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ABSTRACT 

This research presents a comprehensive performance evaluation of photon mapping techniques for global illumination, with a 
focus on real-time rendering and large-scale visual simulations. The study introduces a custom implementation of a KD-tree-based 
spatial indexing structure for photon retrieval, providing an empirically validated alternative to linear search in high-density photon 
environments. The integration of this method with controlled benchmarking constitutes the core novelty of the work. Five modern 
photon mapping strategies are investigated collectively without emphasizing individual advantages, including traditional 

formulations, progressive and stochastic progressive variants, Monte Carlo-based hybridization, and machine-learning-augmented 
methods. Experiments are conducted on diverse test scenes with varying geometric and lighting complexity, using both Central 
processing unit (CPU) and Graphics processing unit (GPU) platforms to measure scalability and efficiency under distinct resource 
constraints. Evaluation is based on rendering time, memory usage, and image quality indicators such as mean squared error and peak 
signal-to-noise ratio. A uniform testing pipeline ensures methodological consistency across hardware setups and photon emission 
scales. The KD-tree approach demonstrates improved query performance as photon count increases, reducing lookup overhead and 
enabling more efficient scene processing in dense illumination contexts. The findings are applicable to next-generation physically 
based rendering engines, interactive graphics applications, and high-fidelity simulation systems where computational cost and 

responsiveness are critical. The implementation insights, experimental results, and derived recommendations serve as a foundation 
for the selection and deployment of photon mapping algorithms in scenarios requiring accurate global illumination and scalable real-
time visualization. The work supports design decisions in rendering architecture by quantifying trade-offs in algorithmic structure, 
hardware acceleration, and memory behavior. The novelty of this work lies in the implementation and evaluation of a custom KD-
tree algorithm for photon retrieval, which has not been previously benchmarked in the context of large-scale photon mapping. Unlike 
purely theoretical analyses, this study provides empirical validation of KD-tree efficiency compared to linear search, offering 
practical insights into scalability trade-offs for real-time and high-fidelity rendering applications. 
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INTRODUCTION 

Photon mapping is a global illumination 

algorithm commonly used in computer graphics to 

simulate the complex interactions of light within a 
scene. It extends the capabilities of ray tracing by 

introducing the concept of photons as particles 

emitted from light sources, which are then stored in 

a photon map. This map is subsequently used to 
calculate indirect illumination, such as caustics, 

diffuse interreflections, and global illumination. 

 Photon mapping is particularly effective in 
rendering scenes involving complex lighting effects, 

such as reflections, refractions, and volumetric 

scattering. It is a widely adopted technique not only 
in image rendering but also in scientific simulations, 

where precise modeling of light behavior is essential 

for fields like medical imaging, optics, and 

atmospheric simulations [1]. One of the significant 
challenges of photon mapping lies in the trade-off 
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between computational cost and rendering quality. 
Traditional photon mapping requires balancing the 

number of emitted photons, photon storage, and 

search algorithms for accurate radiance estimates, 
making it computationally intensive. 

Assessing the performance of photon mapping 

methods is crucial in both practical and theoretical 

contexts. In rendering, high-performance photon 
mapping can significantly reduce computational 

time while maintaining visual fidelity, especially in 

real-time applications such as video games or virtual 
environments [2]. On the other hand, in scientific 

simulations, the accuracy of photon mapping 

directly impacts the precision of simulations, which 
can affect research outcomes.  

For instance, a reduction in photon count to 

improve performance may lead to noticeable 

artifacts like blotchy lighting or inaccurate caustics, 
which are unacceptable in scientific visualizations 

[3]. As the demand for real-time applications and 

large-scale simulations increases, optimizing 
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photon mapping algorithms becomes a pressing 

issue. Various methods have been developed to 

improve efficiency, including progressive photon 
mapping, which refines photon density estimates 

over multiple passes, and adaptive photon mapping, 

which adjusts photon density based on scene 
complexity [4]. Each method, however, introduces 

unique challenges in terms of performance, 

accuracy, and resource allocation. 
Despite extensive research in photon mapping, 

several aspects remain underexplored. One of the 

primary challenges is optimizing photon search 

efficiency, particularly in large-scale simulations 
where traditional nearest-neighbor search methods 

become computationally prohibitive. The choice of 

data structures for photon storage and retrieval has a 
significant impact on rendering performance. While 

brute-force approaches such as linear search are 

simple to implement, they exhibit O(n) complexity, 

making them inefficient for high-photon-count 
environments. More sophisticated spatial data 

structures, such as KD-Trees, offer a potential 

solution by reducing search complexity to O(log n) 
in well-balanced trees. However, the practical 

performance of KD-Tree-based search methods in 

photon mapping remains an area requiring further 
empirical validation. This study, among other things, 

proposes its own implementation of the KD-tree 

algorithm. 

The scientific novelty of the research consists in 
developing and experimentally validating a KD-tree-

based photon mapping implementation, which 

demonstrates measurable performance 
improvements in dense illumination environments. 

This represents a methodological contribution that 

goes beyond existing surveys, providing both a 
practical algorithmic solution and quantitative 

benchmarks for its effectiveness. 

LITERATURE REVIEW 

Photon mapping, initially introduced as a 
solution for simulating global illumination in 

complex 3D scenes, has evolved through multiple 

research efforts into various refined techniques. 
Early studies on basic photon tracing laid the 

foundation by demonstrating how photons emitted 

from light sources could be stored and later used to 

estimate indirect lighting. However, the method's 
computational cost prompted the development of 

more sophisticated algorithms, such as progressive 

photon mapping (PPM) and its derivatives. 
Progressive photon mapping addresses the 

inefficiencies of traditional photon mapping by 

incrementally refining the photon map over multiple 
passes, reducing noise and increasing accuracy with 

each iteration [4]. Moreover, studies like those 

conducted by Yang and Kang explored the 

stochastic nature of photon sampling, enabling better 
distribution of photons in scenes with complex 

lighting effects [5]. In addition, the concept of 

foveated photon mapping has been proposed to 
focus computational resources on areas of visual 

importance, further improving efficiency [7]. These 

refinements represent incremental but impactful 
progress in the field, each aimed at reducing the 

computational burden while maintaining or 

improving the visual fidelity of rendered scenes. 

A critical part of photon mapping research has 
been the development of metrics to evaluate 

performance and quality. Numerous studies have 

emphasized speed and memory usage as key 
metrics, given the resource-heavy nature of photon-

based methods [8]. For instance, foveated photon 

mapping, which utilizes adaptive sampling 

strategies, demonstrated a performance improvement 
of over 30 % compared to traditional methods, 

particularly in real-time rendering environments [7]. 

Additionally, some research has focused on the 
visual quality of photon maps, measuring aspects 

like noise reduction, caustic accuracy, and lighting 

consistency. In one study, progressive photon 
mapping reduced noise levels by approximately 25 

% compared to conventional techniques when tested 

on scenes with varying complexity [9]. However, 

speed improvements often come at the cost of visual 
precision, and balancing these factors remains a core 

challenge in the field. 

In the context of evaluating the performance of 
photon mapping techniques, a multi-faceted 

approach is typically used. Rendering time, the 

number of photons required to achieve acceptable 
accuracy, and the memory footprint are the primary 

indicators of performance. Metrics such as mean 

squared error (MSE) and peak signal-to-noise ratio 

(PSNR) are commonly employed to quantify the 
visual quality of the final image [10]. Various 

benchmarks have been developed, with studies 

demonstrating that progressive photon mapping can 
decrease rendering times by 40 % while maintaining 

high visual quality compared to traditional photon 

mapping [8]. On the other hand, hybrid approaches 

combining photon mapping with Monte Carlo 
integration methods have shown potential for further 

optimization. These hybrid methods exploit the 

efficiency of photon mapping in handling indirect 
lighting, while Monte Carlo methods improve the 

handling of direct illumination [6]. 

Recent studies explore hybrid approaches that 
integrate photon mapping with Monte Carlo 
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methods, enhancing the balance between global 

illumination accuracy and computational efficiency 

[32]. A. Keller, L. Grünschloß, and M. Droske 
introduced quasi-Monte Carlo progressive photon 

mapping, which incorporates quasi-Monte Carlo 

sampling into progressive photon mapping, 
significantly improving convergence rates and 

reducing variance in complex lighting simulations 

[35]. In test scenes with high levels of indirect 
illumination, this approach demonstrated a 25 % 

faster convergence while maintaining comparable 

accuracy to conventional progressive photon 

mapping. These results suggest that hybridization 
with quasi-Monte Carlo integration can mitigate the 

noise inherent in photon-based methods while 

maintaining computational feasibility for large-scale 
rendering applications. 

Advancements in GPU-based rendering have 

facilitated the development of photon mapping 

techniques that leverage parallel computing 
architectures. Y. Liao et al. proposed a GPU-

accelerated Monte Carlo simulation framework 

designed for underwater lidar applications, 
achieving notable improvements in photon path 

estimation through optimized sampling strategies 

[33]. Their findings indicate that photon mapping 
accelerated by Monte Carlo integration on GPUs 

reduced rendering times by a factor of 3.2 compared 

to CPU-based implementations. Similarly, Y. Li et 

al. explored GPU-based optical photon simulation 
techniques in high-energy physics applications, 

demonstrating that Monte Carlo-enhanced photon 

propagation can be effectively utilized for high-
fidelity simulations in real-time environments [34]. 

The integration of Monte Carlo sampling with 

photon mapping in GPU architectures presents a 
promising direction for improving rendering 

efficiency in scenarios requiring high computational 

throughput. 

The integration of machine learning with 
photon mapping has emerged as an innovative 

direction in rendering research. H. Wenzel, S. Jun, 

and K. Genser introduced an optical photon 
propagation model utilizing Geant4/CaTS/Opticks, 

which employs neural networks to predict photon 

interactions in complex environments [38]. Their 

approach significantly reduced the number of 
required photons for accurate illumination 

simulations, achieving a 40 % reduction in 

computational overhead while maintaining 
photometric accuracy. Furthermore C.-Y. Zeng 

proposed an efficient hybrid rendering algorithm 

combining photon mapping and rasterization 
techniques, optimizing real-time rendering pipelines 

through deep-learning-driven photon distribution 

models [39]. These developments highlight the 

potential of machine learning to refine photon 
mapping methodologies, particularly in adaptive 

sampling and denoising processes, contributing to 

enhanced performance in high-fidelity rendering 
applications. 

Additionally, recent advances in deep learning 

applied to global illumination have been reported in 
high-impact venues such as SIGGRAPH and IEEE 

conferences. For example, Zhao [41] proposes a 

dynamic deep-learning-based illumination model for 

VR rendering, while Badler [40] emphasizes the 
integration of service-oriented DL methods into 

modern graphics workflows. 

Despite these advancements, significant 
challenges remain in optimizing the performance of 

photon mapping techniques. One of the main aspects 

of photon mapping that impacts its performance is 

photon distribution, especially in scenes with 
heterogeneous lighting conditions. Most photon 

mapping algorithms struggle to distribute photons 

efficiently across regions of varying light intensity, 
leading to oversampling in brightly lit areas and 

undersampling in shadows [5]. This inefficiency not 

only increases computation time but also affects the 
accuracy of the resulting illumination, especially in 

complex scenes involving caustics or indirect 

lighting. Furthermore, existing methods such as KD-

trees or other spatial data structures, used to store 
and retrieve photon information, may become 

inefficient as the number of photons grows 

exponentially [11]. 
Concrete applications of KD-trees in photon 

mapping have been reported across several domains. 

Schregle et al. [20] applied balanced KD-tree 
indexing to daylight redirecting components, 

demonstrating a fourfold reduction in query times 

compared to uniform grids at photon counts above 

50,000. Pharr, Jakob, and Humphreys [21] document 
the PBRT implementation, where KD-trees are the 

default structure for photon storage and enable 

logarithmic nearest-neighbor queries in practice. 
Zeng et al. [22] extended KD-tree partitioning with 

ray-aligned occupancy map arrays, showing 

improved traversal coherence for fast approximate 

ray tracing. Qu [23] compared KD-trees with octrees 
in large-scale photon simulations, reporting that KD-

trees provided better memory efficiency and query 

stability for scenes with heterogeneous photon 
densities. These works establish KD-trees as the 

dominant retrieval structure, though their 

preprocessing cost remains a recurring limitation in 
dynamic scenarios. 
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In classic photon mapping, photons are 

commonly organized in balanced KD-trees to 

accelerate nearest-neighbor queries; this is the 
default design in PBRT and related implementations 

[21]. Progressive variants maintain or rebuild such 

structures as photon sets evolve, trading O(n log n) 
build time for sublinear queries [20], [21]. Prior 

work typically reports KD-tree usage as a given but 

seldom isolates its contribution versus linear scans 
under identical render settings. Numerous works 

confirm that KD-trees are the de facto standard for 

accelerating photon queries in both offline and 

interactive rendering [18], [20], [21]. However, 
these studies usually treat KD-trees as a background 

implementation detail, without providing a dedicated 

comparison of their performance against linear 
search under controlled conditions. As a result, the 

practical trade-offs between preprocessing overhead 

and query acceleration remain underexplored in the 

literature. Our study fills this gap with a controlled 
ablation (same scenes, photons, estimators) that 

quantifies the KD-tree break-even regime and details 

implementation-level choices that materially affect 
performance. Hierarchical techniques, though 

capable of speeding up photon searches, often 

introduce additional computational overhead and 
complexity in implementation. 

Another issue that affects performance is the 

handling of large-scale photon maps in memory-

constrained environments. Progressive photon 
mapping, while effective in reducing noise over 

time, can still result in large photon datasets, 

particularly in scenes with complex light interactions 
[4]. Memory management strategies, especially for 

GPU-accelerated photon tracing, require further 

exploration to ensure that performance gains from 
hardware acceleration are not offset by memory 

bottlenecks [6]. Parallel processing techniques, such 

as those explored in the context of foveated photon 

mapping, offer potential solutions but have yet to 
achieve widespread adoption due to their complexity 

[6]. 

THE PURPOSE AND TASKS OF THE 

RESEARCH 

The aim of this study is to quantify the 

performance–accuracy–memory trade-offs of five 

photon-mapping families under controlled 
conditions and to empirically determine when a KD-

tree photon lookup outperforms linear search in 

practice. Beyond raw benchmarking, the goal is to 
produce decision rules that map scene class and 

photon density to a recommended method and 

retrieval structure. The central research questions 
focus on identifying under which photon counts n 

and scene classes (diffuse, glossy, refractive, 

volumetric) KD-tree lookup minimizes per-query 

latency and amortized per-frame time compared to 
linear search; how Traditional Photon Mapping 

(PM), Progressive Photon Mapping (PPM), 

Stochastic Progressive Photon Mapping (SPPM), 
and Hybrid Monte Carlo Photon Mapping (Hybrid 

MC+PM), and machine learning based(ML-based) 

PM scale in T(n) (end-to-end render time), Mem(n) 
(peak working-set), and quality  
𝑄(𝑛) =  {𝑀𝑆𝐸, 𝑃𝑆𝑁𝑅, 𝑆𝑆𝐼𝑀, 𝐿𝑃𝐼𝑃𝑆}; what run-to-

run variability these methods exhibit under fixed 

seeds and identical scene controls; and, given a 
target quality threshold Q*, which method 

minimizes time and memory subject to hardware 

constraints such as CPU versus GPU. 
To answer these questions, the research 

undertakes several tasks: 

– implement a reproducible pipeline that 

executes Traditional PM, PPM, SPPM, Hybrid 
MC+PM, and ML-based PM under identical scene, 

sampler, and accumulation settings; 

– develop a KD-tree–based photon retrieval 
baseline and test it against linear search across 

photon counts n ∈ [10^4; 10^5] and a variety of 

scene complexities; 

– measure scaling laws T(n), Mem(n), and 
quality metrics (MSE, PSNR, SSIM, LPIPS) on both 

CPU and GPU, with confidence intervals, variance, 

and effect sizes explicitly reported; 
– ensure reproducibility by fixing random 

seeds, publishing scene parameter grids, and logging 

all renderer and runtime configurations; 
– derive practical guidance to identify operating 

regimes where each method is preferable, depending 

on photon density, hardware resources, and 

time/quality budgets. 
The study is grounded on several hypotheses. 

First, KD-tree search is expected to reduce average 

query time below linear search beyond a crossover 

photon count 𝑛0 and for radii 𝑟 ≤  𝑟0, while below 

𝑛0 or in scenarios with frequent photon updates the 

O(n log n) build costs dominate. Second, SPPM is 

hypothesized to converge faster than PPM at 
comparable memory budgets due to stochastic 

sample redistribution, thereby reducing the time 

required to achieve a fixed MSE or SSIM target. 
Third, ML-based PM is expected to achieve the 

lowest MSE within a fixed time budget via adaptive 

sampling, though at the cost of sensitivity to 
distribution shift when applied to scenes, materials, 

or lighting configurations not represented in training. 

Evaluation criteria are defined to support 

rigorous comparisons. MSE and PSNR are reported 
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as photometric fidelity measures, capturing pixel-

wise error and signal-to-noise properties; SSIM is 

used to assess structural coherence in terms of 
contrast, luminance, and spatial structure; LPIPS 

provides a perceptual similarity score aligned with 

human visual judgments. Together these metrics 
cover numeric accuracy, structural quality, and 

perceptual fidelity, with thresholds Q* defined for 

each scene category. All metrics are accompanied by 
95 % confidence intervals and standardized effect 

sizes to ensure statistical robustness of conclusions. 

The scope of the study is limited to fixed-

resolution, static-topology scenes drawn from 
publicly available benchmarks, avoiding the use of 

proprietary datasets or user studies. Denoisers and 

tone-mapping are not optimized, as the focus 
remains strictly on photon mapping evaluation. 

Hardware configurations and parameter grids are 

explicitly specified in the methodological section to 

allow for reproducibility. Thus, the contribution is 
primarily methodological, providing a systematic 

evaluation protocol and a KD-tree ablation study, 

rather than the introduction of a novel global 
illumination algorithm. 

METHODS AND INSTRUMENTATION FOR 

EXPERIMENTAL EVALUATION 

The experimental evaluation of photon mapping 

performance methods in this study is grounded in 

the detailed examination of various photon mapping 

algorithms and their implementation in different 
rendering environments. Specifically, traditional 

photon tracing, progressive photon mapping and 

stochastic progressive photon mapping have been 
selected for analysis due to their widespread 

application in both offline and real-time rendering 

contexts. Experimental design and count. We 
evaluate 4 scene categories × 4 photon counts × 5 

methods × 2 architectures × 5 repeated runs = 800 

runs in total. Per-run statistics (time, memory, 

MSE/PSNR/SSIM/LPIPS) are logged automatically; 
we report means with 95 % CI after IQR-based 

outlier removal. Traditional photon tracing will 

serve as the baseline for performance comparison, 
while PPM and SPPM are examined for their 

incremental improvements in photon distribution 

and noise reduction. These algorithms have been 

chosen for their distinct approaches to managing 
photon storage and retrieval, which directly impact 

both computational efficiency and visual fidelity [4]. 

The test environments for rendering and 
simulation consist of multiple 3D scenes with 

varying complexity, including simple static scenes 

with basic lighting, dynamic scenes with moving 
light sources, and complex environments with 

caustic reflections and volumetric scattering. Objects 

in these scenes range from low-polygon geometric 

models to high-polygon architectural simulations. 
Light sources include both direct and indirect light, 

such as point lights, area lights, and environmental 

lighting, which allows for a comprehensive 
evaluation of how different photon mapping 

techniques perform under diverse lighting conditions 

[8]. The camera setup uses a fixed perspective view 
across all tests to ensure consistency in rendering 

metrics, with parameters adjusted to simulate 

realistic conditions, such as depth of field and 

exposure [10]. These controlled environments are 
designed to push the photon mapping algorithms in 

scenarios where performance trade-offs between 

speed, accuracy, and resource usage are most 
evident. 

The computational platform for the experiments 

consists of a high-performance workstation with an 

Intel Xeon W-3375 processor (32 cores, 64 threads, 
base clock 2.5 GHz, turbo up to 4.0 GHz), 128GB 

DDR4-3200 RAM, and dual NVIDIA RTX 4090 

GPUs (each with 24GB GDDR6X memory). The 
system operates on Ubuntu 22.04 LTS with kernel 

5.15 and utilizes OptiX 7.3 API alongside CUDA 

11.2 for hardware-accelerated photon tracing. The 
rendering software environment includes Blender 

3.4 with Cycles and custom-built photon mapping 

plugins developed in C++ with OpenGL 4.6 support. 

Additionally, NVIDIA Nsight Compute 2023.2 was 
used for profiling GPU workloads, while Intel 

VTune Profiler assisted in CPU performance 

analysis. The choice of hardware and software 
ensures that the full potential of modern photon 

mapping techniques is realized, particularly when 

leveraging GPU parallelization for photon emission 
and photon map construction [6]. The software 

environment includes Blender 3.4 as the primary 

rendering tool, integrated with custom shaders and 

photon mapping plugins specifically designed to 
control photon distribution parameters and optimize 

resource usage during the rendering process [2]. 

Memory management is critically evaluated, as 
photon maps generated from complex scenes can 

exceed tens of gigabytes, necessitating efficient use 

of both system RAM and GPU memory [13]. 

SCENES AND REPRODUCIBILITY  

(NO PROPRIETARY DATASET) 

We do not curate a new dataset. All 

experiments use publicly available benchmark 
scenes and stock assets. Concretely, we rely on: (i) 

PBRT (4th ed.) reference scenes and materials as 

described in Pharr–Jakob–Humphreys [21], and (ii) 
Blender 3.x stock demo scenes and materials 
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bundled with the distribution (used only as 

geometry/light sources driven by our renderer 

settings; see Blain [2] for the workflow 
background). Scene categories mirror those used in 

prior photon-mapping studies: diffuse room-like 

setups (Cornell-style), glossy/metallic BRDFs, 
refractive/caustic glass, and a volumetric case. For 

each category we only adjust public scene 

parameters (albedo/roughness/ior/light 
intensity/volume σ_s,g) via the renderer config; we 

do not modify meshes or textures. 

Reproducibility settings are fixed across all 

methods: image size 1920×1080, 16-bit PNG output; 
identical camera intrinsics; exposure/tone mapping 

disabled; photon counts 𝑛 ∈  {1𝑀, 5𝑀, 10𝑀, 20𝑀}; 

fixed-radius estimator with r chosen per scene 
category once and reused; RNG seeds per scene id: 

seed_s = 1000 + s. On GPU, OptiX denoisers are 

disabled during metric runs. The exact scene file 

names and parameter overrides are listed in 
Appendix A (PBRT scene names from [21]; Blender 

demo file names from the official distribution). 

Examples used in this paper: PBRT “veach-
mis.pbrt”, “glass-of-water.pbrt”, “classroom.pbrt”; 

Blender demo scenes “Classroom”, “BMW27”, 

“Barbershop”, each consumed as-is with only public 
parameter overrides (exposure off, fixed r, fixed 

seeds). 

Data collection during the experiments involves 

automated logging of key performance metrics such 
as render time, photon count, and system resource 

utilization (CPU, GPU, and memory). Performance 

data is gathered at various stages of the rendering 
pipeline, including photon emission, photon storage, 

and final image synthesis. The experiments also 

track rendering accuracy, using both subjective 

visual comparisons and objective metrics such as 
mean squared error and peak signal-to-noise ratio to 

assess image quality [10]. Rendering times are 

measured in milliseconds per frame, and photon 
counts range from 1 million to 50 million photons 

depending on the complexity of the scene. Each test 

is run a minimum of five times to ensure statistical 
significance, and outlier results are discarded to 

maintain the integrity of the data [5]. 

The conditions of the experiment are tailored to 

examine the impact of key parameters such as the 
number of photons, simulation duration, and 

computational load on the performance of the 

different photon mapping algorithms. For example, 
scenes with high photon counts (e.g., over 20 

million) are designed to evaluate how well each 

algorithm handles photon density in complex 
lighting scenarios, such as caustic reflections off 

transparent surfaces. Similarly, rendering tests with 

dynamic lighting involve a set duration of 30 

seconds, during which the movement of light 
sources is tracked in real-time, allowing for analysis 

of the adaptability and performance stability of each 

photon mapping method [12]. The number of 
experimental runs for each scene is set to 50 

iterations, ensuring a robust data set for comparison. 

Performance evaluation is based on several key 
metrics. First, computational speed is measured as 

the total time taken to render a scene to completion, 

with a focus on how photon count and scene 

complexity affect this time. Second, rendering 
accuracy is evaluated by comparing the output 

images to ground-truth renders generated using 

Monte Carlo methods, with MSE and PSNR used to 
quantify deviations in lighting and shadow quality. 

Additionally, structural similarity index (SSIM) and 

perceptual loss metrics (LPIPS, as implemented in 

PyTorch) were applied to measure the perceptual 
fidelity of photon-mapped images. All error 

computations were performed using NumPy 1.24 

and OpenImageIO 2.4 to ensure numerical 
consistency in floating-point calculations. [6]. Third, 

resource usage is analyzed to determine how 

efficiently each algorithm utilizes system resources, 
particularly CPU versus GPU performance and 

memory consumption [4]. This is especially critical 

in GPU-accelerated rendering, where poor memory 

management can lead to performance degradation 
despite the raw computational power of the 

hardware. 

To ensure reliability, each test was repeated 50 
times per configuration, and statistical variance was 

calculated across runs. Standard deviation and 

confidence intervals were computed for all measured 
performance metrics. Outlier handling was 

implemented using the interquartile range (IQR) 

method, discarding extreme values that exceeded 1.5 

times the IQR. To minimize measurement noise, all 
tests were conducted on an isolated system with 

minimal background processes, and GPU clock 

speeds were manually locked at a fixed frequency to 
prevent dynamic clock adjustments from introducing 

inconsistencies. Furthermore, thermal monitoring 

using NVIDIA SMI and Intel RAPL confirmed that 

temperature fluctuations did not impact 
performance, ensuring stable and reproducible 

benchmark results. 

The use of GPU acceleration is likely to benefit 
all algorithms, particularly in terms of reducing 

photon emission times and improving the speed of 

photon map construction, though memory 
constraints may present bottlenecks in more 
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resource-intensive scenarios [6]. Ultimately, the goal 

is to identify the optimal balance between 

computational efficiency and image fidelity for 
different photon mapping methods and recommend 

best practices for their application in various 

rendering contexts. 

RESULTS OF A COMPARATIVE ANALYSIS 

OF THE PERFORMANCE OF PHOTON 

MAPPING METHODS 

Unless stated otherwise, all aggregates below 

summarize the 800-run matrix described in Methods. 

The comparative analysis of photon mapping 

methods reveals significant differences in rendering 
efficiency, resource utilization, and computational 

scalability based on photon count, scene complexity, 

and hardware configuration. Traditional photon 
tracing, while effective at reproducing complex light 

interactions, demonstrates an exponential increase in 

computational cost as the photon count exceeds 10 

million photons, making it impractical for large-
scale rendering. For instance, in a test scene with 

complex caustic reflections, the render time for 

traditional photon mapping increased from 150 
seconds with 5 million photons to over 500 seconds 

with 20 million photons, a pattern that aligns with its 

inherent limitations in memory access and photon 
search algorithms [11]. However, while progressive 

and stochastic approaches mitigate some of these 

inefficiencies, they are still constrained by the need 

for large photon maps and extended computation 
times in dynamic environments. 

Progressive photon mapping (PPM) and 

stochastic progressive photon mapping (SPPM) 
exhibited more efficient scaling with photon count 

compared to traditional photon mapping. The ability 

of these methods to incrementally refine photon 
density contributed to improved convergence rates. 

However, the introduction of hybrid Monte Carlo 

photon mapping significantly optimized the 

computational workflow by integrating bidirectional 
Monte Carlo sampling to improve indirect 

illumination handling. This hybrid approach reduced 

render times by approximately 35 % compared to 
PPM while maintaining a comparable MSE of 0.006 

at 20 million photons [4]. Unlike standard 

progressive methods, Monte Carlo-enhanced photon 

mapping dynamically adjusts photon density across 
surfaces based on the variance reduction principles, 

reducing redundant photon storage and improving 

overall computational efficiency. 
Stochastic progressive photon mapping (SPPM) 

provided a high level of computational efficiency 

across all tested scenes. However, ML-based photon 
mapping approaches demonstrated even greater 

adaptability by leveraging neural network-based 

photon density estimation. This method utilizes a 

pre-trained convolutional neural network (CNN) 
with U-Net architecture and three convolutional 

stages per level, trained on a synthetic dataset of 500 

procedurally generated lighting scenarios. The 
model architecture follows a U-Net topology with 

skip connections at each level to preserve spatial 

resolution during upsampling. Each convolutional 
block consists of a 3×3 kernel, ReLU activation, and 

batch normalization, followed by max pooling 

during encoding and nearest-neighbor upsampling 

during decoding. The network operates on a per-
pixel basis, with input tensors encoding surface 

normals, incident angles, roughness, and diffuse 

reflectance. The training dataset comprises 500 
synthetic scenes procedurally generated using 

Blender and custom HDRI environments, with 

randomized light positions, materials, and occlusion 

patterns to ensure diversity. The dataset includes 
ground-truth photon density fields obtained using 

high-resolution Monte Carlo simulations, enabling 

supervised learning. Input features include surface 
normal vectors, material roughness, and incident 

light direction. Output values represent estimated 

photon density per spatial region. The model was 
trained using mean absolute error loss and optimized 

using Adam with a learning rate of 10−4. While 

effective, this approach may face limitations when 
generalizing to unfamiliar lighting conditions not 

present in the training set. In a dynamic lighting test 

scene, where conventional photon mapping required 

over 180 seconds with 20 million photons, the ML-
based approach completed the rendering in under 

120 seconds, representing an efficiency gain of 

approximately 33 % while preserving visual 
fidelity [5].  

The primary advantage of ML-enhanced photon 

mapping lies in its ability to learn from prior 
rendering data, thereby accelerating convergence 

and minimizing computational overhead for high-

complexity lighting interactions. 

The relationship between photon count and 
rendering accuracy further emphasizes the 

advantages of hybrid and ML-based photon mapping 

techniques. As expected, higher photon counts 
generally improve lighting accuracy, particularly for 

caustics and indirect illumination. For example, 

traditional photon mapping with 5 million photons 
resulted in a mean squared error (MSE) of 0.012 

compared to a Monte Carlo reference render, while 

at 20 million photons, the MSE improved to 0.004 

[6]. However, the performance cost of this accuracy 
gain was disproportionate, with render times 
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increasing nearly fourfold. Hybrid Monte Carlo 

photon mapping, in contrast, achieved an MSE of 

0.0041 at 20 million photons while maintaining a 
render time that was approximately 35 % faster than 

progressive photon mapping. Similarly, ML-based 

photon mapping outperformed all tested methods, 
achieving an MSE of 0.0028 while requiring 40 % 

fewer computational resources compared to SPPM. 

The integration of machine learning in photon 
mapping introduces a paradigm shift in rendering 

efficiency. Traditional and progressive photon 

mapping methods rely on deterministic photon 

transport, which becomes computationally 
prohibitive at higher photon densities. However, 

deep-learning-based photon mapping algorithms 

optimize photon distribution by predicting high-
probability photon paths, significantly reducing the 

required computational power. Monte Carlo-

enhanced photon mapping, while effective, still 

requires extensive sampling, whereas ML-based 
approaches dynamically adapt sampling rates based 

on scene complexity, reducing unnecessary photon 

interactions and enhancing overall efficiency. As a 
result, ML-accelerated methods provide a substantial 

advantage in real-time applications, particularly in 

VR environments, architectural visualization, and 
physically-based rendering for cinematics. 

In contrast, PPM exhibited a more efficient 

trade-off between photon count and accuracy. With 

5 million photons, PPM produced an MSE of 0.015, 
slightly higher than traditional photon mapping, but 

as the photon count increased to 20 million, the 

MSE dropped to 0.006, while maintaining a render 
time that was 40 % faster than the traditional method 

[14]. This suggests that PPM is particularly well-

suited for scenarios where computational efficiency 
is paramount, but a moderate level of visual fidelity 

is acceptable. SPPM, while achieving a similar MSE 

of 0.005 at 20 million photons, managed to do so in 

a fraction of the time, reinforcing its utility for real-
time rendering applications or situations where 

speed is prioritized over pixel-perfect accuracy. 

Resource utilization was another critical factor 
in this comparison. Traditional photon mapping, due 

to its reliance on large photon maps and memory-

intensive search algorithms, exhibited the highest 

memory consumption, with memory usage peaking 
at 24GB for scenes with 30 million photons [15]. 

This high memory footprint is problematic for 

systems with limited RAM, particularly in GPU-
accelerated environments where memory is shared 

between the CPU and GPU. PPM and SPPM, while 

also memory-intensive, demonstrated more efficient 

use of memory, with PPM consuming around 18GB 

and SPPM averaging 16GB under similar conditions 

[16]. The hierarchical storage of photons in SPPM 
contributed to its reduced memory usage, as fewer 

photons needed to be actively stored and retrieved 

during the rendering process. 
The experimental data confirms that ML-based 

photon mapping outperforms traditional and 

progressive methods in both computational 
efficiency and accuracy, making it the most viable 

solution for high-fidelity rendering and real-time 

applications. Hybrid Monte Carlo photon mapping 

remains a strong alternative, particularly for 
physically-based rendering scenarios where photon 

transport accuracy is critical. SPPM continues to 

provide an efficient balance between speed and 
accuracy, making it well-suited for scenarios 

requiring fast, iterative refinement without deep-

learning integration. However, traditional photon 

mapping, despite its accuracy, proves impractical for 
large-scale rendering due to excessive computational 

demands. The study highlights that the future of 

global illumination techniques lies in the 
convergence of photon mapping with machine 

learning-based optimizations, where adaptive photon 

sampling and neural network-driven photon path 
estimation will continue to shape the evolution of 

rendering technology. 

The graph (Fig. 1) presents a refined 

comparison of rendering times across five photon 
mapping methods: Traditional Photon Mapping, 

Progressive Photon Mapping (PPM), Stochastic 

Progressive Photon Mapping (SPPM), Hybrid 
Monte Carlo + Photon Mapping, and ML-Based 

Photon Mapping, with photon counts ranging from 1 

million to 20 million. The expanded dataset, 
consisting of 20 measurements, further underscores 

the non-linear scaling properties of these methods 

and their computational efficiency as scene 

complexity increases. 
The Table 1 provides a comparative assessment 

of accuracy metrics, including Mean Squared Error 

(MSE), Peak Signal-to-Noise Ratio (PSNR), 
Structural Similarity Index (SSIM), and the level of 

visual artifacts. The results indicate that ML-Based 

Photon Mapping achieves the highest accuracy, with 

an MSE of 0.0028 and a PSNR of 41.2 dB, 
outperforming all other methods in visual fidelity 

and structural coherence. This suggests that 

incorporating machine learning techniques 
significantly enhances photon distribution accuracy 

and reduces error propagation.  
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Fig. 1. Graph of render times by photon count 

Source: compiled by the authors 

 

Table 1. Photon mapping accuracy comparison 

Method PSNR (dB) ↑ MSE ↓ Structural 

Similarity 

(SSIM) ↑ 

Visual Artifacts (Lower 

is Better) ↓ 

Traditional Photon Mapping 28.4 0.0123 0.75 High 

Progressive Photon Mapping 32.1 0.0084 0.82 Medium 

Stochastic Progressive Photon 

Mapping 

35.6 0.0059 0.88 Low 

Hybrid MC + Photon Mapping 37.9 0.0041 0.91 Very Low 

ML-Based Photon Mapping 41.2 0.0028 0.95 Minimal 
Source: compiled by the authors 

Hybrid Monte Carlo + Photon Mapping follows 

closely, maintaining a balance between 

computational efficiency and accuracy, with an MSE 

of 0.0041 and a PSNR of 37.9 dB. It demonstrates 
improved adaptability in scenes with complex 

indirect lighting, where traditional and stochastic 

methods show minor deviations. 
Traditional Photon Mapping, while producing 

the lowest MSE among non-hybrid approaches, 

remains computationally expensive. It achieves 
0.0123 MSE at lower photon counts but converges 

to 0.004 at 20 million photons, reinforcing its 

effectiveness for high-precision rendering at the 

expense of increased resource consumption. 
Both PPM and SPPM exhibit stable accuracy 

improvements with increasing photon counts. PPM 

reaches 0.0084 MSE, while SPPM achieves 0.0059, 
with noticeable gains in SSIM and artifact reduction 

compared to Traditional Photon Mapping. These 

methods present viable alternatives for scenarios 

where computational performance is prioritized 
without a significant loss in rendering accuracy. 

The results confirm that hybrid and ML-

enhanced methods offer superior rendering fidelity 

while maintaining optimal computational efficiency. 

As the photon count increases, the differences 
between methods become less pronounced, 

particularly among PPM, SPPM, and Hybrid Monte 

Carlo approaches. However, in large-scale rendering 
tasks where real-time performance and adaptive 

learning are required, ML-Based Photon Mapping 

emerges as the most efficient solution. 
The following analysis (Fig. 2) will examine 

the behavior of these methods in large-scale 

environments, emphasizing computational 

constraints and performance trade-offs in dynamic 
rendering conditions. 

The graph presents a detailed comparison of the 

Mean Squared Error (MSE) across varying photon 
counts for Traditional Photon Mapping, Progressive 

Photon Mapping (PPM), Stochastic Progressive 

Photon Mapping (SPPM), Hybrid Monte Carlo 

Photon Mapping, and ML-based Photon Mapping in 
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Fig. 2. Graph of accuracy comparison (MSE) by photon count in large scenes 

Source: compiled by the authors

large scenes. As the photon count increases, all 

methods demonstrate a steady decrease in MSE, 

indicating improved accuracy. However, the rate of 

convergence and computational overhead varies 

significantly depending on the method used. ML-

based photon mapping consistently achieves the 

lowest MSE at all photon counts, demonstrating the 

effectiveness of deep-learning-driven photon 

distribution optimizations. In contrast, Hybrid Monte 

Carlo Photon Mapping reduces variance in indirect 

lighting calculations, achieving accuracy close to 

that of traditional photon mapping while requiring 

fewer photons for convergence. 

Traditional Photon Mapping exhibited the 

highest memory consumption, primarily due to its 

reliance on storing a dense photon map and 

performing exhaustive photon lookups. At photon 

counts exceeding 20 million, the method required up 

to 24GB of RAM, making it impractical for GPU-

accelerated architectures with limited memory. 

Hybrid Monte Carlo Photon Mapping mitigates this 

issue by adaptively adjusting photon storage 

requirements, reducing peak memory usage by 

approximately 25 % while maintaining comparable 

accuracy levels [17]. ML-based Photon Mapping, 

leveraging predictive sampling, significantly reduces 

memory demands, requiring just 12GB for large-

scale scenes, demonstrating superior resource 

efficiency. 

Progressive Photon Mapping, while initially 

less accurate than ML-based photon mapping, 

converges toward similar levels of precision at 

higher photon counts, but at the cost of increased 

computation time compared to hybrid Monte Carlo 

approaches. At photon counts above 10 million, the 

MSE for PPM is comparable to Traditional Photon 

Mapping but still higher than Hybrid Monte Carlo 

Photon Mapping, which benefits from bidirectional 

sampling and variance reduction techniques. This 

makes PPM a viable choice for applications 

requiring a balance between computational 

efficiency and accuracy, but it is outperformed by 

both hybrid and ML-based methods when resource 

constraints are a factor. 

Progressive Photon Mapping (PPM), while 

more memory-efficient than Traditional Photon 

Mapping, still requires substantial storage for large 

photon maps. At 20 million photons, PPM peaked at 

18GB of RAM, making it more suitable for CPU-

based rendering where memory constraints are less 

restrictive. Hybrid Monte Carlo Photon Mapping 

exhibited a 20 % reduction in memory consumption 

compared to PPM due to its optimized photon 

distribution strategy. However, ML-based Photon 

Mapping demonstrated the lowest overall memory 

usage, requiring just 50 % of the memory used by 

PPM, thanks to its neural network-driven photon 

allocation process [18]. 

SPPM, while starting with a higher initial MSE 

due to stochastic sampling noise, improves 

significantly as the photon count increases. 

However, Hybrid Monte Carlo Photon Mapping 

reaches similar levels of accuracy with fewer 

photons by utilizing adaptive importance sampling, 

making it a more resource-efficient alternative. ML-

based Photon Mapping outperforms all tested 

methods in terms of convergence rate, achieving the 

lowest MSE at every photon count by dynamically 

adjusting photon distributions based on learned 

scene characteristics. At photon counts exceeding 20 

million, ML-based methods achieve an MSE 

reduction of approximately 40 % compared to 
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traditional methods while reducing compute time by 

up to 50 %. 

SPPM showed efficient memory utilization, 

maintaining an average memory footprint of 16GB 

at higher photon counts. However, Hybrid Monte 

Carlo Photon Mapping demonstrated further 

optimization, reducing memory overhead by 

dynamically adjusting photon storage. The 

introduction of ML-based approaches further 

improved efficiency, with memory usage averaging 

just 12GB at comparable photon counts, thanks to 

the predictive allocation of photon density across the 

scene. In addition, ML-based methods significantly 

reduced computational overhead, requiring 40 % 

less compute time than SPPM while maintaining 

superior visual quality. 

Different computational architectures (CPU 

versus GPU) significantly influenced the 

performance of photon mapping techniques, 

particularly in memory utilization and compute time. 

On CPU-based systems, the differences between 

methods were less pronounced, as both photon 

emission and lookup operations are constrained by 

core count and memory bandwidth. Traditional 

Photon Mapping exhibited severe performance 

limitations in CPU-only environments, primarily due 

to its reliance on large photon maps and exhaustive 

search operations. However, Hybrid Monte Carlo 

Photon Mapping and ML-based Photon Mapping 

demonstrated significantly better performance, 

benefiting from adaptive photon sampling and 

optimized storage techniques. These methods 

exhibited superior scalability, particularly when 

handling complex caustic interactions and indirect 

illumination calculations. 

When utilizing GPU architectures, the 

differences became even more pronounced. 

Traditional Photon Mapping struggled with 

inefficient parallelization and excessive memory 

overhead, making it unsuitable for large-scale GPU 

rendering. PPM and SPPM achieved substantial 

performance gains, with SPPM benefiting the most 

from parallel photon tracing and optimized memory 

management. Schregle et al. demonstrated how 

Progressive Photon Mapping could be adapted for 

complex daylight redirecting systems using 

progressive density estimation and hierarchical KD-

tree updates, significantly improving convergence in 

high-dynamic lighting scenarios [20]. Hybrid Monte 

Carlo Photon Mapping further improved efficiency 

via variance reduction techniques, while ML-based 

Photon Mapping outperformed all others by 

dynamically predicting photon distribution and 

reducing the number of required samples. 

Table 2 presents a comparative analysis of 

memory consumption and compute time across five 

photon mapping methods at photon counts of 20 

million. Hybrid Monte Carlo Photon Mapping 

reduced memory usage by 20 % compared to SPPM 

due to its adaptive sampling techniques, while ML-

based Photon Mapping demonstrated the lowest 

memory footprint, requiring only 12GB, owing to 

predictive photon allocation and deep-learning-

driven optimizations. The reduced memory 

consumption of ML-based Photon Mapping and 

Hybrid Monte Carlo Photon Mapping, particularly 

on GPU architectures, makes them far more efficient 

and adaptable to rendering large, complex scenes. 

Table 2. Resource utilization comparison 

Method Memory 

Usage 

(GB) 

Compute Time 

(Seconds, Dual 

NVIDIA RTX 

4090, 20M 

photons) 

Traditional Photon 

Mapping 

24.0 500 

Progressive Photon 

Mapping (PPM) 

18.0 320 

Stochastic 

Progressive Photon 

Mapping (SPPM) 

16.0 240 

Hybrid Monte Carlo 

Photon Mapping 

14.5 210 

ML-Based Photon 

Mapping 

12.0 180 

Source: compiled by the authors 

The impact of different computational 

architectures is also evident in compute time 

performance. On a high-performance dual-GPU 

system (NVIDIA RTX 4090), Traditional Photon 

Mapping took up to 500 seconds to render a 

complex scene with 20 million photons, significantly 

limiting its practical usability in time-sensitive 

applications. PPM completed the same task in 320 

seconds, while SPPM required only 240 seconds. 

Hybrid Monte Carlo Photon Mapping further 

reduced computation time to 210 seconds, benefiting 

from optimized importance sampling techniques that 

minimized redundant photon calculations. 

ML-based Photon Mapping demonstrated the 

fastest rendering performance, completing the same 

scene in just 180 seconds. This efficiency is 

attributed to its ability to dynamically predict 

optimal photon distribution and prioritize high-
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variance regions. The significance of dynamic 

sampling strategies has also been discussed in the 

context of physically based rendering, particularly in 

the fourth edition of Pharr et al., where hierarchical 

integrators and adaptive sampling mechanisms are 

shown to reduce unnecessary computation while 

preserving photometric accuracy [21]. This supports 

the suitability of ML-based approaches for real-time 

applications in interactive simulation, gaming, and 

VR. 

In addition to evaluating standard photon 

mapping methods, this study explores the efficiency 

of KD-Trees as a hierarchical search structure for 

accelerating photon retrieval. KD-Trees partition 

space recursively along alternating coordinate axes, 

ensuring logarithmic query complexity in well-

balanced cases. Unlike linear search, which iterates 

through all stored photons to find the nearest 

neighbor, KD-Trees enable efficient spatial pruning, 

significantly reducing search overhead. 

For this study, a KD-Tree was implemented with 

the some manual optimizations. Each node of the 

KD-Tree recursively partitions the photon set using 

the median element at index m, computed as 𝑚 =
𝑠𝑡𝑎𝑟𝑡 + 𝑒𝑛𝑑

2
, where start and end are the segment 

boundaries during construction. The axis of partition 

alternates at each depth d as 𝑎𝑥𝑖𝑠 =  𝑑 𝑚𝑜𝑑 2, 

meaning that spatial splits alternate between the x- 

and y-coordinates of photons. Before assigning the 

median, the segment is partially sorted based on the 

comparison of coordinate values: for axis = 0, sorting 

is done by 𝑝𝑖 . 𝑥; for 𝑎𝑥𝑖𝑠 =  1, by 𝑝𝑖 . 𝑦. This ensures 

that the left and right subtrees contain photons 

spatially localized around the median. 

The nearest-neighbor search is implemented in 

two modes: fixed-radius gathering (default) and a 

diagnostic k-NN variant. In the k-NN configuration, 

a bounded max-heap H of size k is maintained over 

squared distances [37]. When a photon p is visited 

with distance 𝑑2, if |𝐻| <  𝑘 we push (𝑑2, p); 

otherwise, if 𝑑2 < max(𝐻) we replace the 

maximum. The active pruning threshold is 𝜏 =
max(𝐻) when |𝐻| =  𝑘, and 𝜏 =  +∞ otherwise. 

The plane-crossing condition becomes |𝑞𝑎𝑥𝑖𝑠 −
 𝑠𝑝𝑙𝑖𝑡|2 ≤  𝜏, with ties resolved by a stable ordering 

on the pair (𝑑2, 𝑖𝑛𝑑𝑒𝑥𝑝). 

Balancing and cache efficiency are handled 

during build by computing an imbalance factor 

𝛼(𝑑) =
|𝐿 − 𝑅|

𝐿 + 𝑅
 per node; if 𝛼(𝑑) >  0.75 the 

procedure switches to quickselect-based median 

partitioning to avoid full sorts. Nodes are stored in a 

flat array with implicit-heap layout; for node i the 

children are at indices 2i+1 and 2i+2. This improves 

traversal locality and reduces pointer chasing[36]. 

Each node caches the min/max interval along 

the split axis, [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥]ng backtracking, a 

conservative sphere-slab test is applied: if 

𝑑𝑖𝑠𝑡𝑎𝑥𝑖𝑠(𝑞,[𝑎𝑚𝑖𝑛,𝑎𝑚𝑎𝑥])
2 >  𝜏ubtree is pruned. Here 

𝑑𝑖𝑠𝑡𝑎𝑥𝑖𝑠(𝑞,𝐼) =  0 when 𝑞𝑎𝑥𝑖𝑠 ∈  𝐼, otherwise 

𝑑𝑖𝑠𝑡𝑎𝑥𝑖𝑠(𝑞,𝐼) = min(|𝑞𝑎𝑥𝑖𝑠 − 𝑎𝑚і𝑛|, |𝑞𝑎𝑥𝑖𝑠 −

 𝑎𝑚а𝑥|). 

Numerical safeguards include clamping inputs 

to finite ranges and comparing with 𝜀 =  1𝑒 − 5 

using 𝑒𝑞𝑢𝑎𝑙(𝑎, 𝑏) ⇔  |𝑎 −  𝑏| <  𝜀. Distance math 

uses fused multiply-add where available. Energy 

accumulation uses 𝐸𝑎𝑐𝑐 =  𝐸𝑎𝑐𝑐 +  𝑒𝑛𝑒𝑟𝑔𝑦𝑖 with 

Kahan-style compensation c when enabled: 𝑦 =
 𝑒𝑛𝑒𝑟𝑔𝑦𝑖 −  𝑐;  𝑡 =  𝐸𝑎𝑐𝑐 +  𝑦;  𝑐 =  (𝑡 − 𝐸𝑎𝑐𝑐) −
 𝑦; 𝐸𝑎𝑐𝑐 =  𝑡. 

For fixed radius r the expected number of 

visited nodes satisfies 𝑣𝑎𝑣𝑔 ≈  𝑐 ∗ log2(𝑛) with 𝑐 ∈

 [1.4;  1.6] on near-balanced trees; build remains 

𝑇𝑏𝑢𝑖𝑙𝑑(𝑛) =  𝑂(𝑛 log 𝑛). The linear-scan baseline 

runs 𝑇𝑞𝑢𝑒𝑟𝑦(𝑛) =  𝑂(𝑛) under the same estimator 

and radius, isolating the data-structure effect. 

The tree construction follows a recursive strategy 

with time complexity 𝑇𝑏𝑢𝑖𝑙𝑑(𝑛) =  𝑂(𝑛 log 𝑛). Since 

no additional data is duplicated (due to pointer-based 

representation), memory overhead remains linear with 

the number of photons. At each node, a bounding 

condition is applied to prune branches during nearest-

neighbor queries. The squared Euclidean distance 

between the query point q and a photon p is 

calculated as 𝐷2 =  (𝑞𝑥 − 𝑝𝑥)2 + (𝑞𝑦 − 𝑝𝑦)
2
. This 

is used to determine whether a photon is closer than 

the current best. To avoid unnecessary recomputation, 

only squared distances are compared. If 𝐷2 <
 𝑏𝑒𝑠𝑡𝐷𝑖𝑠𝑡2, then bestDist is updated and the photon 

is retained as a candidate. Further pruning is achieved 

by evaluating the distance from the query point to the 

splitting hyperplane (𝑞𝑎𝑥𝑖𝑠 − 𝑝𝑎𝑥𝑖𝑠)2 <  𝑏𝑒𝑠𝑡𝐷𝑖𝑠𝑡2. 

If this inequality holds, the algorithm explores both 

branches; otherwise, it skips the more distant subtree. 

During radiance estimation, all photons within a 

given search radius r are accumulated to estimate the 

local energy contribution using 𝐼𝑙𝑜𝑐𝑎𝑙 =  (
1

𝜋 ∗ 𝑟2
) ∗

 𝛴𝑖=1 𝑡𝑜 𝑘𝑒𝑛𝑒𝑟𝑔𝑦𝑖, where k is the number of 

gathered photons within radius r and 𝑒𝑛𝑒𝑟𝑔𝑦𝑖 is the 

RGB energy vector of the i-th photon. The radius r is 

fixed during the query, and all comparisons are 

performed with 𝑟2 to avoid square roots. In order to 

ensure stability of comparisons under finite 
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precision, distance equivalence is determined using 

an epsilon threshold: 

𝑖𝑓 |𝑎 −  𝑏| <  𝜀, 𝑡ℎ𝑒𝑛 𝑎 ≈  𝑏, where and b are 

two scalar values being compared (for example, 

squared distances or coordinate components), and 

𝜀 =  10−5 in 32-bit floating-point space. This 

avoids incorrect pruning due to negligible numeric 

discrepancies. 

The KD-Tree search also applies a depth-

limited strategy to prevent excessive recursion. If the 

recursion depth exceeds log2(𝑛), the remaining 

photons are evaluated using brute-force search 

within the subtree. This fallback ensures termination 

in degenerate cases and maintains complexity at 

𝑇𝑞𝑢𝑒𝑟𝑦(𝑛) =  𝑂(log 𝑛) in the average case. In high-

density photon fields, the search procedure 

statistically reduces the average number of visited 

nodes 𝑣𝑎𝑣𝑔 to: 𝑣𝑎𝑣𝑔  ≈  𝑐 ∗ log2(𝑛) ,  𝑐 ∈

 [1.4;  1.6] 
To maintain numerical coherence with 

rendering systems, all computations are carried out 

using single-precision floating point, and spatial 

coordinates are quantized to 6 decimal places to 

mitigate rounding error propagation during depth 

comparisons. All energy accumulation is performed 

in-place using 𝐸𝑎𝑐𝑐 =  𝐸𝑎𝑐𝑐 +  𝑒𝑛𝑒𝑟𝑔𝑦𝑖, for i = 1 

to k. In this way implementation achieves memory 

efficiency by storing only node pointers and reusing 

photon references from a flat array, avoiding object 

duplication. 

A comparative experiment was conducted 

where photon queries were executed using both KD-

Tree-based nearest-neighbor search and an 

exhaustive linear search method. The tests were 

conducted across multiple photon counts, ranging 

from 10,000 to 100,000, to evaluate the scalability 

and computational efficiency of each approach. 

The comparison between KD-Tree-based 

nearest-neighbor search and linear search reveals 

critical insights into the efficiency trade-offs of 

hierarchical versus brute-force search methods in 

photon mapping. The empirical data shows that 

while KD-Trees offer theoretical complexity 

advantages, their practical performance depends on 

implementation efficiency and scene characteristics. 

For low photon counts (10,000–30,000), the KD-

Tree approach exhibits a marginal performance 

advantage over linear search. However, as photon 

density increases beyond 50,000, KD-Tree search 

operations demonstrate an accelerating 

improvement, reducing nearest-neighbor query times 

by a factor of approximately 4x at 100,000 photons 

compared to linear search. 

Despite these gains, KD-Tree preprocessing 

incurs a notable overhead, requiring an O(n log n) 

construction phase, whereas linear search requires 

no preprocessing. This preprocessing cost becomes a 

limiting factor in dynamic scenes, where photon 

distributions change frequently, and necessitating 

repeated KD-Tree reconstructions. In static 

environments with fixed photon maps, however, the 

amortized query efficiency of KD-Trees makes them 

a superior choice. 

The observed results highlight a fundamental 

trade-off in photon mapping optimization: KD-Trees 

significantly accelerate query times but introduce 

upfront costs that may be prohibitive in real-time 

applications requiring frequent photon updates. 

Linear search, while inefficient at scale, remains 

preferable in dynamic scenarios due to its zero-

preprocessing requirement. 

Fig. 3 illustrates the relative performance of 

KD-Trees and linear search across different photon 

counts, demonstrating the asymptotic advantage of 

hierarchical spatial indexing for large datasets.  

DISCUSSION OF THE EFFECTIVENESS OF 

PHOTON MAPPING METHODS IN 

DIFFERENT CONDITIONS 

The interpretation of the obtained results 

provides critical insights into the strengths and 

limitations of each photon mapping method under 

various conditions. The tests demonstrated that 

Stochastic Progressive Photon Mapping (SPPM) 

remains one of the most computationally efficient 

methods, particularly in large-scale scenes with 

complex lighting interactions, such as caustics, 

volumetric scattering, and indirect illumination. The 

method's reliance on stochastic sampling allows for 

better photon distribution, leading to reduced render 

times while maintaining acceptable accuracy. The 

data indicates that SPPM achieves comparable 

accuracy to Traditional Photon Mapping but with 

significantly lower memory consumption and up to 

40 % shorter render times in scenes with 20 million 

photons. According to Zeng et al., this improvement 

aligns with recent efforts to accelerate photon-based 

rendering through occupancy map arrays aligned 

with ray paths, minimizing memory overhead while 

maintaining ray coherence [22]. However, statistical 

variability remains higher, with deviations in MSE 

of up to ±0.0007, suggesting occasional 

inconsistencies in photon density estimation due to 

the probabilistic tracing methods used. 
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Fig. 3. Graph of performance comparison of KD-tree and linear search for photon mapping in  

high-sensity scenes 
Source: compiled by the authors

Traditional Photon Mapping exhibited the 

highest accuracy across all tested methods, 

particularly in reproducing intricate lighting effects 

such as sharp caustics and complex refractions. 

However, its major drawback lies in its steep 

computational and memory requirements. As photon 

counts exceeded 10 million, render times increased 

exponentially, with a recorded variance in render 

time reaching ±12 % across multiple test runs. Qu's 

recent comparative study on ray tracing methods 

confirms these findings, showing that classic photon 

techniques face severe bottlenecks due to exhaustive 

KD tree queries and suboptimal GPU parallelization 

strategies [23]. While accuracy remains unmatched, 

practicality in large-scale or real-time scenarios is 

limited. 

Progressive Photon Mapping (PPM) presented a 

more balanced trade-off between accuracy and 

computational efficiency. The progressive 

refinement of photon density over multiple passes 

enabled PPM to achieve moderately high accuracy 

while keeping memory and computational costs 

within reasonable limits. The data shows that PPM 

performed approximately 30 % faster than 

Traditional Photon Mapping in scenes with 20 

million photons, with an MSE variance of ±0.0005 

across test iterations. This suggests that PPM 

remains a viable option for offline rendering tasks 

where high accuracy is desired but computational 

efficiency is also a priority [24]. However, 

sensitivity analysis indicates that PPM's 

performance degrades when dealing with highly 

dynamic lighting conditions, with rendering times 

fluctuating by up to 15 % depending on photon 

redistribution in successive passes. 

The inclusion of hybrid approaches 

significantly altered the observed performance 

landscape. Hybrid Monte Carlo Photon Mapping, 

which integrates importance sampling and variance 

reduction techniques, demonstrated efficiency gains 

over standard photon mapping methods. The method 

exhibited an MSE reduction of approximately 20 % 

compared to PPM while maintaining a render time 

that was 35 % faster than Traditional Photon 

Mapping in complex caustic-heavy scenes. Despite 

its improvements, Hybrid Monte Carlo Photon 

Mapping showed a higher sensitivity to initial 

photon count selection, with statistical deviations in 

accuracy of ±0.0009, indicating that performance 

gains depend heavily on parameter tuning [25]. 

Machine learning-based photon mapping 

methods achieved the lowest MSE across all tested 

techniques while maintaining the fastest rendering 

speeds. The use of predictive models for photon 

distribution enabled reductions in computational 

complexity, allowing ML-based Photon Mapping to 

complete renders up to 50 % faster than SPPM while 

maintaining an MSE variance of ±0.0003. This 

method's ability to dynamically adjust photon 

placement resulted in significantly improved 

resource utilization, particularly on GPU 

architectures. However, a key limitation was the 

dependency on pre-trained models, which 

introduced a level of rigidity in adapting to novel 

lighting conditions without additional model 

retraining [26]. 
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Photon count was a critical factor in 

determining the efficiency of all methods. As 

expected, higher photon counts resulted in more 

accurate lighting simulations, but the associated 

performance trade-offs varied significantly between 

methods. Traditional Photon Mapping experienced 

an exponential increase in memory and compute 

requirements beyond 10 million photons, while PPM 

and SPPM showed more adaptive behavior, 

leveraging their progressive and stochastic nature to 

optimize photon storage. At 20 million photons, both 

PPM and SPPM maintained low error rates while 

rendering at nearly twice the speed of Traditional 

Photon Mapping [24]. Hybrid and ML-based 

methods further optimized performance, with ML-

based Photon Mapping achieving similar accuracy at 

30 % fewer photons due to its predictive sampling 

approach. 

Scene complexity played a crucial role in 

performance differentiation. In simple static 

environments with minimal indirect lighting or 

caustic effects, all methods produced comparable 

results, with rendering times differing by no more 

than 15 %. However, as complexity increased–

particularly in scenes involving multiple reflective 

surfaces, refractions, and volumetric lighting–

Traditional Photon Mapping exhibited significant 

inefficiencies. The increased size of photon maps 

and the limitations of KD-tree searches led to a 

marked decrease in computational efficiency, with 

test runs showing performance degradation of up to 

45 % compared to simpler scenes. In contrast, PPM 

and SPPM adapted more effectively to scene 

complexity, with SPPM particularly excelling in 

dynamic lighting conditions due to its stochastic 

sampling approach [25]. 

The impact of computational architecture was 

another key consideration. Both PPM and SPPM 

exhibited significant performance gains when 

executed on GPU-based systems, benefiting from 

increased parallelization and optimized memory 

handling. Traditional Photon Mapping, while 

benefiting from GPU acceleration to some extent, 

showed limited scalability due to its heavy reliance 

on memory-intensive operations. The highest gains 

were observed in ML-based Photon Mapping, which 

leveraged GPU architectures to reduce render times 

by up to 50 % compared to CPU implementations 

[26]. 

A comparison with prior research confirms 

these findings. Studies by Yang Lei and Kang Chao 

demonstrated that SPPM effectively handles 

complex lighting scenarios, achieving a mean 

squared error reduction from 0.008 at 5 million 

photons to 0.003 at 25 million photons. Our study 

reported similar results, with SPPM reaching an 

MSE of 0.005 at 20 million photons, reinforcing its 

efficiency in high-photon-count environments [27]. 

Verma’s research on multi-light photon mapping 

highlighted its effectiveness in handling reflective 

surfaces but noted performance limitations in diffuse 

lighting scenarios. This aligns with our observations, 

where traditional photon mapping exhibited severe 

render time increases beyond 10 million photons, 

whereas progressive methods maintained better 

efficiency[28]. Denisova Elena’s analysis of 

denoising techniques in photon mapping indicated 

that integrating post-processing steps can reduce 

photon count requirements by 20 % without 

sacrificing accuracy. Our findings corroborate this, 

showing that stochastic and ML-based photon 

mapping methods benefited significantly from 

demising, maintaining high accuracy while using 

fewer photons [29]. Lastly, Blain James Michael’s 

research on real-time photon mapping confirmed 

that traditional methods become impractical beyond 

10 million photons due to memory bottlenecks, a 

result consistent with our study’s performance 

evaluations [30]. These findings align with recent 

DL-based illumination studies [40], [41], which 

support the viability of learned illumination models 

in real-time and interactive environments. 

The statistical analysis of our results highlights 

the importance of variability in photon mapping 

techniques. Across all tested methods, the variance 

in MSE was most pronounced in Traditional Photon 

Mapping due to its dependence on deterministic 

photon search algorithms. SPPM and Hybrid Monte 

Carlo Photon Mapping exhibited higher sensitivity 

to initial photon counts, with fluctuations in 

accuracy of up to ±0.0009 depending on parameter 

selection. ML-based Photon Mapping demonstrated 

the lowest statistical variance, with an MSE 

deviation of just ±0.0003, indicating its robustness 

across different lighting conditions. 

Saying about our realization of photon 

mapping, while KD-Trees provide substantial 

efficiency improvements for large-scale photon 

retrieval, their effectiveness is contingent upon scene 

dynamics. Future optimizations may explore hybrid 

approaches, such as integrating hashed grids for 

dynamic photon updates or GPU-accelerated KD-

Tree construction to mitigate preprocessing 

bottlenecks. While the experiments offer reliable 

performance indicators under the tested conditions, 

the generalizability of these findings to other 
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rendering engines, lighting models, or datasets may 

vary. Future validation across alternative simulation 

domains and software implementations is 

recommended to ensure robustness beyond the 

current configuration. 

In summary, the data clearly indicates that ML-

based Photon Mapping provides the most 

computationally efficient and accurate approach, 

particularly for large-scale and real-time 

applications. SPPM remains highly effective in 

dynamic lighting environments, offering a balance 

between speed and accuracy. PPM provides a stable 

compromise for offline rendering, while Traditional 

Photon Mapping, despite its high accuracy, remains 

impractical due to its excessive resource 

consumption. Hybrid Monte Carlo methods offer 

notable improvements over standard techniques but 

require careful parameter tuning to achieve optimal 

results. The statistical variability observed in 

different methods underscores the importance of 

choosing an approach based on specific rendering 

requirements and computational constraints [31]. 

CONCLUSIONS 

The results of this study confirm significant 

differences in the performance and efficiency of 

photon mapping methods depending on scene 

complexity, computational resources, and 

algorithmic structure. Machine learning-based 

photon mapping demonstrated the highest speed and 

resource efficiency, reducing rendering time by 

optimizing photon distribution. However, its 

effectiveness is limited by the need for prior 

training, making adaptation to new lighting 

conditions more challenging. 

Stochastic progressive photon mapping proved 

highly effective in complex scenes involving 

caustics and multi-level indirect lighting. The 

method achieved up to 40 % faster rendering 

compared to traditional photon mapping while 

consuming less memory due to stochastic photon 

selection. However, test results indicate variability 

in accuracy, requiring parameter adjustments to 

mitigate local noise in scenes with significant 

lighting variations. 

Progressive photon mapping exhibited stable 

performance in moderately complex scenes, 

demonstrating lower memory consumption 

compared to traditional methods. As photon count 

increased, it approached similar accuracy levels but 

remained sensitive to dynamic lighting changes, 

leading to performance fluctuations of up to 15 %. 

This suggests limited applicability for rapidly 

changing lighting conditions but strong efficiency in 

static or minimally changing environments. 

Traditional photon mapping delivered the 

highest accuracy in static conditions but scaled 

poorly in terms of memory usage and rendering 

time, making it impractical for large-scale scenes. 

The method exhibited exponential growth in 

computational cost beyond 10 million photons, 

particularly in GPU-based architectures where 

memory constraints further exacerbated 

inefficiencies. Despite its precision, the excessive 

resource consumption renders it unsuitable for real-

time applications or large-scale rendering. 

Practical recommendations suggest that 

stochastic progressive photon mapping is optimal for 

rendering large, complex environments where 

balancing speed and accuracy is critical. Machine 

learning-enhanced methods can further improve 

efficiency in pre-defined scenarios but require 

additional preprocessing. Progressive photon 

mapping is a viable option for offline rendering 

where accuracy remains important but 

computational efficiency is also a concern. 

Traditional photon mapping, while precise, is only 

recommended for cases where maximum accuracy is 

needed and computational resources are not 

constrained. 

The study’s findings can be generalized to large 

scenes with indirect lighting effects, though further 

research is required to assess performance variations 

on different hardware configurations, particularly in 

multi-GPU and cloud-based rendering environments. 

Future work should explore hybrid implementations 

that combine machine learning with progressive 

photon mapping to further optimize performance 

while maintaining high visual fidelity. 

Saying about the limitations, the results are 

limited to publicly available PBRT and Blender 

demo assets, and production scenes with heavy 

textures or instancing were not benchmarked. KD-

tree rebuilds remain a limitation, since O(n log n) 

construction makes frequent updates costly in highly 

dynamic lighting; the ablation quantifies query gains 

but does not remove rebuild overhead. GPU memory 

pressure is another constraint, as large photon maps 

stress device memory and no out-of-core KD-tree 

implementation was used. The ML-based method is 

bounded by its training distribution, and no domain 

adaptation experiments were performed. Finally, the 

evaluation reports MSE, PSNR, SSIM, and LPIPS 

on still images only, without addressing temporal 

stability or HDR perceptual metrics. 
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АНОТАЦІЯ 

У цьому дослідженні представлено комплексну оцінку продуктивності методів фотонного мапування для глобального 

освітлення з акцентом на рендеринг у реальному часі та великомасштабні візуальні симуляції. У роботі реалізовано власний 
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алгоритм просторової індексації на основі дерева з бінарним розбиттям (KD-дерево) для пошуку фотонів, який було 

емпірично перевірено як альтернативу лінійному пошуку в умовах високої щільності фотонів. Інтеграція цього підходу з 

єдиною експериментальною платформою становить наукову новизну роботи. Досліджено п’ять сучасних стратегій 

фотонного мапування: традиційний метод, прогресивний метод, стохастичний прогресивний метод, гібридні підходи з 

використанням інтеграції Монте-Карло та методи, підсилені алгоритмами машинного навчання. Експерименти проведено 

на тестових сценах із різною геометричною та світловою складністю із застосуванням як центральних процесорів, так і 

графічних процесорів для оцінки масштабованості й ефективності за різних обчислювальних обмежень. Оцінювання 

виконано за показниками часу рендерингу, використання пам’яті та якості зображення, зокрема за середньоквадратичною 

похибкою та піковим відношенням сигналу до шуму. Єдина методологічна платформа забезпечила відтворюваність 

експериментів і коректність порівняння методів. Використання KD-дерева показало зменшення обчислювальних витрат при 

зростанні кількості фотонів, що дало змогу ефективніше обробляти сцени з густим освітленням. Отримані результати 

можуть бути застосовані у сучасних рушіях фізично коректного рендерингу, інтерактивних графічних застосунках та 

системах високоточної симуляції, де критичною є швидкодія й економне використання ресурсів. Практичні висновки 

дослідження сприяють оптимальному вибору методів фотонного мапування залежно від складності сцени, архітектури 

апаратного забезпечення та вимог до балансу між швидкістю і точністю. 

Наукова новизна роботи полягає у впровадженні та емпіричному підтвердженні ефективності власної реалізації KD-

дерева для пошуку фотонів, що раніше не було досліджено в контексті великомасштабного фотонного мапування. На 

відміну від теоретичних оглядів, у роботі проведено практичне порівняння з лінійним пошуком, що дозволило виявити межі 

масштабованості й умови застосування для задач реального часу та високоточних візуалізацій. 

Ключові слова: комп’ютерна графіка; фотонне мапування; глобальне освітлення; рендеринг; машинне навчання 
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