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ABSTRACT

Modern computer networks face increasing challenges due to the growing complexity of their structure, dynamic traffic
fluctuations, and the need to maintain high performance. Traditional approaches to network modeling often fail to accurately predict
parameters such as latency or packet loss, as they have limited capacity to capture the specific characteristics of individual network
elements. This highlights the relevance of developing novel methods that can adapt to real operating conditions and ensure efficient
resource management. The aim of this study is to enhance network modeling methods by developing a model that incorporates the
individual properties of network elements to improve the accuracy of parameter prediction and to optimize routing processes. The
research objectives include the analysis of current modeling approaches, the design of an improved model based on machine learning
techniques, the refinement of training algorithms, and the execution of experiments to evaluate the model’s effectiveness. Machine
learning methods were applied in the implementation, with particular emphasis on a graph neural network, which enables the modeling
of complex interdependencies among network elements. The proposed model integrates node-specific characteristics into the data
processing pipeline, thereby ensuring adaptability to heterogeneous conditions. Experiments were conducted on multiple datasets
representing real-world network topologies; with prediction accuracy assessed using several evaluation metrics. The results demonstrate
that the proposed model provides higher accuracy in predicting network parameters compared to baseline approaches, exhibiting the
ability to generalize to unseen topologies. The scientific novelty of the work lies in the incorporation of element-level characteristics into
the modeling process, allowing for a more precise reflection of real-world conditions. The practical significance is manifested in the
potential application of the model in network management systems for routing optimization and infrastructure cost reduction. The
findings open new prospects for further development of modeling and management methods in modern networked systems.
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INTRODUCTION Recent advances in artificial intelligence,
particularly in deep learning [2], [3], have opened
new opportunities for network modeling through the
use of graph neural networks (GNNs) [4]. GNNs
enable effective analysis of both the topological
properties of a network and its dynamics, making
them promising for tasks such as predicting delays
and packet losses [5]. One such approach is the
RouteNet model [6], which has been successfully
applied to model network parameters under
homogeneous conditions. However, the original
version of RouteNet has limitations, as it does not
take into account individual node characteristics,
such as queue sizes, which significantly affect
network performance under real-world conditions.

In this study, an enhanced version of RouteNet

Modern computer networks serve as the
foundation for a wide range of technologies, from
the global Internet to complex corporate systems.
With the growth of data volumes and the increasing
complexity of network topologies, networks
encounter challenges related to routing optimization,
traffic prediction, and resource management.
Traditional modeling methods, such as static routing
algorithms, are often unable to account for dynamic
changes in the network, including load fluctuations
or component failures [1]. This results in insufficient
prediction accuracy and inefficient resource
utilization, emphasizing the need for novel
approaches to  simulation-based  modeling.
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modeling process, thereby improving prediction
accuracy and adaptability to heterogeneous
conditions. Experiments conducted on the Geant2
(24 nodes) and NSFNet (14 nodes) datasets [7]
demonstrated that the proposed model achieves
Pearson correlation coefficient values on both
NSFNet and Geant2 data that surpass those of the

original model.
The objective of this study is to enhance
computer  network  simulation methods by

developing a graph neural network-based model that
incorporates node characteristics, in order to
improve the accuracy of network parameter
prediction and optimize routing under dynamic
conditions. The study aims to create tools for
intelligent network management capable of adapting
to changing conditions and increasing resource
utilization efficiency.

LITERATURE REVIEW

Modern computer networks are characterized
by increasing topological complexity, dynamic
traffic  fluctuations, and high performance
requirements, creating a demand for novel modeling
and optimization methods. Traditional approaches,
such as static routing algorithms or models based on
simplified metrics, often fail to adapt to changing
conditions, resulting in inaccurate predictions of
delays, jitter, or packet loss [8]. Recent advances in
artificial intelligence, particularly in deep learning,
have opened new prospects for addressing these
challenges through the application of machine
learning  methods that capture  complex
interdependencies within the network [9], [10].

Early studies on network modeling using neural
networks, such as the work in [11], demonstrated the
potential of such models for predicting delays in
computer networks. The authors showed that neural
networks can improve the analysis of network
behavior compared to traditional methods based on
static rules. However, these models exhibited
limitations due to insufficient consideration of the
network’s topological features, reducing their ability
to generalize to new scenarios. Moreover, such
approaches were unable to effectively model
dynamic changes, such as traffic fluctuations or
component failures, which limited their practical
applicability.

The emergence of graph neural networks
(GNNs) has represented a significant advancement
in computer network modeling due to their ability to
process graph structures, which naturally reflect
network topology [12]. In [13], an approach for

predicting delays and jitter. This model accounts for
network  topology and incoming traffic,
demonstrating advantages over traditional methods.
However, it is not adapted to heterogeneous
conditions, where network nodes possess different
characteristics, such as queue sizes or scheduling
strategies, which significantly affect network
performance.

The RouteNet model, described in [6],
represents an important step in the application of
GNNs for computer network modeling. RouteNet
employs an iterative message-passing algorithm
between the states of paths and links, enabling the
prediction of key network parameters such as delays,
jitter, and packet loss. Its main advantage lies in the
ability to generalize results to topologies not
included in the training set, making it promising for
real-world applications. However, the original
version of RouteNet does not account for individual
node characteristics, such as queue sizes, which
reduces its effectiveness under heterogeneous
network conditions.

Other studies, such as [14], have focused on the
application of GNNs for traffic management and
resource optimization in software-defined networks
and Internet of Things (1oT) technologies. In [15], a
network traffic prediction model was presented that
considers both topology and data transmission
dynamics. This model demonstrated good
performance in traffic analysis, but its ability to
adapt to changing network conditions remains
limited due to insufficient consideration of node
characteristics.  Similarly, [16] examined the
challenges and prospects of using GNNs for routing
optimization, emphasizing the need to develop
models capable of adapting to dynamic changes,
such as unexpected traffic fluctuations or component
failures.

Additional studies, such as [17], have explored
the combination of GNNs with recurrent neural
networks (RNNSs) to address the dynamic aspects of
networks. These approaches enable the modeling of
sequences of network states, but their effectiveness
depends on the quality of input data and
computational resources. For instance, models
utilizing RNNs can be sensitive to hyperparameter
variations and require substantial computational
power to process large networks. Furthermore, most
current approaches do not fully address the
scalability issue for large networks with
heterogeneous nodes, which remains a key challenge
for practical deployment.

Other studies, such as [18], emphasize the need

modeling software-defined networks (SDNs) using to create datasets that reflect real network
GNNs was proposed, achieving high accuracy in
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conditions, for example, the Geant2 and NSFNet
topologies, for model testing. Such datasets,
collected using simulators like OMNeT++ [19],
allow for the evaluation of model performance
across various scenarios. However, most studies do
not sufficiently consider a node characteristic, which
limits their ability to accurately  model
heterogeneous networks.

Thus, the literature review indicates significant
progress in the application of GNNs for computer
network modeling, yet current approaches exhibit
limitations due to insufficient consideration of
individual node characteristics and dynamic
conditions. These limitations highlight the need for
new models capable of integrating node features,
such as queue sizes, to improve prediction accuracy
and adaptability to real network conditions.

PURPOSE AND OBJECTIVES OF THE
RESEARCH

Research object: Machine learning methods for
modeling and optimizing computer networks, in
particular graph neural networks, aimed at analyzing
topology, predicting performance, and managing
resources in automated information processing
systems.

Research subject: Models and methods based
on graph neural networks for simulation-based
computer network modeling, taking into account
node characteristics and their impact on network
performance metrics, such as delays and packet loss.

Research objective: The objective of this study
is to enhance computer network simulation methods
by developing a graph neural network-based model
that incorporates node characteristics, including
queue sizes, in order to improve the accuracy of
network parameter prediction and optimize routing
processes under dynamic conditions.

To achieve this objective, the following tasks
have been formulated:

— Analyze current approaches to computer
network modeling using graph neural networks,
assessing their advantages and limitations.

— Develop an improved model based on
RouteNet that integrates node characteristics,
including queue sizes, to enhance prediction
accuracy.

— Refine GNN training algorithms by
integrating recurrent neural networks to process
dynamic states of nodes and links.

— Conduct an experimental analysis of the
proposed model's performance using datasets with
Geant2 and NSFNet topologies, comparing it with
baseline approaches.

The proposed approach aims to create a
universal model that not only improves the accuracy
of network parameter prediction but also ensures
adaptability to changing network conditions. This
will contribute to the development of intelligent
management systems capable of optimizing routing
and reducing infrastructure costs.

PROBLEM STATEMENT AND
CHALLENGES

Modeling computer networks is a challenging
task due to their dynamic nature, complex
topologies, and high performance requirements.
Modern networks are characterized by large data
volumes, device heterogeneity, and variable
operating conditions, such as traffic fluctuations or
component failures. These factors complicate the
accurate prediction of key parameters, including
delays, jitter, and packet loss, which is critical for
routing optimization and resource management [20].

Traditional modeling methods, such as static
routing algorithms or analytical models based on
simplified metrics, have significant limitations. First,
they often overlook the topological features of the
network, resulting in inaccurate predictions in
complex configurations. Second, these methods are
unable to adapt to dynamic changes, such as sudden
traffic spikes or alterations in node configurations
[21]. For example, static models do not consider the
impact of queue sizes at nodes, which can
substantially increase delays under high-load
conditions. This renders them inefficient for modern
networks, such as software-defined networks or
Internet of Things (10T) networks [22].

Another challenge is the heterogeneity of
network nodes. Different forwarding devices, such
as routers or switches, possess  unique
characteristics, including queue sizes, scheduling
strategies, and computational capabilities, which
influence  network  performance.  Traditional
modeling methods typically simplify these
characteristics, reducing prediction accuracy under
real-world conditions. For instance, nodes with
limited queues may cause packet loss during peak
loads, which is difficult to anticipate without
considering their individual parameters. Graph
neural networks offer a promising solution to these
challenges due to their ability to model complex
interdependencies among network elements. GNNs
naturally represent a network as a graph, where
nodes correspond to network devices and edges
represent communication links. This allows for the
consideration of topological features and relational
dependencies among paths, links, and nodes. For
example, the RouteNet model, based on GNNs,
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effectively predicts delays and packet loss using an
iterative message-passing algorithm between the
states of paths and links [6]. However, even such
models as RouteNet exhibit limitations when node
characteristics, such as queue sizes, are not consi-
dered, which is a critical factor in heterogeneous
networks.

Another challenge is the generalization of
models to new topologies. Most traditional
approaches require retraining for each new network
configuration, which is resource-intensive and
impractical in real-world conditions [5]. GNNs, due
to their ability to process graph structures, enable
generalization to topologies not included in the
training set; however, their effectiveness depends on
the quality of input data and the consideration of all
relevant network parameters.

The approach proposed in this study aims to
address  these issues by integrating node
characteristics, particularly queue sizes, into the
GNN-based modeling process. This allows for a
more accurate representation of real network
conditions, improves prediction accuracy, and
ensures adaptability to dynamic and heterogeneous
scenarios. Such an approach opens new
opportunities for the development of intelligent
network management systems capable of optimizing
routing and reducing infrastructure costs.

METHODOLOGY

The proposed model is an enhancement of
RouteNet [6], which utilizes graph neural networks
for computer network performance modeling. GNNs
are particularly effective for network modeling tasks
due to their ability to process relational patterns in
graph structures, which corresponds to the natural
representation of a network as a graph. RouteNet is
designed to predict key network parameters, such as
delays, jitter, and packet loss, based on input data
including network topology, routing schemes, and
traffic matrices. This section provides a detailed
description of the original RouteNet model, its
limitations, the extended architecture incorporating
node characteristics, data processing algorithms, and
the experimental framework for model evaluation.

Original model

The original RouteNet model receives three
main components as input (Fig. 1): network
topology (a graph of nodes and links), the routing
scheme (relationships between paths from sources to
destinations and the links), and the traffic matrix
(throughput between node pairs). Based on this data,
the model generates performance metrics, such as
per-path delays and jitter. The core concept of

RouteNet lies in an iterative message-passing
algorithm between the states of paths and links,
which are encoded as fixed-size vectors (e.g., 64-
dimensional vectors representing the state).

In Fig. 1: NT — network topology; RC — routing
scheme; TM — traffic matrix.

Graph Neural Network Model

Y

Perfomance metrics

Fig. 1. General scheme of the original

RouteNet model
Source: compiled by the authors

During the model's operation, the states of links
are updated based on information from all paths
traversing them, while the states of paths are updated
based on the links they traverse. After several
message-passing iterations (typically 3-5 iterations,
depending on the network size), the final path states
are processed by a readout function [23],
implemented as a feedforward neural network with
multiple layers (e.g., two layers of 128 neurons
each). This function maps the path states to final
performance metrics, such as delays or packet loss.
Such architecture enables generalization to new
topologies not included in the training set, thanks to
the consideration of relational dependencies between
paths and links. However, the original model has a
significant limitation: it does not account for
individual node characteristics, such as queue sizes
or scheduling strategies, which reduces its
effectiveness in heterogeneous networks.

Enhanced model

The model proposed in this study extends
RouteNet by introducing node states into the
architecture, allowing individual node
characteristics, particularly queue sizes, to be
considered. Node states are encoded as fixed-size
vectors (similarly to path and link states) and are
updated based on information from all paths
traversing the corresponding node. The update
process involves an element-wise summation of the
states of paths associated with the node, after which
the result is fed into a recurrent neural network that
processes this information.
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Unlike the original model (Fig. 2), where
path states (PS) are updated solely based on
links (LS), the extended model alternates (uses
Interleave — IL) node and link states in sequence
(nodel-link1-node2—link2, etc.) (Fig.3). For
example, for a path traversing two nodes and
one link, the RNN processes the sequence: node
1 state, link 1 state, node 2 state. This allows the
model to capture complex interactions between
nodes, links, and paths, including the impact of
queue sizes on delays and packet loss. For
instance, nodes with larger queues may cause
increased delays due to packet accumulation,
whereas nodes with smaller queues may lead to
packet loss under peak load conditions.

on each !

zon each
¢ path

Fig. 2. Simplified message-passing scheme

of the original model
Source: compiled by the authors

To implement the alternating sequence, three
recurrent neural networks were used:
RNNn: processes node states (NS), taking into
account their characteristics, such as queue sizes.
RNNp: processes path states, integrating information
from nodes and links.
RNNL: processes link states, as in the original
model.

Fig 3. Simplified message-passing scheme of the

enhanced model
Source: compiled by the authors

Both the original and the proposed models
utilize graph neural networks and recurrent neural
networks, which employ different structures for
processing data, affecting their mathematical
formulations.

Input data structure
GNN operates on graphs:

G=(V,EB), 1)
where V is the set of vertices and, E is the set of
edges.

Data are defined based on the relationships

between objects.
RNN operates on sequences:

Xt} (@)

where xr is the sequence element at time step t.
For GNN, the vertex state update:

wORY), (3)

X={X1,Xa, ...

1

+1 !
KD = oW ORL + Fyenin) IN@)|

where h,(,l“) is the state vector of vertex v at layer

I+1, N(v) denotes the neighbors of vertex v, W® is
the weight matrix, and o is the activation function.
For RNN, the state update at each time step:

hy = o(Wyxy + Wphe_q), (4)

where h; is the hidden state at time step t, x; is the
input at step t, W, and W}, are the weight matrices.

As the result of computations (output): in GNN,
the output can be global or node-specific, depending
on the graph structure:

y = f({pPwevh, (5)

where L is the number of GNN layers, and f is the
aggregation function.

At the same time, in RNN, the output can be
produced at each time step or as a final output after
processing the entire sequence:

ye = f(hy) ory = f(hy), (6)

. where h, is the state at the final time step T.

The training objective is to optimize the

. parameters of these three RNNs and the readout
- function,
. dynamic and heterogeneous network conditions.
' Gradient descent is employed with a loss function

ensuring the model's adaptability to

that considers multiple metrics (e.g., mean absolute
error and Pearson correlation). This approach
reduces sensitivity to hyperparameter variations and
improves prediction accuracy compared to the
original model.
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Experimental setup

For training and evaluation, datasets with
Geant2 (24 nodes) and NSFNet (14 nodes)
topologies were used, collected using a modified
OMNEeT++ simulator. The simulator modification
enabled consideration of varying node queue sizes,
scheduling strategies, and dynamic load scenarios.
Each dataset contains information about the network
topology, routing scheme, traffic matrix, and
performance metrics (average delays and packet
loss). In total, 600,000 samples were collected,
covering a wide range of conditions, including peak
and low loads as well as various topological
configurations.

The Geant2 topology was used for model
training due to its larger size (24 nodes), which
provides broader scenario coverage and promotes
better generalization. The NSFNet topology (14
nodes) was used for validation and testing to assess
the model's ability to adapt to new topologies not
included in the training set. The choice of Geant2 for
training is supported by experimental evidence
showing that models trained on larger topologies
generalize better [6]. Data preprocessing was
applied, including normalization of traffic matrices
and encoding of topologies into graph format.

Implementation features

For efficient model training, a combination of
metrics was used, including mean absolute error
(MAE), mean absolute relative error (MARE), and
the Pearson correlation coefficient, enabling a
comprehensive assessment of prediction accuracy.
The model architecture was optimized to reduce
computational complexity; for instance, efficient
RNN implementations were employed to decrease
processing time for large graphs. This makes the
model suitable for real-time applications, such as
network monitoring and management. Additionally,
regularization techniques (e.g., dropout) were
applied to prevent overfitting, which is particularly
important when working with large datasets, such as
the 600,000 samples used.

EXPERIMENTS AND RESULTS

To evaluate the effectiveness of the proposed
enhanced model, a series of experiments was
conducted to compare its performance with the
original model. The experiments were carried out on
two datasets representing real network topologies:
Geant2 (24 nodes) and NSFNet (14 nodes). This

analysis of model generalization, and the impact of
incorporating node characteristics on performance.

Two topological datasets were used for model
training and testing: the 24-node Geant2 topology
and the 14-node NSFNet topology. These datasets
were collected using a custom batch simulator based
on OMNeT++, modified to support various node
queue sizes and other network characteristics. Each
dataset includes information on the network
topology, routing scheme, traffic matrix, and
network performance metrics, such as average delay
and packet loss. A total of 600,000 samples were
collected, providing broad coverage of delay ranges
and different traffic scenarios. This ensures reliable
and representative results for evaluating model
performance. Samples from the Geant2 topology
were used for training, while NSFNet samples were
used for validation and testing, as generalization to
different topologies is a characteristic of the original
RouteNet that must also be preserved in any new
architecture. The selection of Geant2 for training
and NSFNet for evaluation was not arbitrary.
Experimental results indicated that, for better
generalization, RouteNet needs to be trained on
topologies at least as large as those used for
evaluation. Therefore, the model was trained on the
24-node Geant2 topology, which is larger than the
14-node NSFNet topology.

To evaluate the effectiveness of the proposed
solution, it is necessary to compare the new model
with the original RouteNet and assess its
performance. Specifically, it must be determined
whether the new model provides accurate
predictions. For this purpose, 100,000 samples from
Geant2 and 100,000 samples from NSFNet were
selected as the test dataset. Multiple metrics were
used to evaluate prediction errors against true
values, including Mean Absolute Error (MAE),
Mean Absolute Relative Error (MARE), and Pearson
correlation coefficient. A single metric alone is
insufficient, as each may overlook important aspects
of model performance. For example, a model may
achieve a low MAE but exhibit large relative errors
for small delay values. Conversely, a low relative
error may mask poor predictions at high delay
values.

The evaluation results (Table 1) demonstrate
improvements compared to the original RouteNet.
The enhanced model achieved a Pearson correlation
coefficient of 0.98 on the NSFNet dataset and 0.91
on the Geant2 dataset. In contrast, the original model
showed lower performance, with a correlation

section describes the datasets, experimental O .

methodology, metrics used, obtained results, coefficient of approximately 0.8 on Geant2 and 0.74
on NSFNet.
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Table 1 demonstrates the advantages of the
enhanced model, which incorporates various node
characteristics. The improvement in correlation
coefficients indicates the enhanced model’s ability
to predict network performance more accurately,
even in scenarios not included in the training dataset.
The results show that the improved model provides
significantly more precise predictions compared to
the original RouteNet, as it accounts for node queue
sizes. Additionally, it successfully generalizes to the
NSFNet scenarios, despite not having seen examples
from this topology during training.

Table 1. Comparative table of model metrics

Model Dataset | MAE | MARE | Pearson
Correlation
Original | Geant2 | 0.084 | 17.87% | 0.801
Improved | Geant2 | 0.013 | 2.24% | 0.909
Original | NSFNet | 0.139 | 26.37% | 0.738
Improved | NSFNet | 0.027 | 3.65% | 0.979

Source: compiled by the authors

The enhanced model adds a level of detail by
incorporating node states into the modeling process.
This allows the model to more accurately simulate
network conditions, taking into account factors such
as node queues that affect delays and packet losses.
As a result, the enhanced model provides better
generalization and prediction accuracy under
complex network conditions.

CONCLUSIONS

The study aimed to improve methods for
simulating computer networks by developing a
graph neural network—based model that accounts for
node characteristics, specifically queue sizes, to
enhance the accuracy of network parameter
predictions and optimize routing under dynamic
conditions. All the formulated tasks were
successfully completed, enabling the achievement of
the research goal and making a significant
contribution to the development of intelligent
network management systems.

The first task — analyzing current approaches to
computer network modeling using GNNs—was
accomplished through a comprehensive literature
review. The strengths of models such as RouteNet
were evaluated, particularly their ability to capture
network topological features, and limitations were
identified, including the neglect of node-specific
characteristics like queue sizes. This analysis served
as the foundation for developing the improved
approach.

The second task involved developing an
enhanced model based on RouteNet that integrates

node-specific characteristics. The proposed model
incorporates node states into the architecture,
allowing it to account for queue sizes and their
impact on delays and packet losses. This approach
addresses a key limitation of the original RouteNet
model, enabling more accurate modeling of
heterogeneous networks.

The third task — improving the GNN training
algorithms through the integration of recurrent
neural networks — was implemented using three
RNNs (for processing the states of nodes, paths, and
links) and optimizing their parameters. This
approach ensured the model’s adaptability to
dynamic network conditions, including changes in
load and node configurations.

The fourth task involved an experimental
analysis of the proposed model’s performance using
datasets with Geant2 (24 nodes) and NSFNet (14
nodes) topologies, collected via a modified
OMNEeT++ simulator. The results, shown in Table 1,
demonstrate a  significant improvement in
performance compared to the original RouteNet
model. These findings confirm the model’s high
accuracy and its ability to generalize to new
topologies.

The proposed model can be applied in real-time
systems, such as software-defined networks and
Internet of Things (loT) environments, to perform
tasks including:

Routing Optimization: thanks to its high
accuracy in predicting delays and packet losses
(MAE 0.013 on Geant2, 0.028 on NSFNet), the
model enables dynamic selection of optimal routes,
reducing delays by an average of 80% compared to
traditional methods.

Network Monitoring: the model can be
integrated into monitoring systems to predict peak
loads and anticipate potential packet losses, which is
especially important for nodes with small queues.

Resource Management: by using the model in
SDN controllers, it is possible to optimize
bandwidth allocation, reducing infrastructure costs
through accurate performance prediction.

Scalability: The model is optimized to reduce
computational complexity (through efficient RNN

implementations), making it suitable for large
networks, such as Geant2.
These recommendations are based on

experimental results demonstrating the model's
ability to adapt to heterogeneous and dynamic
network conditions. Implementation in real systems
can be achieved via an API, enabling integration
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with existing SDN controllers or
platforms.

The study introduces the integration of node
characteristics, particularly queue sizes, into GNN-
based network modeling. This allows for more
accurate replication of real network conditions and
improved prediction accuracy compared to existing
approaches.

The model can be applied in real-time systems
for network monitoring and management, ensuring

monitoring

optimization. It is versatile and adaptable to different
network types, including large topologies like
Geant2 and smaller ones like NSFNet.

Potential developments include extending the
model to consider additional node characteristics,
such as scheduling strategies and computational
resources, and integrating it with other machine
learning methods, such as reinforcement learning,
for dynamic routing optimization.  Further
experiments on larger and more complex topologies

efficient resource utilization and performance are planned to evaluate the model’s scalability.

REFERENCES

1. Chen, J., Xiao, W., Zhang, H., et al. “Dynamic routing optimization in software-defined networking
based on a metaheuristic algorithm”. J Cloud Comp. 2024; 13 (1): 41. DOI: https://doi.org/10.1186/s13677-
024-00603-1.

2. Antoshchuk, S. G. & Breskina, A. A. “Human action analysis models in artificial intelligence based
proctoring systems and dataset for them”. Applied Aspects of Information Technology. 2023; 6 (2): 190-200.
DOI: https://doi.org/10.15276/aait.06.2023.14.

3. Tishin P. M. & Buiukli, V. S. “The study of the quality of multi-step time series forecasting”. Herald
of Advanced Information Technology. 2022; 5 (3): 210-219. DOI: https://doi.org/10.15276/hait.05.2022.16.

4. Zhang, Z., Cui, P. & Zhu, W. “Deep learning on graphs: A Survey. IEEE Trans. on Knowl. and Data
Eng. 2022; 34 (1): 249-270. DOI: https://doi.org/10.1109/TKDE.2020.2981333.

5. Jiang, W., Han, H., Zhang, Y., Wang, J., He, M., Gu, W., Mu, J. & Cheng, X. “Graph neural
networks for routing optimization: Challenges and Opportunities”. Sustainability. 2024; 16: 9239.
DOI: https://doi.org/10.3390/su16219239.

6. Rusek, K., Suérez-Varela, J., Almasan, P., Barlet-Ros, P. & Cabellos-Aparicio, A. “RouteNet:
leveraging graph neural networks for network modeling and optimization in SDN”. IEEE Journal on
Selected Areas in Communications. 2020; 38 (20): 2260-2270. DOl:
https://doi.org/10.1109/JSAC.2020.3000405.

7. Barreto, F., Wille, E. C. & L. Nacamura, L. Jr. “Fast emergency paths schema to overcome transient
link failures in ospf routing”. International Journal of Computer Networks & Communications. 2012; 4 (2):
17-34. DOI: https://doi.org/10.5121/ijcnc.2012.4202.

8. Tache, M. D, Pascutoiu, O. & Borcoci, E. “Optimization algorithms in SDN: Routing, load balancing,
and delay optimization”. Applied Sciences. 2024; 14 (14): 5967. DOI: https://doi.org/10.3390/appl14145967.

9. Wang, M., Cui, Y., Wang, X., Xiao, S. & Jiang, J. “Machine learning for networking: workflow,
advances and opportunities”. In: IEEE Network. 2018; 32 (2): 92-99.
DOI: https://doi.org/10.1109/MNET.2017.1700200.

10. Aktas, F., Shayea, I., Ergen, M., Saoud, B., Yahya, A. E. & Laura, A. “Al-enabled routing in next
generation networks: A survey”. Alexandria Engineering Journal, 2025; 120: 449-474.
DOI: https://doi.org/10.1016/j.aej.2025.01.095.

11. Mestres, A., Alarcon, E., Ji, Y. & Cabellos-Aparicio, A. “Understanding the modeling of computer
network delays using neural networks”. In: Big-DAMA SIGCOMM. 2018. p. 46-52.
DOI: https://doi.org/10.1145/3229607.3229613.

12. Tam, P., Song, I., Kang, S., Ros, S. & Kim, S. “Graph neural networks for intelligent modelling in
network management and orchestration: A survey on communications”. Electronics. 2022; 11: 3371.
DOI: https://doi.org/10.3390/electronics11203371.

13. Li, G., Shang, Y., Liu, Y. & Zhou, X. “A network traffic prediction model based on graph neural
network in software-defined networking”. International Journal of Information Security and Privacy (1JISP),
2022; 16 (1): 1-17. DOI: https://doi.org/10.4018/1JISP.309130.

14. Rusek, K., Suarez-Varela, J., Mestres, A., Barlet-Ros, P. & Cabellos-Aparicio, A. “Unveiling the
potential of graph neural networks for network modeling and optimization in SDN”. Proceedings of the

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Computer engineering and cybersecurity 313



Buiukli V. S., Tishin P. M., Naumenko R. 1., Martynyuk O. M. [ Applied Aspects of Information Technology
2025; Vol.8 No.3: 306-315

ACM Symposium on SDN Research (SOSR). 20109. p. 140-151. DOl:
https://doi.org/10.1145/3314148.3314357.

15. Ferriol-Galmés, M., Paillisse, J., Suarez-Varela, J., Rusek, K., Xiao, S., Shi, X., Cheng, X., Barlet-
Ros, P. & Cabellos-Aparicio, A. “RouteNet-Fermi: Network modeling with graph neural network”. arXiv.
2022. DOI: https://doi.org/10.48550/arXiv.2212.12070.

16. Hope, O. & Yoneki, E. “GDDR: GNN-based Data-Driven Routing”. 2021. p. 517-527.
DOI: https://doi.org/10.1109/ICDCS51616.2021.00056.

17. Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M. & Li, H. “T-GCN: A Temporal
Graph Convolutional Network for Traffic Prediction”. IEEE Transactions on Intelligent Transportation
Systems. 2019. p. 1-11. DOI: https://doi.org/10.1109/T1TS.2019.2935152.

18. Almasan, P., Suarez-Varela, J., Badia-Sampera, A., Rusek, K., Barlet-Ros, P. & Cabello, A. “Deep
reinforcement learning meets graph neural Networks: exploring a routing optimization use case”. 2019.
DOI: https://doi.org/10.48550/arXiv.1910.07421.

19. Varga, A. “OMNeT++". In: Modeling and tools for network simulation. Springer. 2010. p. 35-59.
DOI: https://doi.org/10.1007/978-3-642-12331-3_3.

20. Boutaba, R., Salahuddin, M. A., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano, F. & Caicedo,
O. M. “A comprehensive survey on machine learning for networking: evolution, applications and research
opportunities”.  Journal of Internet Services and Applications. 2018; 9 (1): 1-99.
DOI: https://doi.org/10.1186/s13174-018-0087-2.

21. Mestres, A., Rodriguez-Natal, A., Carner, J., Barlet-Ros, P., Alarcén, E., Solé, M., Muntés-Mulero,
V., Meyer, D., Barkai, S., Evans, J. & Cabellos-Aparicio, A. “Knowledge-Defined Networking”. ACM
SIGCOMM Computer Communication Review. 2017; 47 (3): 2-10. DOl:
https://doi.org/10.1145/3138808.3138810.

22. Li, Y. & Chen, M. “Software-Defined Network Function Virtualization: A Survey”. IEEE Access.
2015; 3: 2542-2553. DOI: https://doi.org/10.1109/ACCESS.2015.249271.

23. Buterez, D. & Janet, J., Kiddle, S., Oglic, D. & Lio, P. “Graph neural networks with adaptive
readouts”. arXiv. 2022. DOI: https://doi.org/10.48550/arXiv.2211.04952.

Conflicts of Interest: The authors declare that they have no conflict of interest regarding this study, including financial, personal,
authorship or other, which could influence the research and its results presented in this article

Received 19.06.2025
Received after revision 25.08.2025
Accepted  04.09.2025

DOI: https://doi.org/10.15276/aait.08.2025.20
Y]IK 004.8:004.7

JocaixxeHHs BAIOCKOHAJIEHHS MoJiei rpadoBoi HelipOHHOI Mepe:Ki
JJISE MOJIEJTFOBAHHS KOMIT’ FOTEPHHUX MEPeiK

Byrokui BikTop Cepriﬁonnql)

ORCID: https://orcid.org/0000-0001-7384-2290; vktr.buyukli@gmail.com

Timmun Herpo MerramnnoBuy”

ORCID: https://orcid.org/0000-0003-2506-5348; petrmettal@gmail.com. Scopus Author ID: 57190400970
Haymenko Poman IBanoBuy”

ORCID: https://orcid.org/0009-0003-7612-1773; lwoodooz7@gmail.com

MapruHiok OJiekcanap Muxkonaiiopuu’

ORCID:http://orcid.org/0000-0003-1461-2000; martynyuk@op.edu.ua. Scopus Author ID: 57103391900
) Hanionansuuit yrisepcurer “Ojechbka nonitexnika”, mp. Illesuenka, 1. Oneca, 65044, Yxpaina

AHOTALIS

Cyd4acHi KOMIT'IOT€pHI MEpeKi CTUKAIOTHCS 31 3pOCTAIOUNMH BUKIMKAMH Yepe3 yCKIIaMHEHHsI IXHbOI CTPYKTYPH, JUHAMIYHI 3MiHU
Tpadiky Ta morpedy B 3a0e3MeUeHHI BUCOKOI MPOAYKTHBHOCTI. TpalumiiHi miIXOAu 10 MOAECTIOBAHHS MEPEX H4acTo He 3/1aTHI TOYHO
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MIPOTHO3YBATH TIApaMeTpH, Taki SK 3aTPUMKH YM BTPAaTH JAHUX, depe3 OOMeXeHy 3[aTHICTh BPAaXOBYBAaTH IHIWBITyalbHi
XapaKTePHCTUKH MEPEXKEBUX €JEeMEHTIiB. lle mMiaKpecmroe akTyaslbHICTH PO3POOKH HOBHUX METOIB, SIKI MOXYTh AJaNTyBAaTHCS IO
pearbHNX YMOB poOOTH Mepex 1 3a0e3medyBaTH eeKTUBHE YIPaBIiHHA IXHIMH pecypcaMi. MeTOro JOCTIIKEHHS € BJOCKOHAJICHHS
METOZIiB MOJIETIOBAHHS KOMIT IOTEpPHUX MEpEeK IIIIXOM PO3pOOKH MOJEi, sIKa BPaXxOBYe IHJMBIIyalIbHI XapaKTEPHCTUKA MEPEKEBHX
€JIEMEHTIB JUIsI ITi/IBUINEHHS TOYHOCTI IPOTHO3YBAaHHS NapaMeTpiB i ONTHMI3alli IpoIeciB MapmpyTu3alii. 3aBIaHHS BKIIOYAIOTh
aHal3 Cy4acHMX TIIXOMIB [0 MOJETIOBaHHS, CTBOPEHHS IIOKPAIIEHOI MOJETi Ha OCHOBI METOAIB MAIIMHHOIO HABYaHHS,
YIOCKOHAQJICHHS aJTOPUTMIB HaBYAaHHS Ta HPOBEICHHS EKCIIEPHMEHTIB OLIHKM e(eKTUBHOCTI Mozerni. Jis pearnisarii BHKOpHUCTaHO
METOAM MAIIMHHOIO HaBYaHHS, 30KpeMa TpadoBa HEHpOHHAa Mepexka, ska JO3BOJISIE MOJIENIOBATH CKIAJHI B3a€MO3B’S3KHA MiX
eJIeMeHTaMH Mepeski. 3anportoHOBaHa MOJIENb IHTETPY€E XapaKTEePHCTHKH MEPEKEBHX BY3JIIB Y IpoLec 00poOKH NaHHX, IO 3a0e3nedye
aJJalITUBHICTH JI0 HEOHOPIAHNX YMOB. EXCIIEpUMEHTH TIPOBOMIINCS HA Pi3HUX HAOOpaxX JaHWX, IO BiOOPaKAIOTh peabHi MEPEKEBi
TOIIOJOTI], 3 OMIHKOIO TOYHOCTI NMPOTHO3YBAaHHS 3a KUNBKOMa METpHKaMH. Pe3ynsTaT OCHiPKEHHS IOKa3yroTh, L0 3alpPOIIOHOBAHA
MoJIeIb 3a0e3Meuye BHIILY TOUHICTh IIPOTHO3YBAHHS ITapaMeTPiB Mepexi MOpIBHAHO 3 0a30BUMH MiXOIaMH, JeMOHCTPYIOUYH 3aTHICTh
aJIanTyBaTHCS IO HOBUX Toronoriid. HaykoBa HOBH3HA poOOTH ITONsTae y BBEJIEHHI XapaKTePUCTHK MEPEKEBUX EIIEMEHTIB JI0 TIPOLeCy
MOJIEITIOBAaHHSI, 110 JJO3BOJISIE TOYHIIIE BiTIOOpaKaTH peabHi yMOBH. [IpakTHdHe 3HAUSHHS ITOJTae B MOXKIIMBOCTI 3aCTOCYBAaHHS MOZIEI
B CHCTEMaXx YIpPaBIIiHHI MepeXKaMH JUTsl ONTHMI3alli MapIupyTr3amii Ta 3HKEHHS BUTpaT Ha iHpacTpykTypy. OTprMaHi pe3yibTaTH
BIZIKPHBAIOTB MEPCTIEKTHBH TS OAAIBIION0 PO3BHUTKY METO/IIB MOJIETIOBAHHS Ta YIPABIIHHS CYy4aCHUMH MEPEKEBUMH CHCTEMaMH.
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