Applied Aspects of Information Technology 2019; Vol.2 No.4: 260-270

DOI: https://doi.org/10.15276/aait.04.2019.1
UDC 004.042

METHOD FOR CONSTRUCTING THE MODEL OF COMPUTING
PROCESSBASED ON PETRI NET

Oleg N. Paulin?

ORCID: https://orcid.org/0000-0002-2210-8317, paclenic@yandex.ru

Nataliia O. Komleva?

ORCID: https://orcid.org/0000-0001-9627-8530, nkomlevaya@gmail.com

Stanislav U. Marulin?

ORCID: https://orcid.org/0000-0003-0755-0104, stanislavmaru@gmail.com

Anatolii O. Nikolenko?

ORCID: http://orcid.org/0000-0002-9849-1797, anatolyn@ukr.net

1 Odessa National Polytechnic University, 1, Shevchenko Avenue. Odessa, 65044, Ukraine

ABSTRACT

The aim of the work is to improve the quality of the computational process that solves the problem, due to its modeling and
debugging based on the Petri net. The quality of the computational process is understood as the absence of errors (looping, paralysis,
unreliability of some fragment, etc.) and its optimization according to the criterion of minimum complexity.

The new approach to the analysis of the computational process, based on preliminary modeling by Petri nets of both fragments of
computational processes and complete computational processes, is proposed. This will reveal many errors at the stage of modeling
the computational process. The computational process is considered as a set of macrooperations, which are functionally, completed
operations of various hierarchical levels. To locate macrooperations in a computational process, it is decomposed into elementary
(basic) computational constructions. A statement that any computing process can be constructed on the basis of a relatively small
number of macrooperations is formulated. To implement the new approach, the task of developing a method for constructing a Petri
net according to a given computational process is formulated and solved. The essence of the proposed method consists in dividing the
computational process into macrooperations, building a Petri net fragment for each macrooperation, modeling all fragments,
assembling a complete Petri net from network fragments and modeling it. To implement the method, a procedure for constructing a
computational process model is being developed. The stages of this procedure are described: decomposition of the computational
process into macrooperations according to the proposed rules, translation of macrooperations into fragments of the Petri net and their
modeling, collection of the complete Petri net by the proposed rules, and modeling the resulting Petri net. The results of the
implementation of all stages of the procedure are recorded in the library, the aim of which is the accumulation of knowledge about
the computational processes corresponding to them Petri nets and modeling results. This allows us to simplify the process of
modeling a new computing process through the use of already debugged fragments. If the computational process contains errors or is
not optimal, it is corrected, which allows to improve its quality according to the above criteria.

By the example of sorting by inserts, the correctness of the operation of the constructed Petri net using the declared method is
experimentally confirmed.

Keywords: Computational Process; Macrooperation; Method; Procedure; Petri Net; Modeling; Library

For citation: Oleg N. Paulin, Nataliia O. Komleva, Stanislav U. Marulin, Anatolii O. Nikolenko. Method for Constructing the Model of
Computing Proces-sbased on Petri Net. Applied Aspects of Information Technology. 2019; Vol.2 No.4: 260-270. DOI:
https://doi.org/10.15276/aait.04.2019.1

INTRODUCTION during fatal errors, for example, division by zero, are
distinguished. CP optimization can be carried out
according to different criteria; the criterion of mini-
mum complexity is most often used.

Indirectly, the quality of a particular CP can be
evaluated by analyzing software developed on its
basis for compliance with requirements in
accordance with 1SO 12207, ISO 9000, CMM
(Capability Maturity Model). Failure to comply with
such requirements entails the need for error
correction, reengineering and re-testing of program
code, which requires additional resources, including
time, and is much more expensive than fixing errors
at the initial stage of development. However, in
practice, the development of a high-quality CP as a
basis for high-quality software is not always given
due attention, which causes the described problems.

In general terms, a computing process is a
sequence of time-ordered operations and procedures
of varying degrees of complexity. The
computational process (CP) should underlie the
software and largely determine its quality, while for
one CP, you can consider many software
implementations, taking into account different
technologies and programming languages.

To date, there are no quality standards for CP.

Traditionally; the quality of the CP is determi-
ned by the absence of errors and a certain level of
optimality. Among the types of possible errors, a
loop, a hang, and also an emergency stop of a CP

© Paulin, O. N., Komleva, N. O., Marulin, S. U.,
Nikolenko, A. O., 2019

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/deed.uk)

260 Systems analysis, applied information ISSN 2617-4316 (Print)
systems and technologies ISSN 2663-7723 (Online)

https://orcid.org/0000-0002-2210-8317
mailto:paolenic@yandex.ru
mailto:nkomlevaya@gmail.com
https://orcid.org/0000-0003-0755-0104
mailto:stanislavmaru@gmail.com
http://orcid.org/0000-0002-9849-1797
mailto:anatolyn@ukr.net

Applied Aspects of Information Technology

2019; Vol.2 No.4: 260-270

That is why the construction of a high-quality CP is
actual.

An effective way to improve CP is its
modeling, while using different approaches, taking
into account, among others, the apparatus of Petri
nets. The work offers the new approach, which
involves decomposing the CP into elementary
computing structures, modeling and debugging these
structures by Petri nets, the final assembly of
separate structures into a complete net of whole CP
and its modeling. Applying of this approach allows
improving the quality of the computing process, and
this, as a result, will lead to quality improvement of
its software implementations.

ANALYSIS OF RECENT PUBLICATIONS
AND FORMULATION OF THE PROBLEM

With all the variety of computational
processes, there is the possibility of formalizing
them, which makes it possible to choose an
apparatus for describing and further analyzing these
processes. At one time, much attention was paid to
the automatic approach to the representation of
processes and their software implementations [1]. In
the automated approach, two of the most developed
ways can be distinguished: SWITCH-technology
and SM-technology (State machine) of development
[2]. These ways are distinguished by the
implementation of the logic of automatic programs.
However, such an approach is a programming
paradigm, since it is a program or its fragment that is
interpreted as a model of some formal automaton. At
the same time, it is more expedient to associate
computational constructions with the automaton. In
addition, the disadvantage of the automaton
approach is the small computing power expressed by
the automaton language, because the automaton does
not reflect a more complex concept than
“operation”, that is, the concept of “event”.

The above disadvantages are deprived of Petri
nets, which have a significantly greater
expressiveness of their language. As shown in [3],
they occupy an intermediate position between the
state machine and the Turing machine. Petri nets
reflect the interrelation "event — condition", which
made it possible to widely use them for modeling

[4].

Thus, the publications [5-6] show the
construction of Petri nets for a wide range of
different algorithmic processes. In [7] it is shown
how the fulfillment of the conditions and restrictions
imposed on such processes affects the characteristics
of the constructed Petri nets. In the work [8], the
relationship between the complexity criteria of the
original algorithms and the sizes of Petri nets
constructed from them was studied. The article [9]

describes the optimization mechanisms for Petri nets
using the example of minimizing the number of
places using special heuristics [10, 11]. A number of
studies expand the scope of Petri nets to more
complex multilevel processes in which algorithmic
processes as such are fragmented, with the
construction of Petri nets for such fragments [12].

As can be seen from the analysis, despite a
fairly wide range of work related to computational
processes [13, 14], the authors did not attempt to
adjust the initial CP or algorithm using Petri nets
built on their basis as a reverse control action to
improve the quality of the CP.

The aim of the work is to improve the
quality of the computing process by eliminating
errors and optimizing it by modeling and debugging
based on the Petri net of the computing process and
its fragments.

To achieve this aim, the following tasks must
be solved:

— development the method for constructing a
CP model;

— development the
implements this method;

— development the rules for converting
macrooperations into fragments of Petri nets and the
further assembly of a complete Petri net.

1. BRIEF DESCRIPTION OF PETRI NETS

Petri net is a bipartite graph with set of vertices
PUT, containing two kinds of vertices: transition

procedure that

peP (depicted by a dash) and a position teT (in
some sources, a place; depicted by a circle), and,
accordingly, two types of relation: p—t (triggered
transition gives permission to fulfill the condition)
and t—p (implemented condition allows the
transition to trigger). A transition identifies an event,
and a position identifies a condition. Transitions and
positions alternate. Transitions and positions can
have several inputs and outputs.

A dot (chip) in the position indicates the
possibility of fulfilling the condition; the number of
points in the position means the number of possible
conditions. The allocation of points by position
(network marking) characterizes the state of the net.

A markup M of the net N is represented as a
vector of numbers m;, denoting the number of points
in the position pi, mi = M(pi): M = (M(p2), M(p2), ...,
M(pn)).

During the operation of the Petri net, the points
migrate over the net. When a transition is triggered,
one point is taken from the previous positions, and
one point is added to each output position.

Petri net has reachability and survivability
properties.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Systems analysis, applied information
systems and technologies

261

Applied Aspects of Information Technology

2019; Vol.2 No.4: 260-270

A markup M’ is achievable in the network from
the markup M as a result of the sequence of
operations of the transitions z = ti, to. ti, if there is
a sequence of markings

z zZ
A AL i markup M is reachable on

the net N,

,,,,,

consecutive

if there exists ¢ such that, where

T 1
Mo =M’ ‘M, — an initial markup.

Let R(N) be the set of all markups reachable in
the net N. Then the transition t is reachable from the
markup M in the net N, if markup M" exists in R(N)
M, [~ M

and there is such z, that and transition t

can work with M". A transition is reachable in the net
N, if it is reachable from Mo.

A transition t is alive if it is reachable from any
markup from R(N). A Petri net is alive if all its
transitions are alive.

2. DEVELOPMENT OF A METHOD FOR
CONSTRUCTING A COMPUTATIONAL
PROCESS MODEL BASED ON A PETRI NET

We introduce some definitions and thesis.

Definition 1. An elementary computational
process (ECP) will be called a fragment of an CP
that performs a functionally minimal complete
computation process, and the term “computation” is
understood in a broad sense: computation is the
processing of a variety of data, from simple to
multimedia.

In the paper, CPs is considered irrespective of
the form and classes of problems being solved. The
only restriction for the CP is that an algorithm must
exist for it, i.e. CP must satisfy the following
requirements: certainty, convergence and mass
character.

The quality of the CP, as mentioned above, is
understood not only as the absence of gross errors
(freezing, looping, etc.), but also its optimality in the
sense of a minimum of complexity.

There are several criteria for evaluating the
complexity of an algorithm, or CP. Most often, the
order of growth of time and memory capacity
needed to solve the problem is used, with an
increase in the amount of input data. We associate
with each concrete task a certain number n, called its
size, which would express a measure of the amount
of input data. For example, the size of the matrix
multiplication task may be the largest size of the
matrix of factors, the size of the task on the graph
may be the number of vertices/edges of a given
graph, etc.

In this case, asymptotic estimates of complexity

in the worst case are used (top marks) — O(f(n)),
where f expresses the growth rate of complexity, for
example, f=nlogn.

In addition, eliminating repetitions, rearranging
modules in order to speed up the CP, reducing the
complexity of the CP due to special techniques (for
example, splitting a task into subtasks and balancing
them, etc.) also leads to optimization of the CP.

Definition 2. Macrooperation (MO) is a
fragment of CP (ECP and more complex
functionally completed constructions) endowed with
the following attributes: name, designation, function,
parameters with details of their definition.

For example, the name MO is “Counting
cycle”, the designation is “MOcc”, the function is
“iteration count”; parameter — a variable called a
cycle parameter, for example, i, the range of
parameter valuesi=1..n.

MOs include at the lower level of the hierarchy
simple arithmetic operations and arithmetic
expressions, at the next level — rearrangement of
array elements, offsets of sequence elements,
comparison of rows/columns of a table, etc.

We proposed [15] to consider CP in the form of
two components: computational and control. The
first component is macrooperations, which are
functionally completed operations of different
hierarchical levels. The second component provides
the organization of control of CP, that is, the
alignment of the process in a certain order. The
controls are proposed — “follow”, “select”, and
“transition”; a theorem on the functional
completeness of these control elements (CE) is
proved. Well-known control structures are built from
CE [16]: an alternative and cycles of three types:
countable, conditional of the first kind (with a
precondition) and conditional of the second kind
(with a postcondition).

Thus, the theorem is fundamental: it allows us
to formalize the CP recording [17] and opens up the
possibility of constructing algebra of control
structures.

Note that control structures (composition,
alternative, iteration, and more complex structures)
can be built into the MO. So, a simple sorting by
inserts can be considered as a MO of the 3rd
hierarchy level with two cycles controlling the
sorting process.

In [18], the MOs were located; MO lists are
ordered taking into account the hierarchy of CP
fragments. The final list contains 19 MOs.

In [19; 20], the consideration of another class of
CPs — the search for coverage — was begun; the
search algorithms for coverage by boundary search
and reduction of the coverage table using the
corresponding theorems are analyzed. A feature of

262

Systems analysis, applied information
systems and technologies

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology

2019; Vol.2 No.4: 260-270

this class of tasks is the work with tables. For the
mentioned algorithms, the total number of
elementary MOs was 22, which gives reason to
assert a relatively small variety of MOs and the
possibility of forming their complete list for certain
classes of problems.

Statement. Any CP can be represented by a
combination of a relatively small number of MOs
and control elements/structures.

In accordance with the proposed approach, for
the developed method of constructing a CP model
on the basis of a Petri net, it provides operations for
decomposing a CP into an ECP, debugging them on
the corresponding Petri net, assembling the complete
net and modeling it. The essence of the method is
the sequential transformations of the CP into a Petri
net and modeling the resulting net.

The method of constructing a CP model based
on a Petri net includes:

1) decomposition of CP into ECPs;

2) formalization ECP in the form of MO;

3) building a model of ECP in the form of a
fragment of Petri net for each MO;

4) Petri net fragment modeling;

5) building a complete Petri net;

6) modeling a complete Petri net.

Procedure that implements the method

This method is implemented as a procedure
that at each stage implements one of the operations
of the method. At the same time, interaction with the
library is carried out.

Here is a description of the proposed procedure.

Input: initial CP in the form of a verbal
description of the algorithm.

Output: MOs, Petri net fragments, corrected
CP and a complete Petri net.

Verbal description of the procedure

1. The initial CP is divided into elementary
computing processes.

2. ECPs identified with MOs with the
assignment of certain attributes.

3. MOs, according to certain rules, are
transformed into Petri net fragments.

4. Fragments of the Petri net are modeled. If
the result is positive (no errors), then the MO and the
corresponding fragment of the Petri net are entered
into the library if they are not there. In the case of an
unsatisfactory result, it is necessary to return to the
original CP and correct the error (correct the CP)
and then repeat steps 2 and 3.

5. Next, according to certain rules, fragments
of the Petri net are assembled to obtain a complete
network.

6. The resulting Petri net is modeled and the
results are analyzed. In the case of an unsatisfactory
result (the desired quality of the CP is not achieved),
it is necessary to return to the original / previous
version of the CP and correct the errors. If the

desired quality is achieved, then the last versions of
the CP and Petri nets and the corresponding
fragments of the CP and Petri nets are entered into
the library.

Rules for transforming a MO into a
fragment of a Petri net and assembling a
complete Petri net

Representation of MO by fragments of the Petri
net is carried out according to the following rules.

1. MO is represented by a transition, which is
framed by the input and output positions; point is
placed in the entry position.

2. The selection operation is represented by a
position with two outputs that are assigned priority 0
and 1.

The complete Petri net corresponding to the
initial CP is constructed from fragments of the Petri
net according to the rules:

1. The sequence of MOs is represented by the
sequence of transitions corresponding to them;
positions are placed between transitions; the
sequence is framed by the input and output
positions. A point is placed at the input position.

2. At the merging of individual sequences, the
output position of the previous sequence merges
with the input position of this sequence. The input
position of the resulting sequence will be the input
position of the previous sequence, and the output
position will be the output position of this sequence.

Note that the obligatory alternation of positions
and transitions leads to the need to introduce
fictitious positions and transitions.

Library of descriptions of and
corresponding Petri nets

The library is designed to store debugged MOs,
fragments of Petri nets, CPs, complete Petri nets and
their descriptions. The library is organized
hierarchically.

Four operations are defined for the library of
descriptions: adding a new component (MOs,
fragments of Petri nets, CPs, full Petri nets) to the
library, searching for the specified component,
selecting the specified component and deleting it.

The library is the core of the knowledge base,
structured by classes of tasks: sorting, finding
coverage, tasks on graphs, etc.

There are also components used in different
classes of tasks. These common components are
allocated in a separate group.

In certain sections of the library, the formulas
of MOs and CPs should also be stored.

The example of the allocation of MO

Consider, as an example, the allocation of MOs in
sorting by simple inserts.

Fig. 1 shows the graphical model of such sorting
in ascending order. The graphic model contains a
numerical axis on which dots indicate the sequence of

cps

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Systems analysis, applied information
systems and technologies

263

Applied Aspects of Information Technology

2019; Vol.2 No.4: 260-270

array elements. Considered ideas retain their meaning
when sorting has descending order.

The sorted sequence is divided into two
subsequences: finished and input. The arrow shows the
possible movement of the boundary (current) element.

The basic concept of “border” is introduced,;
this border separates the finished and input
subsequences. It uses the specification of: current,
next and the initial border. A boundary element is an
element immediately beyond the border.

B CB NB
o T - - —}
dy do . Hj.| E'Ij dip 4 dj+ dy,
finished sequence mput sequence
IB - initial bound
CB —current bound

NB — next bound

Fig. 1. CP model “Sorting by simple inserts”

Source: compiled by the author

The current state of the sorting process is
considered and the new positions of the border, as
well as its initial and starting position, are indicated.
During the operation of the simple insertion sorting
method for the current boundary element x, a
suitable place in the finished subsequence is sought,
for which a double inequality is used: aj1<X<a.
Since x may be in the first position, and in this case
the left side of the double inequality is missing, a

dummy element is introduced ay, called the “barrier.
For a guaranteed hit x in the first position take ao=x.

Fig. 2 shows a flowchart, constructed in
accordance with the considered model of the sorting
process. Iteration counters for internal and external
loops are shown. The dashed-dotted line in the
diagram represents the inner loop. This flowchart
fully displays the CP.

i=it+1

,,,,,,,,,,,,,,,,,,,,,,

[Shift of the element a;

|: Appropriate place

_____________________ — —

Fig. 2. Flowchart of a simple insertion sorting algorithm
Source: compiled by the author

264 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Systems analysis, applied information
systems and technologies

Applied Aspects of Information Technology

2019; Vol.2 No.4: 260-270

From CPs for simple and selected complex
sortings, MOs are selected and collected in the
corresponding lists. These lists are systematized by
combining into a common list with its subsequent
minimization. Specific to the considered sortings is
the MO “Compare — rearrange”. In addition, for
complex sortings, the MO “Sublisting” is specific.
Two dozen MOs turned out to be sufficient to
describe this class of sorting. At the same time, some
MOs can also be used in CPs of other classes.

Here is a list of MOs for sorting by simple
inserts:

1. MO “Search for a suitable place” (this is a
joint implementation of MO “Counting Cycle” and
MO “Comparison of Double Inequality™).

2. MO “Shift an element by one position to
the right”.

3. The organization of the cycle under the
condition.

3. EXPERIMENTAL RESULTS AND
EVALUATION

Consider an example of constructing and
modeling a Petri net for the given sorting by simple
inserts. Fig. 3 shows the Petri net constructed
according to the rules defined above for this CP.

Traditionally, the Petri net contains the usual
net links along which the chips are moved according
to the scenario specified by the algorithm. However,
for a full description of the CP, this is not enough —
additional facilities are needed to implement the
operation of choosing alternatives. The use of
inhibitory bonds that implement the logic NOT
turned out to be artificial. As the analysis showed, an
introduction to the consideration of priorities is more
appropriate: “1” corresponds to the TRUE
alternative, and “0” corresponds to the FALSE
alternative. For modeling, we use a special class of
Petri nets with a priority mechanism — these are E-
nets [21] (Evaluation nets). Emulators are known
[22], which are most suitable for our purposes; we
have chosen a freeware program PIPE 2 [23].

Fig. 3. Petri net for CP of sorting inserts

Source: compiled by the author

The selected Petri net editor uses the cross-
platform programming language Java, which allows
to run nets on various operating systems. PIPE2
allows creating, editing and simulating stochastic
Petri nets, including with inhibitor arcs. The editor
has a number of additional analysis modules that
expand its functionality.

The description of the components of the Petri
net as a model for CP sorting by simple inserts is
given in Table 1 and Table 2.

Based on the structure of the Petri net, we
define transition scenarios that encompass all
possible branches / contours of the structure.

We have:

1) p0—t0—pl—tl—p2;

2) p0—t0—NOTp1—t2—p3—t3—>NOTp4—t8
—p7—t9—pl—-tl—p2;

3) p0—t0—>NOTp1—-t2—p3—t3—>NOTp4—t8
—p7—t9—>NOTpl1—-t2—p3—t3—>NOTpd—...—t9
—pl—tl—p2;

4) p0—t0—>NOTpl—t2—p3—t3—pd—td—p5
—t5—-p6—>t6—p5—... >NOTp6—-t7—p7—1t9—
NOTpl—t2—p3—t3—pd—td...—t3->NOTpd—...
—t9— pl—tl—p2.

Table 1. Positions and their meaning

Positions Meaning
Po Start
p1 i>n
p2 End
ps3 6]
pa X<aj
ps 6]

Ps X<aj-1
p7 6]

Source: compiled by the author

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Systems analysis, applied information
systems and technologies

265

Applied Aspects of Information Technology

2019; Vol.2 No.4: 260-270

We believe that in the position pi condition pi is
checked.

Table 2. Transitions and their meaning

Transitions Meaning
to input A; i:=2
t1 output A’
t2 X:=aj; 80:=X
ts j=i-1
ts NOP
ts Qj+1:= @
te j=-1
t7 aj:=X
ts NOP
to ii=i+l

Source: compiled by the author

The first scenario is trivial and actually tests the
ability to perform a sort operation. The second
scenario occurs if there are only two numbers in the
array to be sorted. The third scenario corresponds to
the situation when the source array is already sorted.
There is a cycle ... NOTpl—t2—p3—t3—>NOTp4
—t8—p7—t9—NOTpl..., exit from which occurs
when checking all numbers of the array by condition
pl: i>n. The fourth scenario is the main one with an
inner loop ... p5—t5—p6—t6— 5... with an exit
from it by condition NOTp6, and external
NOTpl—t2—p3—t3—-NOTp4—t8—p7—t9—NO
Tpl..., exit from which occurs when the condition
pl: i>n is true, that is, after sorting all the elements
of the array.

Note that triggering transitions t1 or t2, t4 or t8,
t6 or t7 occurs depending on the value of the
condition being checked pl, p4, p6 respectively in
the corresponding position (truth is 1, false is 0). On
the net scheme, this is indicated by the numbers 0
and 1 near the arc leaving the position.

The modeling results showed that each of the
scenarios is executed, i.e., the net is alive, and with
the correct initial data the modeling ends in a finite
number of steps.

CONCLUSION

In this paper, we propose a new approach to
improving the quality of the computational process
(CP), which consists in preliminary modeling of the
CP by the Petri net and transferring the improved CP
to the stage of software implementation. The choice
of a Petri net for modeling is based on the fact that
the Petri net has a more powerful description
language than other known models (for example,
automatic). To implement this approach, the method
for constructing a CP model based on a Petri net was
developed. The method is implemented in the form
of a procedure consisting of a sequence of the
following steps: decomposition of the CP into the
macrooperations (MOs), transformed them into Petri
net fragments, assembly of the complete net and its
research. The proposed approach is consistent with
the criterion of “scientific innovation”.

Petri net modeling allows us to determine the
reachability of any vertex from a given one, i.e.
verify all branches and contours of the CP, as well as
the survivability of the net. In this case, CP errors
are detected: looping, hovering, unreliability of
some of its fragment. CP optimization is also
possible: detection and elimination of repetition of
CP fragments, rearrangement of CP modules to
accelerate its execution, etc.

The examples of simple sorting and solving the
coverage task show the possibility of isolating MOs
and minimizing their number. However, to complete
this stage, a methodology should be developed for
the general case.

A more detailed study of the organization of a
library of descriptions of CPs and their fragments
and corresponding fragments of the Petri net, as well
as debugged CPs and their corresponding complete
Petri nets, is required. The stage of interaction with
the library was worked out sketchy — further
extensive research is required here. This would
simplify the description of the CP and its modeling.

An example of sorting by inserts shows the
transformation of a CP into a Petri net, as well as a
study of the operability of this Petri net for all net
behavior scenarios; the correctness of the Petri net
operation for this CP is shown. For the general case
of studying the behavior of a Petri net, it is necessary
to develop a method for converting a CP into a Petri
net and a method for modeling a CP in the general
case based on the corresponding Petri net.

266 Systems analysis, applied information
systems and technologies

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Applied Aspects of Information Technology 2019; Vol.2 No.4: 260-270

REFERENCES

1. Shulga, T. E., Ivanov, E. A, Slastihina, M. D. & Vagarina, N. S. “Developing a software system
for automata-based code generation”. Programming and Computer Software. 2016; Vol.42 Issue 3: 167—
173. DOI: https://doi.org/10.1134/s0361768816030075.

2. Lyubchenko, V. “K probleme sozdaniya modeli parallel'nyh vychislenij”. [To the Problem of
Creating a Parallel Computing Model] (in Russian). Proceedings of the Third International Conference
“Parallel Computing and Control Problems, PACO'2006”. 2006.

3. Truhin, M. P. “Modelirovanie signalov i system” [Modeling Signals and Systems] (in Russian).
Setevye modeli: Uch. Posobie. Publ. Izd-vo Ural. Un-ta. Yekaterinburg: Russian Federation. 2018. p. 204

4. Latsou, C., Dunnett, S. J. & Jackson, L. M. “A new Methodology for Automated PetriNet
Generation: Method Application”. Reliability Engineering and System Safety. 2019; Vol.185: 113-123. DOI:
https://doi.org/10.1016/j.ress.2018.12.017.

5. Badouel, E., Bernardinello, L. & Darondeau, P. “Petri Net Synthesis”. Springer Publ. Heidelberg:
2015. 339 p. DOI: https://doi.org/10.1007/978-3-662-47967-4.

6. Reisig, W. “Understanding Petri Nets”, “Modeling Techniques, Analysis Methods, Case Studies”,
211 p. Springer Publ. Hiedelberg: 2013. DOI: https://doi.org/10.1007/978-3-642-33278-4.

7. Kleijn, J. (eds) “Transactions on Petri Nets and Other Models of Concurrency XI1”. “Lecture Notes in
Computer Science”. Springer Publ. Berlin: Heidelberg. 2016. Vol. 9930. DOI: https://doi.org/10.1007/978-
3-662-53401-4 9.

8. Knight, S., Lanese, 1., Lluch Lafuente A., Vieira, H. T. (Eds.). 8th Interaction and Concurrency
Experience, (ICE 2015) EPTCS. 2015. 189. p. 53-67. DOI: https://doi.org/10.4204/EPTCS.189.6.

9. Schlachter, U. “Petri Net Synthesis for Restricted Classes of Nets”. “Application and Theory of Petri
Nets and Concurrency”. PETRI NETS 2016. “Lecture Notes in Computer Science”. Springer Publ. Cham.
2016. VV0l.9698. DOI: https://doi.org/10.1007/978-3-319-39086-4_6.

10. Amparore, E. G., Donatelli, S., Beccuti, M., Garbi, G. & Miner, A. “Decision Diagrams for Petri
Nets: A Comparison of Variable Ordering Algorithms”. “Transactions on Petri Nets and Other Models of
Concurrency XI1I”, “Lecture Notes in Computer Science”. Springer Publ. Berlin: Heidelberg. 2018. Vol.
11090. DOI: https://doi.org/10.1007/978-3-662-58381-4_4.

11. Shershakov, S. A., Kalenkova, A. A. & Lomazova, I. A. “Transition Systems Reduction: Balancing
Between Precision and Simplicity”. “Transactions on Petri Nets and Other Models of Concurrency XII”.
“Lecture Notes in Computer Science”. Springer Publ. Berlin: Heidelberg. 2017. Vol. 10470. DOI:
https://doi.org/10.1007/978-3-662-55862-1 6.

12. Ribeiro, Joel & Carmona, Josep. “A Method for Assessing Parameter Impact on Control-Flow
Discovery Algorithms”. “Transactions on Petri Nets and Other Models of Concurrency XI”. “Lecture Notes
in Computer Science”. Springer Publ. Berlin: Heidelberg. 2016. Vol. 9930.
DOI: https://doi.org/10.1007/978-3-662-53401-4_9.

13. Verlan, A. F., Polozhaenko, S. A., Prokofieva, L. L. & Shylov, V. P. “Algorithmization of the Failed
Subschemes Localization Process”. Herald of Advanced Information Technology. Publ. Science &
Technology. Odessa: Ukraine. 2019; Vol.2 No.1: 37-46. DOI: https://doi.org/10.15276/hait.02.2019.4.

14. Kalnauz, D. V. & Speranskiy, V. A. “Productivity Estimation of Serverless Computing’. Applied
Aspects of Information Techology. Publ. Science & Technology. Odessa: Ukraine. 2019; Vol.2 No.1: 20-28.
DOI: https://doi.org/10.15276/aait.02.2019.2.

15. Paulin, O. “O funkcional'noj polnote elementov upravleniya vychislitel'nymi processam”. [On the
Functional Completeness of Control Elements of Computing Processes] (in Russian). Scientific looking to
the future. Odessa, Ukraine. Institute of Maritime and Enterprise. Release 4. 2016; Vol.4:4-8. DOI:
https://doi.org/10.21893/2415-7538-2016-04-4-018.

16. Goodman, S. E. & Hedetniemi, S. T. “Introduction to the Design and Analysis of Algorithms”, Publ.
Tata Mcgraw-Hill. New Delhi: 2002. DOI: https://doi.org/10.2307/2346822.

17. Paulin, O., Komlevaya, N. & Marulin, S. “Ob upravleniya vyichislitelnyimi protsessami”. [About a
Management by the Calculable Processes] (in Russian). Trudy XVII International Research and Practice
Conference “Modern Information and Electronic Technologies ”. Odesa: Ukraine. 2016; Vol.1: 20-21.

ISSN 2617-4316 (Print) Systems analysis, applied information 267
ISSN 2663-7723 (Online) systems and technologies

https://link.springer.com/journal/11086
https://link.springer.com/journal/11086/42/3/page/1
https://www.sciencedirect.com/science/article/pii/S0951832017312073
https://www.sciencedirect.com/science/article/pii/S0951832017312073
https://www.sciencedirect.com/science/journal/09518320
https://doi.org/10.1016/j.ress.2018.12.017
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/10.1007/978-3-319-39086-4_6
https://doi.org/10.1007/978-3-662-55862-1_6
https://doi.org/10.1007/978-3-662-53401-4_9
https://doi.org/
https://doi.org/
https://doi.org/

Applied Aspects of Information Technology 2019; Vol.2 No.4: 260-270

18. Paulin, O., Komlevaya, N. & Marulin, S. “O vydelenii makrooperacij iz vychislitel'nyh processov
sortirovki massivov dannyh”. [Macro-operations Extraction out of Computation Process array Sorting Data]
(in Russian). CEUR Workshop Proceedings. 2016. DOI: https://www.scopus.com/record/display.uri?eid=2-
s2.0 84983598214&origin=inward&txGid=ccde5cf7d4ee8f843deb8079c5883e22.

19. Paulin, O. “Vychislitel'nye modeli algoritmov pokrytiya”. [Computational Models of Coverage
Algorithms] (in Russian). Computer science and Mathematical Methods in Modeling. 2016; No. 4: 385-396.

20. Paulin, O. “Vychislitel'nye modeli processa predvaritel'nogo sokrashcheniya tablicy pokrytiya”.
[Computational Models of the Process of Preliminary Reduction of the Coverage Table] (in Russian).
Computer science and mathematical methods in modeling. 2017; No.4: 333-338.

21. Cabac, L., Haustermann, M. & Mosteller, D. “Software Development with Petri nets and agents:
Approach, Frameworks and tool set”. Science of Computer Programming. 2018. Vol.157:56-70. DOI:
https://doi.org/10.1016/j.scic0.2017.12.003.

22. Dingle, N. J., Knottenbelt, W. J. & Suto, T. “PIPE2: a Tool for the Performance Evaluation of
Generalized Stochastic Petri Nets”. Newsletter ACM SIGMETRICS Performance Evaluation. 2009; Vol.36
Issue 4: 34-39. NY: USA. DOI: https://doi.org/10.1145/1530873.1530881.

23. “PIPE2: Platform-Independent Petri net Editor”. — Available from: http://pipe2.sourceforge.net. —
Active link — 28.10.2019.

Conflicts of Interest: the authors declare no conflict of interest.

Received 17.09.2019
Received after revision 26.11.2019
Accepted 02.12.2019

DOI: https://doi.org/10.15276/aait.04.2019.1
VK 004.042

METO INIOBYAOBU MOAEJII OBYUCJIIOBAJIBHOI'O ITPOLHECY
HA OCHOBI MEPEXI IETPHU

Outer Muxosnaiiopuy Iayin®
ORCID ID: https://orcid.org/0000-0002-2210-8317, paolenic@yandex.ru

Hartaxis Oxerieaa Komaepa®
ORCID ID: https://orcid.org/ 0000-0002-2430-0134, nkomlevaya@gmail.com

Cranicaas IOpiiioBuy MapyinY
ORCID ID: https://orcid.org/ 0000-0003-0755-0104, stanislavmaru@gmail.com

Anartoaiid OJexkcanapoBuy HikoJsienko?
ORCID ID: https://orcid.org/0000-0002-9849-1797, anatolyn@ukr.net
1) Onechruit HaiOHANBHMI MONTiTEXHIURMH yHiBepcuTeT, nip. llepuenka, 1. Oneca, 65044, Ykpaina

AHOTALIS

Mertoto poOOTH € TMiABHIICHHS SKOCTI OOYHCIIOBANIFHOTO IIPOLECY, IO BHPINIYE MOCTAaBICHY 3a1ady, 3a paxyHOK HOTO
MOJIETIOBaHHSI i Halaro/pkeHHs Ha ocHoBi Mepexi [Terpi. ITix sikicTio 06YMCITIOBAIBHOTO MPOLIECY PO3YMIETHCS BiICYTHICTH TOMHIIOK
(3a UMKITIOBaHHSA, Mapaniv, HEMOXKIIHBICTh peanizaiil Aeskoro (parMeHTy i T.I.) i HOro omTuMi3alis 3a KpHTEpieM MiHIMyMy
cknagHocTi. [IponoHyeThcs HOBHIT MiIXiA O aHali3y OOYMCIIOBAIBFHOTO MPOIECY, 3aCHOBAHMII Ha IIONEPETHHOMY MOJIEIIOBAHHI
Mepexkamu [leTpi sk pparMeHTiB 00YHCITIOBATEHUX MPOIECIB, TaK 1 OBHUX OOUYMCIIOBAIBHUAX MpoIeciB. Lle M103BOMUTE BUSBISATH
6arato MOMHJIOK Ha CTail MOJEIIOBAaHHS OOYMCIIOBAIBHOTO mpouecy. OOUHCIIOBANIBHUN MPOLEC PO3IIIANAETECA SK CYKYIHICTh
Makpoorepanii, ki € (yHKIIOHAIFHO 3aKIHUCHHMH OIEpaIlisIMA Pi3HOTO iepapXidHOro piBHS. s BUALIEHHS Makpoomepamiid 3
00YHCITIOBAIBHOTO TIPOIIECY MPOBOAMTHCS HMOTO JEKOMIIO3MWINSE Ha eleMeHTapHi (0a30Bi) OOYHCIIOBAaJbHI KOHCTPYKIIIi.
DopMyIIOEThCST TBEPXKESHHS PO T€, IO OyIb-IKUil 0OUUCITIOBANBHUI MTpOLIeC MOXKe OYTH CKOHCTPYIHOBaHHI Ha OCHOBI BiTHOCHO
HEBEJIMKOI KiJIbKOCTi Makpoorepauiid. s peanisaiii HOBOrO MiAXOAy CTAaBUThCS 1 BHPIILIYETHCS 3aBAaHHS PO3POOKH METOIY
nobynoBun Mepexi Ilerpi mo 3amanomy oOuncmroBanbHOMY mporiecy. CyTh 3alpoOIIOHOBAHOTO METOIY MOJATae B PO3OHTTI
00YHCITIOBAIEHOTO MPOIIECY HAa MaKpoorepallii, HoOyIoBi Ul KOKHOI Makpoorepalii ¢pparmMenta mepexi [leTpi, MomemoBaHHI BCiX

268 Systems analysis, applied information ISSN 2617-4316 (Print)
systems and technologies ISSN 2663-7723 (Online)

Applied Aspects of Information Technology 2019; Vol.2 No.4: 260-270

¢dparmenTiB, 30ipkn 3 QparmeHTiB Mepexi moBHOI Mepexi Ilerpi i i momemoBanHi. g peamizanii MeToxy po3poOIseThCs
nporeaypa noOyaoBn Mopesi OOGUHCIIOBAIBHOrO mpolecy. HaBOOMTBCS ONMC €TamiB JaHOI MPOLEIypH: JEKOMIIO3ULIsA
00OYKCIIIOBAILHOTO MPOLIECY Ha MAKpooIepalii 3a 3alpoHOHOBAaHNMH IIPaBHIaMH, HepeKiiajl Makpoornepauii y GpparMeHTH Mepesxi
IMerpi i ix MomemoBaHHS, 30ip 3a 3aIPONOHOBAHMMHE IpaBHIaMH IOBHOI Mepexi [leTpi i MoxemroBanHsT oTpuManoi Mepexi Ilerpi.
Pesynpratn peamizamii Bcix erTamiB IIpOLEXypH 3aHOCAThCS B Oi0MiOTEeKy, HpU3HAYEHHS SKOi — HAKONWYEHHS 3HAHb IIPO
oOuncIIoBanbHI HpouecH, BiAMoBimHI iM Mepexi [leTpi Ta pesynpTatu MopemioBaHHS. Lle m03BoNs€e CHOPOCTUTH MpoLec
MO/ICIIIOBaHHS HOBOT'O OOYHCIIIOBAIIBHOTO MPOLIECY 32 PaXyHOK BUKOPHCTAHHS BXKE HANarofkeHuX QparmeHtiB. Y pasi BUSABICHHS
MIOMHJIKA B OOYHMCITIOBAILHOMY IIporieci abo oro He ONTHMAIBHOCTI OOYMCIIIOBAJIBHHH IPOLEC KOPHUTYETHCS, IO 1 JTO3BOISIE
MiABUIIUTH HOTO SIKICTh 32 BKA3aHUMH BHUILE KPUTEPISIMU.

Ha npuxnazni copTyBaHHSA BCTaBKaMU €KCIIEPHUMEHTAIBHO MiATBEPDKY€ETHCS MPABWIBHICTE poO0TH MoOynoBaHoi Mepexi Ilerpi
13 3aCTOCYBAaHHSIM 3asIBJIICHOTO METO.Y.

Kiwouosi cioBa: 00UHCTIOBAIBHIN MPOIIEC; MIKPOOTIEpAIlis; METO; TIpolieaypa; Mepexa [letpi; MoaenroBaHHs; 6i0mioTeKa

DOI: https://doi.org/10.15276/aait.04.2019.1
YK 004.042

METOA ITIOCTPOEHMA MOAEJIN BBIYUCJIMTEJBHOI'O TIPOLIECCA
HA OCHOBE CETU IIETPHU

Ouer Hukonaesnu IMayann?
ORCID ID: https://orcid.org/0000-0002-2210-8317, paolenic@yandex.ru

Hartamus Oxnerosua KomieBas®
ORCID ID: https://orcid.org/0000-0002-2430-0134, nkomlevaya@gmail.com

Cranucaas IOpresuny Mapyiun®
ORCID ID: https://orcid.org/ 0000-0003-0755-0104, stanislavmaru@gmail.com

Anartounii Anexcanaposny Hukosenko!)
ORCID ID: https://orcid.org/0000-0002-9849-1797, anatolyn@ukr.net
D) Onecckuii HAMOHANBHBIH MOTUTEXHUYECKUH yHUBepcuTeT, np. LlleBuenko, 1. Onecca, 65044, Ykpauna

AHHOTALIUS

Ienbro paboTHI ABIISIETCS MOBBILICHAE KAYeCTBA BBIYHCIUTEIBHOTO IPOLIECCa, PEIIAOIIET0 OCTABICHHYIO 3a/1ady, 3@ CUET ero
MOZENMPOBAHMS U OTIIAAKK Ha ocHOBe ceTy Ilerpu. ITox kKauecTBOM BBIMHCIHTENHHOTO MPONEcCca HOHUMACTCS OTCYTCTBHE OIIHOOK
(3aumKIMBaHMe, Mapaluy, HEPEeATH3yeMOCTh HEKOTOpPOro (parMeHTa W T.I.) U €ro ONTUMHU3ALMSA [0 KPUTEPHI0 MHHHMyMa
cnoxxHoct. Ilpennaraercst HOBBIM MNOAXOJN K AaHAJIU3y BBIYUCIMTENBHOIO IIpoLlecca, OCHOBAHHBIH Ha IpeIBapUTEIbHOM
MoZenupoBaHuH ceTaMu [leTpu kak GparMeHTOB BBIYMCIHMTEIBHBIX MPOLECCOB, TAK M MOJHBIX BBIYACIMTEIBHBIX MPOLECCOB. DTO
MO3BOJIMT BBIABIAT MHOTHE OIMMOKM HAa CTAAWH MOMAEIMPOBAHHS BBIYMCIMTEIBHOTO IIpoIlecca. BBMMHCIMTENBHBIM mporiecc
paccMaTpHBaeTCsl KaK COBOKYITHOCTh MAaKpOONEpaIuH, KOTOpBIE SBISAIOTCA (YHKIMOHATBHO 3aKOHUYCHHBIMH OIEpanvsiMU
Pa3IM4YHOrO HepapXU4yeckoro ypoBHA. Jlis BblIesNeHMS MakpoollepalMii U3 BBIYMCIUTEIBHOTO IIpoliecca IPOBOAUTCS €ro
JIEKOMITO3UIIMSI Ha 3JIeMeHTapHble (0a30BbIe) BHIUUCIUTEIbHBIE KOHCTpYKIMH. DopMymupyeTcss yTBepKIeHHE O TOM, YTO JF000it
BBIYHCITUTENHBIA MPOIECC MOXKET OBITh CKOHCTPYHPOBAaH Ha OCHOBE OTHOCHTENBHO HEOOJNBIIOrO YMcia Makpoorepanwuif. [t
pea3allid HOBOTO IIOJXO/a CTaBUTCS M pellaeTcs 3ajada pa3pabOTKH METOJa IOCTPOeHHs cetd Ilerpu mo 3ajaHHOMY
BBIYUCIUTENbHOMY Iponieccy. CyTh IpearaeMoro MeTo/ia COCTOUT B Pa30MEHHU BBIYHUCIUTENBHOTO TPOLECcca Ha MaKpOOIIepalnH,
MOCTPOCHUH IS KXKIOH Makpoorepanun ¢pparmenTa cetu [lerpu, MogennpoBaHnu BcexX (parMeHTOB, COOPKH U3 pparMeHTOB CETH
nonHoit cetn Ilerpm m e€ MonemupoBaHuu. s peanu3zanmuu MeTona pa3padaThIBaeTCs IPOLEAypa MOCTPOCHUS MOJENU
BBIUMCIIMTENIBHOTO Ipolecca. IIpuBoauTcs onucaHue 3TAaloB JaHHOM MpOLEeayphl: TEKOMIO3UIUS BBIYMCIUTENBHOTO Mpolecca Ha
MAaKpOOIIepaLUH 110 MIPE/I0KEHHBIM IIPaBUIIaM, IePEeBO Makpoonepalui Bo GpparMeHTs cetu [leTpu 1 ux MoaenupoBaHue, coop mo
MpeI0KEHHBIM IIpaBuiaM nojHou cetu Ilerpu u MozaenupoBanue nonyueHHoU cetu [lerpu. Pe3ynbTaThl peanusanuu BcexX 3TanoB
MPOLEYPEl 3aHOCATCA B OMONMOTEKy, Ha3HaUCHHE KOTOPOH — HAKOIUICHWE 3HAHMH O BBEIYHCIUTENBHBIX MPOIECCax,
COOTBETCTBYIOILIUX UM CETAX ﬂeTpM U pe3ysibTaTaX MOACIMPOBAHMUIL. DTO MO3BOJSET YHOPOCTUTH IIPOLECC MOACIMPOBAHUA HOBOTO
BBIYHCIUTENIFHOTO TpoIecca 3a CYET HCIONBb30BaHUS YK€ OTJIAXKEHHBIX (parMeHToB. B ciydae BbIABIEHHS ONIMOKH B
BBIYHCITUTENILHOM ITIPOIECCE MM €r0 He ONTHMAJIbHOCTH BBIYMCIMTEIBHBIN MPOLEcC KOPPEKTHPYETCs, YTO M MO3BOJIAET MOBBICHTH
€ro KayecTBO IO YyKa3aHHBIM BbIlIe KpUTepusM. Ha mpumepe COpPTUPOBKM BCTaBKaMU 3KCIIEPUMEHTAIBHO ITOATBEPIKIAETCS
NPaBUILHOCTH PaObOTHI MOCTpOeHHOU ceTH [leTpu ¢ mpuMeHeHreM 3asBICHHOT0 METOoa.

ISSN 2617-4316 (Print) Systems analysis, applied information 269
ISSN 2663-7723 (Online) systems and technologies

Applied Aspects of Information Technology 2019; Vol.2 No.4: 260-270

KaroueBbie CJ0Ba: BBIYMCIUTENBHBIA MPOIECC, MAKPOOIEPANuUsi; METOX; IpOIleaypa; ceTh lleTpu; MOJEIHUpPOBAHUE;
OubIMOTEKA

ABOUT THE AUTHORS

Oleg Nikolaevich Paulin, Dr. Sci. (Eng), Associate Professor of the System Software Department, Odessa National
Polytechnic University, 1, Shevchenko Avenue. Odesa, 65044, Ukraine

paolenic@yandex.ru. ORCID: https://orcid.org/0000-0002-2210-8317

Research field: Algorithms, Parallel and Distributed Systems and Computing, Processing Large Data Streams, Computer
System Components

Ouer MuxoaaiioBuy Ilaysin, noxTop TexHid. Hayk, HoUeHT kadeapu CHCTEMHOro MPOrpaMHOro 3a0e3NedeHHs IHCTHTYTY
KOMIT'T0TepHUX cucTeM. Onechkuil HallioHaIbHHN MONITeXHIYHUH yHiBepcuteT, np. llleBuenka, 1. Opeca, 65044, Ykpaina

Nataliia O. Komleva, PhD (Eng), Associate Professor of the System Software Department, Odessa National Polytechnic
University, 1, Shevchenko Avenue. Odesa, 65044, Ukraine.

nkomlevaya@gmail.com. ORCID: https://orcid.org/0000-0001-9627-8530

Research field: Data Analysis, Analysis of the Quality of Information Sources, Machine Learning

Haraunist OneriBna KomneBa, kanannar TeXHIYHHX HayK, ToLeHT Kadeapu CHCTEMHOTO IMPOrpaMHOro 3a0e3neeHHs
IHCTHTYTY KOMII IOTepHHX cucTeM. OfiechKHil HalllOHAIBHUH MOTITEXHIYHUH yHIBepcuTeT, mp. llleBuenka, 1. Oxneca, 65044,
VYkpaiHa

Stanislav U. Marulin, PhD (Eng), Associate Professor of the System Software Department, Odessa National Polytechnic
University, 1, Shevchenko Avenue. Odesa, 65044, Ukraine.

stanislavmaru@gmail.com. ORCID: https://orcid.org/ 0000-0003-0755-0104

Research field: Database Development, Object Oriented Design and Programming

Cranicaas FOpiiioBny Mapy.in, kKaHIUJaT TEXHIYHAX HAyK, TOLEHT Kadenpu CHCTEMHOTO IpOrpaMHOro 3a0e3IeueHHs
IHCTHTYTY KOMII FOTepHHX cucTeM. OfiechKHi HalllOHAILHUH MOTITEXHIYHMH yHiBepcuTerT, mp. IlleBuenka, 1. Oxneca, 65044,
VYkpaina

Anatolii O. Nikolenko, PhD (Eng), Associate Professor of the Information Systems Department, Odessa National Polytechnic
University, 1, Shevchenko Avenue. Odesa, 65044, Ukraine

anatolyn@ukr.net, ORCID: http://orcid.org/0000-0002-9849-1797

Research field: Modeling Systems, Digital Signal and Image Processing

Amnarodaiii Onekcanapouy HikoneHko, kKaHIuIaT TEXHIYHUX HAYK, JOIEHT Kadeapu [Hpopmaniiaux cucteM. OnechKuii
HaIlloHaJTBHUI MoJTiTeXHiuAMi yHiBepcuTeT, np. llleBuenka, 1. Oneca, 65044, Ykpaina

270 Systems analysis, applied information ISSN 2617-4316 (Print)
systems and technologies ISSN 2663-7723 (Online)

