functionality written to memory as a logical vector

is free from synthesis and processor instructions. It

is technologically advanced for modeling, testing,

verification, and diagnostics. The logical vector is

the basis of the new logical, economical mass

computing (Fig. 10) for the maintenance of all

existing spaces. The best data structures that a

computer loves are the logical vector and its

derivatives, truth tables, and matrices, which create a

cost-effective and algorithmically efficient

computing. The three components are all that is

needed for binary processor-free in-memory

modeling for simulation [13], [25], [26], [27] of any

digitized process or phenomenon, represented as a

vector, table, or matrix.

Fig. 10. Map of vector-logical computing

 Source: compiled by the authors

The MOSI software application (Fig. 11)

supports modeling the logical vector of the circuit

and building a functionality test map with up to 16

input variables. The application GUI supports any

logic presented in vector form. The number of

circuit elements and their types is limited only by the

user's imagination.

Fig. 11. MOSI software application

Source: compiled by the authors
The Modeling for Simulation software

application is implemented in Python, contains

approximately 10,000 lines of code, and can be

installed on any computer or tablet. It is used as a

cloud service or web application in the educational

process for computer engineering students.

The authors of the study invite businessmen and

scientists to capitalize on the vector-logical in-

memory modeling for simulation in the EDA

market.

REFERENCES

1. “IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)”. In IEEE STD 1481-

2009. 2010. p. 1658. DOI: https://doi.org/10.1109/ieeestd.2009.5430852.

2. Esmaieli, E., Sedaghat, Y. & Peiravi, A. “Fanout-based reliability model for SER estimation in

combinational circuits”. In IEEE Transactions on Circuits and Systems I: Regular Papers. 2025; 72 (1):

228240, https://www.scopus.com/pages/publications/85204697423.

Hahanov V. I., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.

 / Applied Aspects of Information Technology

 2025; Vol.8 No.4: 442–452

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer engineering and cybersecurity 449

DOI: https://doi.org/10.1109/tcsi.2024.3458864.

3. Hwang, M.-E., Jung, S.-O. & Roy, K. “Slope Interconnect Effort: Gate-Interconnect Interdependent

Delay Modeling for Early CMOS Circuit Simulation”. In IEEE Transactions on Circuits and Systems I:

Regular Papers. 2009; 56 (7): 14281441, https://www.scopus.com/pages/publications/67651156228. DOI:

https://doi.org/10.1109/tcsi.2008.2006217.

4. Huang, W., Du, J., Hua, W., Bi, K. & Fan, Q. “A Hybrid Model-Based Diagnosis Approach for

Open-Switch Faults in PMSM Drives”. In IEEE Transactions on Power Electronics. 2022; 37 (4):

37283732, https://www.scopus.com/pages/publications/85118596722.

DOI: https://doi.org/10.1109/tpel.2021.3123144.

5. Fu, R., Wille, R., Yoshikawa, N. & Ho, T.-Y. “Efficient Cartesian Genetic Programming-Based

Automatic Synthesis Framework for Reversible Quantum-Flux-Parametron Logic Circuits”. In IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2025; 44 (9): 33693380,

https://www.scopus.com/pages/publications/85219316394. DOI: https://doi.org/10.1109/tcad.2025.3546884.

6. Berndt, A. et al. “Accuracy and Size Trade-off of a Cartesian Genetic Programming Flow for Logic

Optimization”. 2021 34th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design

(SBCCI). Campinas, Brazil. 2021. p. 16, https://www.scopus.com/pages/publications/85116273904.

DOI: https://doi.org/10.1109/sbcci53441.2021.9529968.

7. Dunaeva, O., Autsou, S., Kudelina, K. & Roosileht, M. “Utilizing the fuzzy logic algorithm for

cartesian robot control system in conditions of mechanical damage transmission”. IECON 2024 - 50th

Annual Conference of the IEEE Industrial Electronics Society. Chicago, IL, USA. 2024. p. 15,
https://www.scopus.com/pages/publications/105000880837.

DOI: https://doi.org/10.1109/iecon55916.2024.10905445.

8. Khan, G. M., Zafari, F. & Mahmud, S. A. “Very short-term load forecasting using Cartesian Genetic

Programming Evolved Recurrent Neural Networks (CGPRNN)”. 2013 12th International Conference on

Machine Learning and Applications. Miami, FL, USA. 2013. p. 152155,
https://www.scopus.com/pages/publications/84899412752. DOI: https://doi.org/10.1109/icmla.2013.181.

9. Inglese, P., Vatajelu, E.-I. & Di Natale, G. “Side channel and fault analyses on memristor-based

logic in-memory”. In IEEE Design & Test. 2024; 41 (3): 2935,

https://www.scopus.com/pages/publications/85174850554.

DOI: https://doi.org/10.1109/mdat.2023.3324522.

10. Ye, J., Zhu, J., Cao, J., Bi, H., Ding, Y. & Chen, B. “A novel parallel in-memory logic array based

on programmable diodes”. In IEEE Journal of the Electron Devices Society. 2024; 12: 738744,
https://www.scopus.com/pages/publications/85203846301. DOI: https://doi.org/10.1109/jeds.2024.3457021.

11. Chen, X., Song, T. & Han, Y. “RRAM-based analog in-memory computing: invited paper”. 2021

IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). AB, Canada. 2021. p. 16,
https://www.scopus.com/pages/publications/85123977793.

DOI: https://doi.org/10.1109/nanoarch53687.2021.9642235.

12. Nguyen, V.-T., Trinh, Q.-K., Zhang, R. & Nakashima, Y. “XNOR-BSNN: In-memory computing

model for deep binarized spiking neural network”. International Conference on High Performance Big Data

and Intelligent Systems (HPBD&IS), Macau, China, 2021, p. 1721,
https://www.scopus.com/pages/publications/85124890965.

DOI: https://doi.org/10.1109/hpbdis53214.2021.9658467.

13. Hahanov, V., Litvinova, E., Davitadze, Z., Chumachenko, S., Devadze, D. & Hacimahmud, A. V.

“Truth table based intelligent computing”. 31st International Conference on Mixed Design of Integrated

Circuits and System (MIXDES). Gdansk, Poland. 2024. p. 199204,
https://www.scopus.com/pages/publications/85201818702.

DOI: https://doi.org/10.23919/mixdes62605.2024.10614035.

14. Privman, V. & Solenov, D. “Decoherence of dynamically manipulated qubits”. 2006 Sixth IEEE

Conference on Nanotechnology. Cincinnati, OH, USA. 2006. p. 842845.
DOI: https://doi.org/10.1109/nano.2006.1717240.

Hahanov V. I., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.

 / Applied Aspects of Information Technology

 2025; Vol.8 No.4: 442–452

450

Computer engineering and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

15. Durmuş, M. A., Demiralay, K., Khan, M. M., Atalay, Ş. E. & Sarpkaya, İ. “Moiré localization

induced enhancement in the decoherence time of interlayer excitons in WSe2-MoSe2 Heterobilayers”.

Conference on Lasers and Electro-Optics (CLEO). Charlotte, NC, USA. 2024. p. 12. DOI:

https://doi.org/10.1364/cleo_fs.2024.fw4b.2.

16. Zhu, S. et al. “Intelligent computing: the latest advances, challenges, and future”. Intell Comput.

2023; 2: 0006, https://www.scopus.com/pages/publications/85206596534. DOI:

https://doi.org/10.34133/icomputing.0006.

17. Tarek, A., Alveed A. & Farhan, A. “A proof theoretic exploration of mathematical induction in

computational paradigm”. Congress in Computer Science, Computer Engineering, & Applied Computing

(CSCE). Las Vegas, NV, USA. 2023. p. 963972, https://www.scopus.com/pages/publications/

85191183588. DOI: https://doi.org/10.1109/csce60160.2023.00162.

18. Kamide, N. “Natural deduction with explosion and excluded middle”. IEEE 53rd International

Symposium on Multiple-Valued Logic (ISMVL). Matsue, Japan. 2023. p. 2429,
https://www.scopus.com/pages/publications/85164603572.

DOI: https://doi.org/10.1109/ismvl57333.2023.00016.

19. Chang, S. -H., Liu, C.-N. J. & Küster, A. “Behavioral level simulation framework to support error-

aware CNN training with in-memory computing”. 18th International Conference on Synthesis, Modeling,

Analysis and Simulation Methods and Applications to Circuit Design (SMACD). Villasimius, Italy. 2022.

p. 14, https://www.scopus.com/pages/publications/85134722352.

DOI: https://doi.org/10.1109/smacd55068.2022.9816307.

20. Li, S., Zhang, N., Zhang, W., Yang, R., Chang Y. & Xiong, B. “framework independent modeling

for SRAM-based in-memory computing”. 2nd International Symposium of Electronic Design Automation

(ISEDA). Xi'an, China. 2024. p. 777777, https://www.scopus.com/pages/publications/85201735286.

DOI: https://doi.org/10.1109/iseda62518.2024.10617799.

21. Westphal J. & Hardy, J. “Logic as a vector system”. In Journal of Logic and Computation. 2005;

15 (5): 751765, https://www.scopus.com/pages/publications/26444498543.

DOI: https://doi.org/10.1093/logcom/exi040.

22. Mizraji, E. “Vector logic: a natural algebraic representation of the fundamental logical gates”.

In Journal of Logic and Computation. 2008; 18 (1): 97121,

https://www.scopus.com/pages/publications/38749097766. DOI: https://doi.org/10.1093/logcom/exm057.

23. Mizraji, E. “Vector logic allows counterfactual virtualization by the square root of NOT”. In Logic

Journal of the IGPL. 2020; 29 (5): 859870, https://www.scopus.com/pages/publications/85110955658.

DOI: https://doi.org/10.1093/jigpal/jzaa026.

24. Hahanov, V., Gharibi, W., Chumachenko, S. & Litvinova E. “Vector synthesis of fault testing map

for logic”. IAES International Journal of Robotics and Automation (IJRA). 2024; 13 (3): 293306,

https://www.scopus.com/pages/publications/85202981781. DOI: https://doi.org/10.11591/ijra.v13i3.pp293-

306.

25. Hahanov, V., Litvinova, E., Hahanova, H., Chumachenko, S., Davitadze, Z., Hahanova, I., Kulak,

H., Ponomarova, V. & Abdullayev V. H. “Vector-logical in-memory simulation of faults as truth table

addresses”. 2024 IEEE East-West Design & Test Symposium (EWDTS). Yerevan, Armenia. 2024.

p. 16, https://www.scopus.com/pages/publications/86000014942.

DOI: https://doi.org/10.1109/ewdts63723.2024.10873615.

26. Hahanov, V., Devadze, D., Hahanov, I., Chumachenko, S., Litvinova, E., Obrizan, V., Pashkov, D.,

Mishchenko, A. & Maksymova, N. “Prompt-testing of logic”. IEEE East-West Design & Test Symposium

(EWDTS). Yerevan, Armenia. 2024. p. 15, https://www.scopus.com/pages/publications/86000011281.

DOI: https://doi.org/10.1109/ewdts63723.2024.10873774.

27. Hahanov, V., Chumachenko, S., Litvinova, E., Hahanov, I., Ponomarova, V., Khakhanova, H. &

Kulak, G. “Faults-as-address simulation”. IAES International Journal of Robotics and Automation. 2024; 13

(4): 452468, https://www.scopus.com/pages/publications/85212867387.

DOI: https://doi.org/10.11591/ijra.v13i4.pp452-468.

Hahanov V. I., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.

 / Applied Aspects of Information Technology

 2025; Vol.8 No.4: 442–452

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer engineering and cybersecurity 451

28. Ubar, R., Raik, J., Jenihhin, M. & Jutman, A. “Structural decision diagrams in digital test: theory and

applications”. Birkhäuser Cham, Computer Science Foundations and Applied Logic Series. 2024.

DOI: https://doi.org/10.1007/978-3-031-44734-1.

29. Ahn, B., Jang, J., Na, H., Seo, M., Son, H. & Song, Y. H. “AI accelerator embedded computational

storage for large-scale DNN models”. IEEE 4th International Conference on Artificial Intelligence Circuits

and Systems (AICAS). Incheon, Korea Republic. 2022. p. 483486,
https://www.scopus.com/pages/publications/85139051812.

DOI: https://doi.org/10.1109/aicas54282.2022.9869991.

30. Wu, B., Zhu, H., Chen, K., Yan C. & Liu, W. “MLiM: High-Performance Magnetic Logic in-

Memory Scheme with Unipolar Switching SOT-MRAM”. In IEEE Transactions on Circuits and Systems I:

Regular Papers. 2023; 70 (6): 24122424, https://www.scopus.com/pages/publications/85151381814.

DOI: https://doi.org/10.1109/tcsi.2023.3254607.

Conflicts of Interest: The authors declare that they have no conflict of interest regarding this study, including financial, personal,
authorship or other, which could influence the research and its results presented in this article

Received 08.10.2025

Received after revision 28.11.2025

Accepted 03.12.2025

DOI: https://doi.org/10.15276/аait.08.2025.28

УДК 004.582

Векторні логічні структури та функції обчислення

Хаханов Володимир Іванович
1)

ORCID: https://orcid.org/0000-0001-5312-5841; hahanov@icloud.com. Scopus Author ID: 7801667873

Чумаченко Світлана Вікторівна
1)

ORCID: https://orcid.org/0000-0001-8913-1194; svetlana.chumachenko@nure.ua. Scopus Author ID: 57188710840

Литвинова Євгенія Іванівна
1)

ORCID: https://orcid.org/0000-0002-9797-5271; eugenia.litvinova@nure.ua. Scopus Author ID: 25650378900

Хаханова Ганна Володимирівна
1)

ORCID: https://orcid.org/0000-0002-4528-6861; anna.hahanova@nure.ua. Scopus Author ID: 8326375900

Обрізан Володимир Ігорович1)

ORCID: https://orcid.org/0000-0002-1835-4056; vladimir.obrizan@nure.ua. Scopus Author ID: 15127546800

Максимова Наталія Георгіївна
1)

ORCID: https://orcid.org/0009-0006-0293-655X; nataliya.maksymova@nure.ua. Scopus Author ID: 59669839800
1) Харківський національний університет радіоелектроніки, пр. Науки, 14. Харків, 61166, Україна

АНОТАЦІЯ

Векторно-логічні обчислення є економічно ефективним механізмом інтелектуальних обчислень у пам’яті, що

використовує транзакції читання-запису для розв’язання практичних задач аналізу та керування фізичними, соціальними й

бізнес-процесами на основі моніторингу. Поняття механізму вводиться як гармонійна взаємодія між моделлю та

алгоритмом обчислень. Дослідження спрямоване на суттєве зниження часових і енергетичних витрат, пов’язаних із

процесами моделювання у фізичному, соціальному та цифровому світах.Засобом досягнення цієї мети є використання

векторно-логічних механізмів обчислень у пам’яті, які істотно спрощують алгоритми завдяки експоненційній

надлишковості структур даних. Розглянуто механізми зменшення обчислювальної складності алгоритмів, що зазвичай має

експоненційний характер через застосування структур даних на основі векторної логіки. Проведено аналіз функцій і

структур з погляду алгоритмічної простоти для задач моделювання та симуляції. Запропоновано кілька механізмів,

побудованих на картезіанській логіці, для моделювання логічного вектора зі структури цифрової схеми. Булевий вектор

використовується для створення тестової карти за допомогою трьох матричних операцій. Розроблено хмарний сервіс MOSI,

який моделює поведінку та відмови цифрових схем і їхніх функціональностей, використовуючи адреси таблиць істинності.

Hahanov V. I., Chumachenko S. V., Litvinova E. I., Hahanova H. V., Obrizan V. I., Maksymova N. H.

 / Applied Aspects of Information Technology

 2025; Vol.8 No.4: 442–452

452

Computer engineering and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Ключові слова: комп'ютерна гра; інфрачервона камера; розпізнавання шаблонів; база даних, просторовий опис

суглобів людини; фізичні вправи

ABOUT THE AUTHORS

 Vladimir Ivanovych Hahanov - Doctor of Engineering Sciences, Professor, IEEE Senior Member, Design Automation

Department. Kharkiv National University of Radio Electronics. 14, Nauky Ave. Kharkiv, 61166, Ukraine

ORCID: https://orcid.org/0000-0001-5312-5841; hahanov@icloud.com. Scopus Author ID: 7801667873

Research field: Cybersecurity; Design Automation; Intelligent Systems

Хаханов Володимир Іванович - доктор технічних наук, професор, старший член IEEE. Кафедра автоматизації

проектування. Харківський національний університет радіоелектроніки, пр. Науки, 14. Харків, 61166, Україна

Svetlana Viktorivna Chumachenko - Head of the Design Automation Department, Member of EMC, Member of STC,

Executive Secretary of CEUR-WS IT Conference Chairs. Kharkiv National University of Radio Electronics. 14, Nauky

Ave. Kharkiv, 61166, Ukraine

ORCID: https://orcid.org/0000-0001-8913-1194; svetlana.chumachenko@nure.ua. Scopus Author ID: 57188710840

Research field: Design Automation; Information Technologies; Intelligent Decision Support

Чумаченко Світлана Вікторівна - завідувач кафедри Автоматизації проектування, член EMC, член НТК,

відповідальний секретар CEUR-WS IT Conference Chairs. Харківський національний університет

радіоелектроніки, пр. Науки, 14. Харків, 61166, Україна

Eugenia Ivanivna Litvinova - Professor, Scientific Secretary of the Specialized Scientific Council, Design Automation

Department. Kharkiv National University of Radio Electronics. 14, Nauky Avе. Kharkiv, 61166, Ukraine

ORCID: https://orcid.org/0000-0002-9797-5271; eugenia.litvinova@nure.ua. Scopus Author ID: 25650378900

Research field: Automated Design Systems; Information Systems; Intelligent Modeling

Литвінова Євгенія Іванівна - професор, учений секретар спеціалізованої вченої ради, кафедра Автоматизації

проектування. Харківський національний університет радіоелектроніки, пр. Науки, 14. Харків, 61166, Україна

Hanna Volodymyrivna Hahanova - Doctor of Engineering Sciences, Professor, Design Automation Department.

Kharkiv National University of Radio Electronics. 14, Nauky Ave. Kharkiv, 61166, Ukraine

ORCID: https://orcid.org/0000-0002-4528-6861; anna.hahanova@nure.ua. Scopus Author ID: 8326375900

Research field: Design Automation; Computational Intelligence; Software Engineering

Хаханова Ганна Володимирівна - доктор технічних наук, професор кафедри Автоматизації проектування.

Харківський національний університет радіоелектроніки, пр. Науки, 14. Харків, 61166, Україна

Volodymyr Ihorovych Obrizan - PhD in Computer Engineering, Member of IEEE, Senior Lecturer, Design Automation

Department. Kharkiv National University of Radio Electronics. 14, Nauky Ave. Kharkiv, 61166, Ukraine

ORCID: https://orcid.org/0000-0002-1835-4056; vladimir.obrizan@nure.ua. Scopus Author ID: 15127546800

Research field: Computer Engineering; Automation of Design; Software Reliability

Обрізан Володимир Ігорович - кандидат технічних наук, старший викладач кафедри Автоматизації

проектування. Харківський національний університет радіоелектроніки, пр. Науки, 14. Харків, 61166, Україна

Nataliya Heorhievna Maksymova - IT Consultant | IT Project Manager | Lecturer, Design Automation Department.

Kharkiv National University of Radio Electronics. 14, Nauky Ave. Kharkiv, 61166, Ukraine

ORCID: https://orcid.org/0009-0006-0293-655X; nataliya.maksymova@nure.ua. Scopus Author ID: 59669839800

Research field: IT Project Management; Information Systems; Digital Transformation

Максимова Наталія Георгіївна - IT-консультант, керівник IT-проєктів, викладач кафедри Автоматизації

проектування. Харківський національний університет радіоелектроніки, пр. Науки, 14. Харків, 61166, Україна

	3. VECTOR MODELING VS. CIRCUIT SYNTHESIS
	4. HARMONY OF MODELING AND SYNTHESIS IN COMPUTING
	CONCLUSION

