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ABSTRACT 

Modern computer networks face increasing challenges due to the growing complexity of their structure, dynamic traffic 
fluctuations, and the need to maintain high performance. Traditional approaches to network modeling often fail to accurately predict 
parameters such as latency or packet loss, as they have limited capacity to capture the specific characteristics of individual network 
elements. This highlights the relevance of developing novel methods that can adapt to real operating conditions and ensure efficient 

resource management. The aim of this study is to enhance network modeling methods by developing a model that incorporates the 
individual properties of network elements to improve the accuracy of parameter prediction and to optimize routing processes. The 
research objectives include the analysis of current modeling approaches, the design of an improved model based on machine learning 
techniques, the refinement of training algorithms, and the execution of experiments to evaluate the model’s effectiveness. Machine 
learning methods were applied in the implementation, with particular emphasis on a graph neural network, which enables the modeling 
of complex interdependencies among network elements. The proposed model integrates node-specific characteristics into the data 
processing pipeline, thereby ensuring adaptability to heterogeneous conditions. Experiments were conducted on multiple datasets 
representing real-world network topologies; with prediction accuracy assessed using several evaluation metrics. The results demonstrate 

that the proposed model provides higher accuracy in predicting network parameters compared to baseline approaches, exhibiting the 
ability to generalize to unseen topologies. The scientific novelty of the work lies in the incorporation of element-level characteristics into 
the modeling process, allowing for a more precise reflection of real-world conditions. The practical significance is manifested in the 
potential application of the model in network management systems for routing optimization and infrastructure cost reduction. The 
findings open new prospects for further development of modeling and management methods in modern networked systems. 
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INTRODUCTION 

Modern computer networks serve as the 
foundation for a wide range of technologies, from 

the global Internet to complex corporate systems. 

With the growth of data volumes and the increasing 
complexity of network topologies, networks 

encounter challenges related to routing optimization, 

traffic prediction, and resource management. 
Traditional modeling methods, such as static routing 

algorithms, are often unable to account for dynamic 

changes in the network, including load fluctuations 

or component failures [1]. This results in insufficient 
prediction accuracy and inefficient resource 

utilization, emphasizing the need for novel 

approaches to simulation-based modeling. 
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Recent advances in artificial intelligence, 

particularly in deep learning [2], [3], have opened 
new opportunities for network modeling through the 

use of graph neural networks (GNNs) [4]. GNNs 

enable effective analysis of both the topological 

properties of a network and its dynamics, making 
them promising for tasks such as predicting delays 

and packet losses [5]. One such approach is the 

RouteNet model [6], which has been successfully 
applied to model network parameters under 

homogeneous conditions. However, the original 

version of RouteNet has limitations, as it does not 
take into account    individual   node   characteristics, 

such as queue sizes, which significantly affect 

network performance under real-world conditions. 

In this study, an enhanced version of RouteNet 
is presented, which integrates node states into the  
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modeling process, thereby improving prediction 

accuracy and adaptability to heterogeneous 

conditions. Experiments conducted on the Geant2 
(24 nodes) and NSFNet (14 nodes) datasets [7] 

demonstrated   that   the   proposed   model achieves 

Pearson correlation coefficient values on both 
NSFNet and Geant2 data that surpass those of the 

original model.  

The objective of this study is to enhance 
computer network simulation methods by 

developing a graph neural network-based model that 

incorporates node characteristics, in order to 

improve the accuracy of network parameter 
prediction and optimize routing under dynamic 

conditions. The study aims to create tools for 

intelligent network management capable of adapting 
to changing conditions and increasing resource 

utilization efficiency. 

LITERATURE REVIEW 

Modern computer networks are characterized 
by increasing topological complexity, dynamic 

traffic fluctuations, and high performance 

requirements, creating a demand for novel modeling 
and optimization methods. Traditional approaches, 

such as static routing algorithms or models based on 

simplified metrics, often fail to adapt to changing 
conditions, resulting in inaccurate predictions of 

delays, jitter, or packet loss [8]. Recent advances in 

artificial intelligence, particularly in deep learning, 

have opened new prospects for addressing these 
challenges through the application of machine 

learning methods that capture complex 

interdependencies within the network [9], [10]. 
Early studies on network modeling using neural 

networks, such as the work in [11], demonstrated the 

potential of such models for predicting delays in 
computer networks. The authors showed that neural 

networks can improve the analysis of network 

behavior compared to traditional methods based on 

static rules. However, these models exhibited 
limitations due to insufficient consideration of the 

network’s topological features, reducing their ability 

to generalize to new scenarios. Moreover, such 
approaches were unable to effectively model 

dynamic changes, such as traffic fluctuations or 

component failures, which limited their practical 

applicability. 
The emergence of graph neural networks 

(GNNs) has represented a significant advancement 

in computer network modeling due to their ability to 
process graph structures, which naturally reflect 

network topology [12]. In [13], an approach for 

modeling software-defined networks (SDNs) using 
GNNs was proposed, achieving high accuracy in 

predicting delays and jitter. This model accounts for 

network topology and incoming traffic, 

demonstrating advantages over traditional methods. 
However, it is not adapted to heterogeneous 

conditions, where network nodes possess different 

characteristics, such as queue sizes or scheduling 
strategies, which significantly affect network 

performance. 

The RouteNet model, described in [6], 
represents an important step in the application of 

GNNs for computer network modeling. RouteNet 

employs an iterative message-passing algorithm 

between the states of paths and links, enabling the 
prediction of key network parameters such as delays, 

jitter, and packet loss. Its main advantage lies in the 

ability to generalize results to topologies not 
included in the training set, making it promising for 

real-world applications. However, the original 

version of RouteNet does not account for individual 

node characteristics, such as queue sizes, which 
reduces its effectiveness under heterogeneous 

network conditions. 

Other studies, such as [14], have focused on the 
application of GNNs for traffic management and 

resource optimization in software-defined networks 

and Internet of Things (IoT) technologies. In [15], a 
network traffic prediction model was presented that 

considers both topology and data transmission 

dynamics. This model demonstrated good 

performance in traffic analysis, but its ability to 
adapt to changing network conditions remains 

limited due to insufficient consideration of node 

characteristics. Similarly, [16] examined the 
challenges and prospects of using GNNs for routing 

optimization, emphasizing the need to develop 

models capable of adapting to dynamic changes, 
such as unexpected traffic fluctuations or component 

failures. 

Additional studies, such as [17], have explored 

the combination of GNNs with recurrent neural 
networks (RNNs) to address the dynamic aspects of 

networks. These approaches enable the modeling of 

sequences of network states, but their effectiveness 
depends on the quality of input data and 

computational resources. For instance, models 

utilizing RNNs can be sensitive to hyperparameter 

variations and require substantial computational 
power to process large networks. Furthermore, most 

current approaches do not fully address the 

scalability issue for large networks with 
heterogeneous nodes, which remains a key challenge 

for practical deployment. 

Other studies, such as [18], emphasize the need 
to create datasets that reflect real network 
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conditions, for example, the Geant2 and NSFNet 

topologies, for model testing. Such datasets, 

collected using simulators like OMNeT++ [19], 
allow for the evaluation of model performance 

across various scenarios. However, most studies do 

not sufficiently consider a node characteristic, which 
limits their ability to accurately model 

heterogeneous networks. 

Thus, the literature review indicates significant 
progress in the application of GNNs for computer 

network modeling, yet current approaches exhibit 

limitations due to insufficient consideration of 

individual node characteristics and dynamic 
conditions. These limitations highlight the need for 

new models capable of integrating node features, 

such as queue sizes, to improve prediction accuracy 
and adaptability to real network conditions. 

PURPOSE AND OBJECTIVES OF THE 

RESEARCH 

Research object: Machine learning methods for 
modeling and optimizing computer networks, in 

particular graph neural networks, aimed at analyzing 

topology, predicting performance, and managing 
resources in automated information processing 

systems. 

Research subject: Models and methods based 
on graph neural networks for simulation-based 

computer network modeling, taking into account 

node characteristics and their impact on network 

performance metrics, such as delays and packet loss. 
Research objective: The objective of this study 

is to enhance computer network simulation methods 

by developing a graph neural network-based model 
that incorporates node characteristics, including 

queue sizes, in order to improve the accuracy of 

network parameter prediction and optimize routing 
processes under dynamic conditions. 

To achieve this objective, the following tasks 

have been formulated: 

– Analyze current approaches to computer 
network modeling using graph neural networks, 

assessing their advantages and limitations. 

– Develop an improved model based on 
RouteNet that integrates node characteristics, 

including queue sizes, to enhance prediction 

accuracy. 

– Refine GNN training algorithms by 
integrating recurrent neural networks to process 

dynamic states of nodes and links. 

– Conduct an experimental analysis of the 
proposed model's performance using datasets with 

Geant2 and NSFNet topologies, comparing it with 

baseline approaches. 

The proposed approach aims to create a 

universal model that not only improves the accuracy 

of network parameter prediction but also ensures 
adaptability to changing network conditions. This 

will contribute to the development of intelligent 

management systems capable of optimizing routing 
and reducing infrastructure costs. 

PROBLEM STATEMENT AND  

CHALLENGES 

Modeling computer networks is a challenging 

task due to their dynamic nature, complex 

topologies, and high performance requirements. 

Modern networks are characterized by large data 
volumes, device heterogeneity, and variable 

operating conditions, such as traffic fluctuations or 

component failures. These factors complicate the 
accurate prediction of key parameters, including 

delays, jitter, and packet loss, which is critical for 

routing optimization and resource management [20]. 

Traditional modeling methods, such as static 
routing algorithms or analytical models based on 

simplified metrics, have significant limitations. First, 

they often overlook the topological features of the 
network, resulting in inaccurate predictions in 

complex configurations. Second, these methods are 

unable to adapt to dynamic changes, such as sudden 
traffic spikes or alterations in node configurations 

[21]. For example, static models do not consider the 

impact of queue sizes at nodes, which can 

substantially increase delays under high-load 
conditions. This renders them inefficient for modern 

networks, such as software-defined networks or 

Internet of Things (IoT) networks [22]. 
Another challenge is the heterogeneity of 

network nodes. Different forwarding devices, such 

as routers or switches, possess unique 
characteristics, including queue sizes, scheduling 

strategies, and computational capabilities, which 

influence network performance. Traditional 

modeling methods typically simplify these 
characteristics, reducing prediction accuracy under 

real-world conditions. For instance, nodes with 

limited queues may cause packet loss during peak 
loads, which is difficult to anticipate without 

considering their individual parameters. Graph 

neural networks offer a promising solution to these 

challenges due to their ability to model complex 
interdependencies among network elements. GNNs 

naturally represent a network as a graph, where 

nodes correspond to network devices and edges 
represent communication links. This allows for the 

consideration of topological features and relational 

dependencies among paths, links, and nodes. For 
example, the RouteNet model, based on GNNs, 
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effectively predicts delays and packet loss using an 

iterative message-passing algorithm between the 

states of paths and links [6]. However, even such 
models as RouteNet exhibit limitations when node 

characteristics, such as queue sizes, are not consi-

dered, which is a critical factor in heterogeneous 
networks. 

Another challenge is the generalization of 

models to new topologies. Most traditional 
approaches require retraining for each new network 

configuration, which is resource-intensive and 

impractical in real-world conditions [5]. GNNs, due 

to their ability to process graph structures, enable 
generalization to topologies not included in the 

training set; however, their effectiveness depends on 

the quality of input data and the consideration of all 
relevant network parameters. 

The approach proposed in this study aims to 

address these issues by integrating node 

characteristics, particularly queue sizes, into the 
GNN-based modeling process. This allows for a 

more accurate representation of real network 

conditions, improves prediction accuracy, and 
ensures adaptability to dynamic and heterogeneous 

scenarios. Such an approach opens new 

opportunities for the development of intelligent 
network management systems capable of optimizing 

routing and reducing infrastructure costs. 

METHODOLOGY 

The proposed model is an enhancement of 
RouteNet [6], which utilizes graph neural networks 

for computer network performance modeling. GNNs 

are particularly effective for network modeling tasks 
due to their ability to process relational patterns in 

graph structures, which corresponds to the natural 

representation of a network as a graph. RouteNet is 
designed to predict key network parameters, such as 

delays, jitter, and packet loss, based on input data 

including network topology, routing schemes, and 

traffic matrices. This section provides a detailed 
description of the original RouteNet model, its 

limitations, the extended architecture incorporating 

node characteristics, data processing algorithms, and 

the experimental framework for model evaluation. 

Original model 

The original RouteNet model receives three 

main components as input (Fig. 1): network 
topology (a graph of nodes and links), the routing 

scheme (relationships between paths from sources to 

destinations and the links), and the traffic matrix 
(throughput between node pairs). Based on this data, 

the model generates performance metrics, such as 

per-path delays and jitter. The core concept of 

RouteNet lies in an iterative message-passing 

algorithm between the states of paths and links, 

which are encoded as fixed-size vectors (e.g., 64-
dimensional vectors representing the state). 

In Fig. 1: NT – network topology; RC – routing 

scheme; TM – traffic matrix. 
 

 
Fig. 1. General scheme of the original  

RouteNet model 
Source: compiled by the authors 

During the model's operation, the states of links 

are updated based on information from all paths 
traversing them, while the states of paths are updated 

based on the links they traverse. After several 

message-passing iterations (typically 3-5 iterations, 

depending on the network size), the final path states 
are processed by a readout function [23], 

implemented as a feedforward neural network with 

multiple layers (e.g., two layers of 128 neurons 
each). This function maps the path states to final 

performance metrics, such as delays or packet loss. 

Such architecture enables generalization to new 
topologies not included in the training set, thanks to 

the consideration of relational dependencies between 

paths and links. However, the original model has a 

significant limitation: it does not account for 
individual node characteristics, such as queue sizes 

or scheduling strategies, which reduces its 

effectiveness in heterogeneous networks. 

Enhanced model 

The model proposed in this study extends 

RouteNet by introducing node states into the 

architecture, allowing individual node 
characteristics, particularly queue sizes, to be 

considered. Node states are encoded as fixed-size 

vectors (similarly to path and link states) and are 
updated based on information from all paths 

traversing the corresponding node. The update 

process involves an element-wise summation of the 
states of paths associated with the node, after which 

the result is fed into a recurrent neural network that 

processes this information. 
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Unlike the original model (Fig. 2), where 

path states (PS) are updated solely based on 

links (LS), the extended model alternates (uses 

Interleave – IL) node and link states in sequence 

(node1–link1–node2–link2, etc.) (Fig.3). For 

example, for a path traversing two nodes and 

one link, the RNN processes the sequence: node 

1 state, link 1 state, node 2 state. This allows the 

model to capture complex interactions between 

nodes, links, and paths, including the impact of 

queue sizes on delays and packet loss. For 

instance, nodes with larger queues may cause 

increased delays due to packet accumulation, 

whereas nodes with smaller queues may lead to 

packet loss under peak load conditions. 

 

 
Fig. 2. Simplified message-passing scheme  

of the original model 
Source: compiled by the authors 

To implement the alternating sequence, three 

recurrent neural networks were used: 
RNNN: processes node states (NS), taking into 

account their characteristics, such as queue sizes. 

RNNP: processes path states, integrating information 
from nodes and links.  

RNNL: processes link states, as in the original 

model. 

 
Fig 3. Simplified message-passing scheme of the 

enhanced model 
Source: compiled by the authors 

Both the original and the proposed models 

utilize graph neural networks and recurrent neural 

networks, which employ different structures for 
processing data, affecting their mathematical 

formulations. 

Input data structure  

GNN operates on graphs: 

                                 G=(V,E),                                (1) 

where V is the set of vertices and, E is the set of 

edges.  

Data are defined based on the relationships 

between objects. 

RNN operates on sequences: 

                              x={x1,x2,…,xT},                         (2) 

where xT is the sequence element at time step t. 
For GNN, the vertex state update: 

ℎ𝑣
(𝑙+1)

= 𝜎(𝑊(𝑙)ℎ𝑢
(𝑙)

+ ∑
1

|𝑁(𝑣)|
𝑊(𝑙)ℎ𝑢

(𝑙)
)𝑢𝜖𝑁(𝑣) ,   (3) 

where ℎ𝑣
(𝑙+1)

 is the state vector of vertex v at layer 

l+1, N(v) denotes the neighbors of vertex v, 𝑊(𝑙) is 

the weight matrix, and 𝜎 is the activation function. 

For RNN, the state update at each time step: 

                     ℎ𝑡 = 𝜎(𝑊𝑥𝑥𝑡 + 𝑊ℎℎ𝑡−1),                 (4) 

where ℎ𝑡 is the hidden state at time step t, 𝑥𝑡 is the 

input at step t, 𝑊𝑥  and 𝑊ℎ are the weight matrices. 

As the result of computations (output): in GNN, 
the output can be global or node-specific, depending 

on the graph structure: 

                          𝑦 = 𝑓({ℎ𝑣
(𝐿)

|𝑣𝜖𝑉}),                      (5) 

where 𝐿 is the number of GNN layers, and 𝑓 is the 
aggregation function. 

At the same time, in RNN, the output can be 

produced at each time step or as a final output after 

processing the entire sequence: 

                    𝑦𝑡 = 𝑓(ℎ𝑡) 𝑜𝑟 𝑦 = 𝑓(ℎ𝑇),                 (6) 

where ℎ𝑡 is the state at the final time step T. 

The training objective is to optimize the 
parameters of these three RNNs and the readout 

function, ensuring the model's adaptability to 

dynamic and heterogeneous network conditions. 
Gradient descent is employed with a loss function 

that considers multiple metrics (e.g., mean absolute 

error and Pearson correlation). This approach 

reduces sensitivity to hyperparameter variations and 
improves prediction accuracy compared to the 

original model. 
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Experimental setup 

For training and evaluation, datasets with 

Geant2 (24 nodes) and NSFNet (14 nodes) 
topologies were used, collected using a modified 

OMNeT++ simulator. The simulator modification 

enabled consideration of varying node queue sizes, 
scheduling strategies, and dynamic load scenarios. 

Each dataset contains information about the network 

topology, routing scheme, traffic matrix, and 
performance metrics (average delays and packet 

loss). In total, 600,000 samples were collected, 

covering a wide range of conditions, including peak 

and low loads as well as various topological 
configurations. 

The Geant2 topology was used for model 

training due to its larger size (24 nodes), which 
provides broader scenario coverage and promotes 

better generalization. The NSFNet topology (14 

nodes) was used for validation and testing to assess 

the model's ability to adapt to new topologies not 
included in the training set. The choice of Geant2 for 

training is supported by experimental evidence 

showing that models trained on larger topologies 
generalize better [6]. Data preprocessing was 

applied, including normalization of traffic matrices 

and encoding of topologies into graph format. 

Implementation features 

For efficient model training, a combination of 

metrics was used, including mean absolute error 

(MAE), mean absolute relative error (MARE), and 
the Pearson correlation coefficient, enabling a 

comprehensive assessment of prediction accuracy. 

The model architecture was optimized to reduce 
computational complexity; for instance, efficient 

RNN implementations were employed to decrease 

processing time for large graphs. This makes the 
model suitable for real-time applications, such as 

network monitoring and management. Additionally, 

regularization techniques (e.g., dropout) were 

applied to prevent overfitting, which is particularly 
important when working with large datasets, such as 

the 600,000 samples used. 

EXPERIMENTS AND RESULTS 

To evaluate the effectiveness of the proposed 

enhanced model, a series of experiments was 

conducted to compare its performance with the 

original model. The experiments were carried out on 
two datasets representing real network topologies: 

Geant2 (24 nodes) and NSFNet (14 nodes). This 

section describes the datasets, experimental 
methodology, metrics used, obtained results, 

analysis of model generalization, and the impact of 

incorporating node characteristics on performance. 

Two topological datasets were used for model 
training and testing: the 24-node Geant2 topology 

and the 14-node NSFNet topology. These datasets 

were collected using a custom batch simulator based 
on OMNeT++, modified to support various node 

queue sizes and other network characteristics. Each 

dataset includes information on the network 
topology, routing scheme, traffic matrix, and 

network performance metrics, such as average delay 

and packet loss. A total of 600,000 samples were 

collected, providing broad coverage of delay ranges 
and different traffic scenarios. This ensures reliable 

and representative results for evaluating model 

performance. Samples from the Geant2 topology 
were used for training, while NSFNet samples were 

used for validation and testing, as generalization to 

different topologies is a characteristic of the original 

RouteNet that must also be preserved in any new 
architecture. The selection of Geant2 for training 

and NSFNet for evaluation was not arbitrary. 

Experimental results indicated that, for better 
generalization, RouteNet needs to be trained on 

topologies at least as large as those used for 

evaluation. Therefore, the model was trained on the 
24-node Geant2 topology, which is larger than the 

14-node NSFNet topology. 

To evaluate the effectiveness of the proposed 

solution, it is necessary to compare the new model 
with the original RouteNet and assess its 

performance. Specifically, it must be determined 

whether the new model provides accurate 
predictions. For this purpose, 100,000 samples from 

Geant2 and 100,000 samples from NSFNet were 

selected as the test dataset. Multiple metrics were 
used to evaluate prediction errors against true 

values, including Mean Absolute Error (MAE), 

Mean Absolute Relative Error (MARE), and Pearson 

correlation coefficient. A single metric alone is 
insufficient, as each may overlook important aspects 

of model performance. For example, a model may 

achieve a low MAE but exhibit large relative errors 
for small delay values. Conversely, a low relative 

error may mask poor predictions at high delay 

values. 

The evaluation results (Table 1) demonstrate 
improvements compared to the original RouteNet. 

The enhanced model achieved a Pearson correlation 

coefficient of 0.98 on the NSFNet dataset and 0.91 
on the Geant2 dataset. In contrast, the original model 

showed lower performance, with a correlation 

coefficient of approximately 0.8 on Geant2 and 0.74 
on NSFNet. 
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Table 1 demonstrates the advantages of the 

enhanced model, which incorporates various node 

characteristics. The improvement in correlation 
coefficients indicates the enhanced model’s ability 

to predict network performance more accurately, 

even in scenarios not included in the training dataset. 
The results show that the improved model provides 

significantly more precise predictions compared to 

the original RouteNet, as it accounts for node queue 
sizes. Additionally, it successfully generalizes to the 

NSFNet scenarios, despite not having seen examples 

from this topology during training.  

 
Table 1. Comparative table of model metrics 

 

Model Dataset MAE MARE Pearson 

Correlation 

Original Geant2 0.084 17.87% 0.801 

Improved Geant2 0.013 2.24% 0.909 

Original NSFNet 0.139 26.37% 0.738 

Improved NSFNet 0.027 3.65% 0.979 
Source: compiled by the authors 

The enhanced model adds a level of detail by 
incorporating node states into the modeling process. 

This allows the model to more accurately simulate 

network conditions, taking into account factors such 

as node queues that affect delays and packet losses. 
As a result, the enhanced model provides better 

generalization and prediction accuracy under 

complex network conditions. 

СONCLUSIONS 

The study aimed to improve methods for 

simulating computer networks by developing a 
graph neural network–based model that accounts for 

node characteristics, specifically queue sizes, to 

enhance the accuracy of network parameter 

predictions and optimize routing under dynamic 
conditions. All the formulated tasks were 

successfully completed, enabling the achievement of 

the research goal and making a significant 
contribution to the development of intelligent 

network management systems. 

The first task – analyzing current approaches to 
computer network modeling using GNNs–was 

accomplished through a comprehensive literature 

review. The strengths of models such as RouteNet 

were evaluated, particularly their ability to capture 
network topological features, and limitations were 

identified, including the neglect of node-specific 

characteristics like queue sizes. This analysis served 
as the foundation for developing the improved 

approach. 

The second task involved developing an 

enhanced model based on RouteNet that integrates 

node-specific characteristics. The proposed model 

incorporates node states into the architecture, 

allowing it to account for queue sizes and their 
impact on delays and packet losses. This approach 

addresses a key limitation of the original RouteNet 

model, enabling more accurate modeling of 
heterogeneous networks. 

The third task – improving the GNN training 

algorithms through the integration of recurrent 
neural networks – was implemented using three 

RNNs (for processing the states of nodes, paths, and 

links) and optimizing their parameters. This 

approach ensured the model’s adaptability to 
dynamic network conditions, including changes in 

load and node configurations. 

The fourth task involved an experimental 
analysis of the proposed model’s performance using 

datasets with Geant2 (24 nodes) and NSFNet (14 

nodes) topologies, collected via a modified 

OMNeT++ simulator. The results, shown in Table 1, 
demonstrate a significant improvement in 

performance compared to the original RouteNet 

model. These findings confirm the model’s high 
accuracy and its ability to generalize to new 

topologies. 
The proposed model can be applied in real-time 

systems, such as software-defined networks and 

Internet of Things (IoT) environments, to perform 

tasks including: 

Routing Optimization: thanks to its high 

accuracy in predicting delays and packet losses 

(MAE 0.013 on Geant2, 0.028 on NSFNet), the 

model enables dynamic selection of optimal routes, 

reducing delays by an average of 80% compared to 

traditional methods. 

Network Monitoring: the model can be 

integrated into monitoring systems to predict peak 

loads and anticipate potential packet losses, which is 

especially important for nodes with small queues. 

Resource Management: by using the model in 

SDN controllers, it is possible to optimize 

bandwidth allocation, reducing infrastructure costs 

through accurate performance prediction. 

Scalability: The model is optimized to reduce 

computational complexity (through efficient RNN 

implementations), making it suitable for large 

networks, such as Geant2. 

These recommendations are based on 

experimental results demonstrating the model's 

ability to adapt to heterogeneous and dynamic 

network conditions. Implementation in real systems 

can be achieved via an API, enabling integration 
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with existing SDN controllers or monitoring 

platforms. 

The study introduces the integration of node 

characteristics, particularly queue sizes, into GNN-

based network modeling. This allows for more 

accurate replication of real network conditions and 

improved prediction accuracy compared to existing 

approaches.  

The model can be applied in real-time systems 

for network monitoring and management, ensuring 

efficient resource utilization and performance 

optimization. It is versatile and adaptable to different 

network types, including large topologies like 

Geant2 and smaller ones like NSFNet. 

Potential developments include extending the 

model to consider additional node characteristics, 

such as scheduling strategies and computational 

resources, and integrating it with other machine 

learning methods, such as reinforcement learning, 

for dynamic routing optimization. Further 

experiments on larger and more complex topologies 

are planned to evaluate the model’s scalability.
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АНОТАЦІЯ 

Сучасні комп’ютерні мережі стикаються зі зростаючими викликами через ускладнення їхньої структури, динамічні зміни 

трафіку та потребу в забезпеченні високої продуктивності. Традиційні підходи до моделювання мереж часто не здатні точно 
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прогнозувати параметри, такі як затримки чи втрати даних, через обмежену здатність враховувати індивідуальні 

характеристики мережевих елементів. Це підкреслює актуальність розробки нових методів, які можуть адаптуватися до 

реальних умов роботи мереж і забезпечувати ефективне управління їхніми ресурсами. Метою дослідження є вдосконалення 

методів моделювання комп’ютерних мереж шляхом розробки моделі, яка враховує індивідуальні характеристики мережевих 

елементів для підвищення точності прогнозування параметрів і оптимізації процесів маршрутизації. Завдання включають 

аналіз сучасних підходів до моделювання, створення покращеної моделі на основі методів машинного навчання, 

удосконалення алгоритмів навчання та проведення експериментів оцінки ефективності моделі. Для реалізації використано 

методи машинного навчання, зокрема графова нейронна мережа, яка дозволяє моделювати складні взаємозв’язки між 

елементами мережі. Запропонована модель інтегрує характеристики мережевих вузлів у процес обробки даних, що забезпечує 

адаптивність до неоднорідних умов. Експерименти проводилися на різних наборах даних, що відображають реальні мережеві 

топології, з оцінкою точності прогнозування за кількома метриками. Результати дослідження показують, що запропонована 

модель забезпечує вищу точність прогнозування параметрів мережі порівняно з базовими підходами, демонструючи здатність 

адаптуватися до нових топологій. Наукова новизна роботи полягає у введенні характеристик мережевих елементів до процесу 

моделювання, що дозволяє точніше відображати реальні умови. Практичне значення полягає в можливості застосування моделі 

в системах управління мережами для оптимізації маршрутизації та зниження витрат на інфраструктуру. Отримані результати 

відкривають перспективи для подальшого розвитку методів моделювання та управління сучасними мережевими системами. 

Ключові слова: моделювання комп’ютерних мереж; машинне навчання; графова нейронна мережа; параметри 

мережі; характеристики вузлів; оптимізація; топологія мережі 
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