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ABSTRACT 

The paper proposes a hybrid, multi-level method for detecting code smells and anti-patterns in software components, where 
structure, semantics, metrics, and evolution are treated as first-class signals. A heterogeneous Code Property Graph (Abstract Syntax 
Tree + Control-flow Graph + Program Dependence Graph) is constructed and enriched with textual embeddings from a pretrained 
code language model, classical quality metrics (Chidamber–Kemerer, Halstead), and version-control history (churn, co-change, 
recency). Local idioms are summarized via a sequence–graph encoder at the method/block level, component structure is aggregated 
by a relation-aware Graph Neural Network at the class/module level, and project context is propagated over a component-interaction 
graph. To support deployment in evolving codebases, an open-set head is introduced: energy, entropy, and stochastic variance are 
combined to enable calibrated abstention on unfamiliar patterns. The approach is evaluated on polyglot Java Virtual Machine corpora 

using time-aware, cross-project splits with multi-label targets (Long Method, God Class, Feature Envy, Data Class, Shotgun-
Surgery–like, No-smell). Improvements in macro Area under the Precision–Recall Curve and F1 overrule/metric baselines, Abstract 
Syntax Tree-only, and text-only models are observed, while FPR@95TPR is maintained or reduced. Withheld-class experiments 
show that open-set gating increases Area under ROC for Open-Set Recognition and TNR@TPR and lowers calibration error, 
yielding probabilities suitable for thresholded automation and human triage. Cross-language transfer (train Java → test Kotlin/Scala) 
is shown to be stronger than with single-view models, aided by language-agnostic typing and per-project normalization. Incremental 
graph maintenance confines computation to changed regions, aligning inference time with CI/CD budgets. By exposing hierarchical 
attention and channel gates, explanations are produced that align with practitioner reasoning. It is concluded that hybrid graphs with 

hierarchical reasoning and selective prediction deliver detectors that are more accurate, transferable, and operationally safer for 
evolving software systems. 
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INTRODUCTION, FORMULATION OF THE 

PROBLEM 

Industrial software systems are rapidly growing 

in size, language diversity, and rate of change. 

Under these conditions, maintainability is 
determined not only by formal correctness but also 

by the internal quality of code – specifically, by the 

presence or absence of anti-patterns (code smells) 
that impair readability, complicate testing, slow 

evolution, and increase defect risk [1]. Traditional 

detection tools built on fixed rules and threshold 
metrics are useful at early stages but show limited 

cross-project and cross-language transfer, are 

sensitive to idiosyncratic coding styles, and often 

either over-report (high false positives) or miss 
atypical manifestations (low recall). Moreover, 

contemporary development practices (CI/CD, code 

review, rapid release cycles) demand that analysis 
tools operate incrementally and account for change 

history, inter-component relations, and the broader 

evolution context [2]. 
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Prior work on machine learning for code quality  
has typically focused on one representational plane: 
(i) structural models exploiting Abstract Syntax 
Trees (AST), Control-Flow Graphs (CFG), or 
Program Dependence Graphs (PDG) to capture 
formal structure; (ii) textual/semantic models that 
leverage token/identifier or LLM-based embeddings 
of code and comments; (iii) metric-oriented 
approaches (e.g., CK metrics, Halstead) that 
compress artifacts into engineered features; and (iv) 
historical/evolutionary approaches that track change 
frequency, churn, co-editing patterns, and diff-based 
indicators across versions. Despite successes along 
each line, anti-patterns are inherently multi-
dimensional: the same structural smell may be 
“normal” within a project’s style; textual naming 
may mask or reveal semantic idioms; and change 
history often signals latent issues (e.g., component 
instability) before they surface in static features [3]. 

Consequently, a key methodological gap is the 
absence of an integral representation that jointly and 
naturally models code structure, its semantic 
content, and the evolution context across multiple 
levels of abstraction – from local idioms to  
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component and project scope. A second gap is the 

lack of explicit open-set thinking: most models are 

trained to discriminate among a fixed set of smell 
classes and, at inference time, implicitly assume 

every instance belongs to one of the known classes. 

In real codebases that continuously evolve; a tool 
must be able to signal “unknown” or “out-of-

distribution” when encountering atypical or novel 

anti-patterns. A third gap concerns multilinguality 
and transferability: models tuned for one language 

(e.g., Java) often degrade on closely related 

languages (Kotlin, Scala) due to differences in 

syntax, idioms, and library practices [4]. 
In this work, we propose a multi-level model 

for anti-pattern detection in software components 

that combines a hybrid graph representation of code 
with a project/component/local architecture and 

explicit handling of uncertainty in open-set 

scenarios. At its core lies a Hybrid Code Graph: we 

model code as a Code Property Graph (unifying 
AST, CFG, and PDG) and augment nodes/edges 

with textual-semantic embeddings (e.g., LLM-

derived vectors for tokens, identifiers, and 
fragments) and quality metrics (CK, Halstead, 

simple complexity/length indicators). At the project 

level, the graph is enriched with evolutionary 
features: diff-based measures, change frequency, co-

editing relationships, artifact “age,” and stability. 

Over this representation, we employ a multi-level 

GNN architecture with attention: a local sequence 
submodel captures idioms within methods/blocks; a 

component-level encoder aggregates structural-

semantic and metric signals on the component 
subgraph; and a project-level encoder models inter-

component interactions and evolutionary context. 

Cross-level fusion is realized via hierarchical 
attention/gating to produce consistent predictions 

and calibrated uncertainty estimates [5]. 

A salient property of the approach is open-set 

handling. We instrument uncertainty heads (e.g., 
stochastic inference, energy-based scores, or 

ensembles) and calibrate decision thresholds to 

separate known smells from unknown/atypical 
manifestations. This capability is critical for realistic 

CI/CD and code-review pipelines, where it is safer 

to abstain (flagging a case as “needs attention”) than 

to misclassify a novel artifact as one of the known 
classes. Additionally, by hybridizing feature sources 

and explicitly modeling evolution, the architecture 

achieves a favorable precision–recall trade-off: 
improved recall does not entail a substantial rise in 

false positives, and a “robust mode” supports 

transfer across related languages (Java/Kotlin/Scala) 
and coding styles. 

1. BACKGROUND AND RELATED WORK 

This section condenses prior art relevant to our 

hybrid, multi-level and open-set treatment of code 
smell / anti-pattern detection. We group works into 

six strands: (i) rule- and metric-based detectors; (ii) 

graph/structure learning; (iii) neural representation 
learning for code; (iv) evolution-aware analytics; (v) 

open-set and uncertainty; (vi) multilingual and 

cross-project transfer – and close with a synthesis 
that motivates our design [6]. 

Rule- and metric-based detectors of code 

smells / anti-patterns. Industrial practice long relied 

on rule engines (e.g., AST predicates, naming 
heuristics) and metric thresholds (CK, Halstead, 

coupling/cohesion) to flag smells such as Long 

Method, God Class, or Feature Envy [7].  
These approaches are valued for speed and 

explainability but face persistent limits: (a) 

brittleness to local coding style and configuration; 

(b) difficulty encoding non-local or composite 
smells spanning multiple files; (c) poor portability 

across projects and languages; and (d) a familiar 

recall–precision trade-off – tight thresholds shrink 
false positives yet miss atypical manifestations, 

whereas relaxed thresholds inflate noise. Later 

works attempted adaptive thresholds or project-
specific calibration, improving precision locally but 

not addressing deeper issues of semantics, structure–

text interplay, or temporal context [8]. 

Graph- and structure-based learning over 
code. Static program artifacts admit graph 

formalisms – AST for syntax, CFG for control flow, 

PDG for data/control dependence [9]. Learning over 
these graphs progressed from path-based encoders to 

GNNs with typed edges. AST-only methods capture 

local idioms but often miss long-range 
dependencies; CFG models reason about 

branching/depth but are costly to construct precisely; 

PDG models add semantic dependence yet raise 

scalability concerns. Code Property Graphs (CPG) 
unifies AST/CFG/PDG, enabling multi-relation 

message passing and cross-view reasoning [10]. 

Parallel work in clone detection showed that 
structural regularities are learnable, yet smells are 

not clones: they are contextual and often semantic, 

so structure must be complemented by text and 

history. Overall, structural learning improves 
generalization beyond rules but remains single-view 

when used alone [11]. 

Representation learning for code: tokens, 
identifiers, and LLMs. Neural models recover 
lexical and idiomatic signals from code. 
Token/identifier embeddings and pretrained code 
LMs (e.g., CodeBERT/CodeT5 families; hybrid 
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text+path encoders) have advanced tasks from code 
search to defect prediction [12]. Strengths include 
sensitivity to naming conventions, API idioms, and 
commentary, which are often key cues for smells. 
Weaknesses mirror the inverse of graph methods: 
text-only encoders may overfit surface forms, lack 
precise control/data-flow grounding, and struggle to 
tell “complex but warranted” from “complex and 
smelly.” Hybrid text+structure models outperform 
single-modality baselines, but most fuse two views 
(e.g., AST+text) at a single granularity 
(method/file), leaving project-level context and 
evolution underused [13]. 

Evolution-aware analytics and just-in-time 
quality prediction. A complementary line models 
change processes: churn, change frequency, recency, 
developer experience, co-change networks, and diff 
semantics. Robust findings show that hotspots and 
socio-technical signals forecast future quality issues 
across ecosystems [14]. For smells, evolution helps 
detect emergence (accretion of responsibilities) and 
instability (frequent edits). However, most detectors 
either ignore history or use it post-hoc for ranking 
rather than as a first-class input. Integrating 
evolution within the representation – rather than 
“after the fact” – promises earlier, more reliable 
detection, especially for composite/architectural 
smells whose symptoms crystallize over releases 
[15]. 

Open-set recognition, OOD detection, and 
uncertainty in SE. Software datasets are non-
stationary; frameworks and idioms evolve, and novel 
smells appear. Closed-set classifiers force every 
instance into known classes, yielding overconfident 
errors on unfamiliar inputs. The broader ML 
literature offers open-set/OOD tools (energy scores, 
margin losses, selective classification) and 
uncertainty estimation (ensembles, MC-dropout, 
evidential heads, post-hoc calibration) [16]. In SE, 
adoption is early: a handful of works calibrate defect 
predictors or test across repositories, but open-set 
protocols for smell detection remain under-specified. 
Without explicit abstention, detectors either inflate 
false positives or silently mislabel novelty. This gap 
motivates uncertainty-aware architectures and 
evaluation that measures TNR@TPR on unknowns, 
not only classical precision/recall [17]. 

Multilingual and cross-project transfer. 
Smell manifestations depend on language idioms, 
standard libraries, and ecosystem conventions. 
Transfer from Java to Kotlin/Scala is non-trivial 
(null-safety idioms, extension functions, lambdas, 
typical architectural styles). Thresholds and rule 
parameters rarely transfer as-is; domain shifts arise 
from framework usage and team practices. 
Mitigations include domain-adversarial training, 

meta-learning, project-aware normalization, and 
rigorous split protocols (by repository/time) to avoid 
leakage. Yet many evaluations remain within-project 
or within-language, leaving the true robustness of 
detectors underexplored [18]. 

Synthesis and positioning. The strands above 
reveal complementary strengths and blind spots 
[19]: 

 rules/metrics: interpretable and fast, but 
brittle and weak on non-local/composite smells; 

 graphs/GNNs: capture dependencies and 
program structure, but miss lexical nuance and 
history when used alone; 

 text/LLMs: capture naming and idioms, but 
lack explicit flow/dependence; can over-rely on 
surface cues; 

 evolution signals: expose emergence or 
instability, yet are seldom integrated end-to-end; 

 open-set/uncertainty: essential for non-
stationary codebases, but rarely operationalized for 
smells; 

 transfer: necessary in polyglot repos but 
undermined by language/project drift without 
normalization and hierarchy. 

These observations motivate our Hybrid Code 
Graph and multi-level encoder with open-set 
handling. Concretely, we (i) unify AST+CFG+PDG 
with textual-semantic embeddings, quality metrics, 
and evolution features in a single heterogeneous 
graph; (ii) reason hierarchically (local → component 
→ project) so that micro-idioms, meso-structure, 
and macro-context can each influence a decision; 
(iii) incorporate uncertainty heads and energy-based 
abstention to handle novelty safely; and (iv) adopt 
cross-language normalization and project/time splits 
to target real-world transfer. This positioning 
directly addresses the principal methodological gaps: 
lack of a full-stack representation (structure + text + 
metrics + evolution), absence of multi-granular 
reasoning, and missing open-set evaluation for anti-
pattern detection [20]. 

The purpose of this study is to design, 
formalize, and empirically validate a multi-level, 
hybrid-graph model for detecting code smells and 
anti-patterns in software components under realistic 
development conditions (polyglot codebases, 
evolving repositories, and partially labeled data). 
Concretely, we aim to (i) demonstrate that an 
integral representation – combining structure  
(AST + CFG + PDG), semantics (LLM-based 
embeddings), quality metrics (CK, Halstead, simple 
structural indicators), and evolutionary signals (diff 
metrics, churn, co-editing, age/stability) – improves 
detection quality without sacrificing precision; (ii) 
show that multi-level reasoning (local → component 
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→ project) enables better disambiguation of context-
dependent smells; and (iii) establish that uncertainty-
aware, open-set treatment is necessary and effective 
for safely handling novel or atypical manifestations 
in the wild. 

2. PROPOSED MODEL 

We detect code smells and anti-patterns by 

fusing four evidence channels – program structure, 
textual/semantic cues, quality metrics, and 

evolution/history – within a single Hybrid Code 

Graph and a multi-level encoder (local → component 
→ project). The classifier is paired with uncertainty 

and an open-set gate so that unfamiliar phenomena 

are flagged rather than mislabelled. Below, the 

narrative and equations are integrated: each formula is 
introduced by intuition, then tied to its role in the 

pipeline. 

2.1. Hybrid Code Graph (CPG) and 

Channelized Features 

Smells rarely live in one “view” of code. We 

therefore cast a project snapshot at time ttt as a typed 
multigraph that unifies syntax (AST), control (CFG), 

and dependence (PDG): 

 𝐺𝑇(𝑉, 𝐸, 𝑅), 𝐸 ⊆ 𝑉 × 𝑉 × 𝑅,

𝑅 = {𝐴𝑆𝑇, 𝐶𝐹𝐺, 𝐷𝐴𝑇𝐴, 𝐶𝑇𝑅𝐿, … }. 
(1) 

Local units (methods/blocks) and components 

(classes/modules) are induced subgraphs 𝐺𝑡[𝑙] and 

𝐺𝑡[𝑐]. To let structure, text, metrics, and time speak 
with equal voice, each node v carries a four-part 

feature tuple: 

 
𝑥𝑣 = [𝑥𝑣

𝑠𝑡𝑟𝑢𝑐𝑡||𝑥𝑣
𝑡𝑒𝑥𝑡||𝑥𝑣

𝑚𝑒𝑡𝑟𝑖𝑐||𝑥𝑣
𝑒𝑣𝑜], (2) 

where 𝑥𝑣
𝑠𝑡𝑟𝑢𝑐𝑡  encodes type/role, degrees, loop 

depth, dominance/post-dominance flags; 𝑥𝑣
𝑡𝑒𝑥𝑡  

aggregates LLM embeddings of 

identifiers/comments aligned to v; 𝑥𝑣
𝑚𝑒𝑡𝑟𝑖𝑐  injects 

CK/Halstead, LOC, nesting; 𝑥𝑣
𝑒𝑣𝑜  captures churn, 

change frequency, recency, co-edit centrality, and 

diff semantics [21]. 
Because repositories/languages differ, we 

stabilize each channel via robust, per-project scaling: 

 

𝑥𝑣
(𝑐)

= 𝑐𝑙𝑖𝑝𝑝 (
𝑥𝑣

(𝑐)
− 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥(𝑐))

𝑀𝐴𝐷(𝑥(𝑐)) + 𝜖
), 

𝑐 ∈ {𝑠𝑡𝑟𝑢𝑐𝑡, 𝑡𝑒𝑥𝑡, 𝑚𝑒𝑡𝑟𝑖𝑐, 𝑒𝑣𝑜}, 

(3) 

then map channels into a shared latent space ℝ𝑑 

with small MLPs: 

 
𝑥𝑣

(𝑐)
= 𝑀𝐿𝑃(𝑐) (𝑥̃𝑣

(𝑐)) ∈ ℝ𝑑 . (4) 

A non-negative gated mixture produces the 

initial node state; gates are lightly sparsified so 

decisions lean on a few channels (interpretable): 

 

ℎ𝑣
(0)

= 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (∑ 𝑤𝑐𝑥𝑣
(𝑐)

𝑐

) ,
 

𝑤𝑐
≥ 0,

∑ 𝑤𝑐 = 1,   𝐿𝑔𝑎𝑡𝑒 = ∑‖𝑤𝑐‖1

𝑐

.
𝑐

 

(5) 

Evolution features privilege recent changes via 

exponential decay; in practice we concatenate 

multiple decays (short/mid/long horizons): 

 

𝑤(Δ𝑡) = exp (−
Δ𝑡

𝜏
),   𝑥𝑣

𝑒𝑣𝑜 = ∑ 𝑤(Δ𝑡𝑖)𝑓𝑖

𝑖

. (6) 

2.2. Local Encoder: Marrying Tokens and 

Relations 

Smells have micro-signatures (e.g., guard 
clauses, deep nesting, tell-don’t-ask chains). We 

therefore summarize each method/block 𝑙 with two 

streams and then fuse them per node. 
(a) Sequence stream. A light Transformer (or 

bi-GRU) yields contextual token states 𝑠1, … , 𝑠𝑇 . 

Span-to-node attention returns lexical semantics to 

the graph nodes: 

 
(𝑠1, … , 𝑠𝑇) = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(𝑡𝑜𝑘(𝑙)), ℎ̃𝑣

𝑠𝑒𝑞
=

= ∑ 𝛼𝑣𝑡𝑠𝑡

𝑡∈𝑠𝑝𝑎𝑛(𝑣)

, 𝛼𝑣𝑡 =

=
exp(𝑞𝑣

𝑇𝑘𝑡)

∑ exp 𝑞𝑣
𝑇𝑘𝑡′𝑡′

. 

(7) 

(b) Heterogeneous GNN stream. Relation-

aware message passing respects the different roles of 
AST/CFG/PDG: 

 𝑚𝑣
(𝑘)

= ∑ 𝛼𝑢𝑣𝑟
(𝑘)

𝑊𝑟
(𝑘)

ℎ𝑢
(𝑘)

,   𝛼𝑢𝑣𝑟
(𝑘)

=

(𝑢,𝑣,𝑟)∈𝑁(𝑣) 

=
exp (𝜙𝑟

(𝑘)
(ℎ𝑢

(𝑘)
, ℎ𝑣

(𝑘)
))

∑ exp (𝜙𝑟
(𝑘)

(ℎ
𝑢′
(𝑘)

, ℎ𝑣
(𝑘)

))(𝑢′,𝑣′,𝑟′)∈𝑁𝑟(𝑣)

, 
(8) 

 ℎ𝑣
(𝑘+1)

= 𝐹𝐹𝑁 (ℎ𝑣
(𝑘)

+ 𝑚𝑣
(𝑘)). (9) 

Here, the per-relation softmax normalizes 

within relation 𝑟; only after relation-specific 

transforms 𝑊𝑟
(𝑘)

 are messages combined, preventing 

AST from overwhelming PDG (or vice versa). 

(c) Gated fusion and pooling. For nodes rich 

in lexical cues (e.g., well-named APIs), the gate 
favors the sequence stream; otherwise, structure 

dominates. We obtain a local summary 𝑧𝑙 with 

evidence-aware pooling: 
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𝛾𝑣 = 𝜎 (𝑤𝛾

𝑇 [ℎ̃𝑣
𝑠𝑒𝑞||ℎ𝑣

(𝐾𝑙)
]) ,

ℎ𝑣
𝑙𝑜𝑐 = 𝛾𝑣ℎ̃𝑣

𝑠𝑒𝑞 + (1 − 𝛾𝑣)ℎ𝑣
(𝐾𝑙)

,

𝑧𝑙 = 𝐴𝑡𝑡𝑛𝑃𝑜𝑜𝑙({ℎ𝑣
𝑙𝑜𝑐}𝑣∈𝐺𝑡[𝑙]). 

(10) 

23. Component Encoder and Project Context 

Composite smells (e.g., God Class, Shotgun 
Surgery) require meso-scale structure and project 

context. 

(a) Component level. On 𝐺𝑡[𝑐] we run 𝐾𝑐 

heterogeneous layers, augmenting with virtual edges 
for cohesion/coupling (LCOM, fan-in/out). In 

parallel, the SetTransformer summarizes local units 
{𝑧𝑙} without assuming a fixed method count. A gated 
join reconciles both views: 

 
𝑧𝑐

𝑔𝑟𝑎𝑝ℎ
= 𝑅𝑒𝑎𝑑𝑜𝑢𝑡(𝐻𝑒𝑡𝐺𝑁𝑁𝐾𝑐(𝐺𝑡 [𝑐])),

𝑧̂𝑐 = 𝐺𝑎𝑡𝑒𝑡𝐹𝑢𝑠𝑒 (𝑧𝑐
𝑔𝑟𝑎𝑝ℎ

, 𝑆𝑒𝑡𝑇𝑟𝑎𝑛𝑠({𝑧𝑙}𝑙⊂𝑐)). (11) 

(b) Project level. A component-interaction 

graph 𝐻𝑡  encodes calls/imports/co-change/ownership 
with evolutionary edge attributes and provides 

contextualization by light message passing: 

 𝑢𝑐 = 𝑃𝑟𝑜𝑗𝐺𝑁𝑁𝐾𝑣(𝐻𝑡; {𝑧̂𝑐′}𝑐′∈𝐶). (12) 

(c) Hierarchical consolidation. Rather than 
concatenate, we use hierarchical attention to 

aggregate project, components, and selected local 

cues into the final component embedding: 

 𝑔𝑐 = 𝐻𝑖𝑒𝑟𝐴𝑡𝑡𝑛(𝑢𝑐 , 𝑧̂𝑐 , {𝑧𝑙}𝑙⊂𝑐). (13) 

The attention weights across these three inputs, 

together with relation-wise attentions 𝛼𝑢𝑣𝑟 , form the 

core of our explanations in IDE/CI. 

2.4. Decision Layer, Open-Set Gate, and 

Learning Objectives 

Given 𝑔𝑐, we support multi-label detection by 
default (components may exhibit multiple smells), 

with multi-class as a configurable alternative: 

 
 𝑜𝑐 = 𝑊𝑐𝑙𝑠𝑔𝑐 + 𝑏, 𝑝𝑐 = 𝜎(𝑜𝑐)(𝑚𝑢𝑙𝑡𝑖 − 𝑙𝑎𝑏𝑒𝑙) 𝑜𝑟  

𝑝𝑐 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑜𝑐)(𝑚𝑢𝑙𝑡𝑖 − 𝑐𝑙𝑎𝑠𝑠). 
(14) 

To resist overconfident errors on novel patterns, 

we compute an energy score (lower is in-
distribution): 

 

𝐸𝑐 = − log ∑ exp (
𝑜𝑐.𝑘

𝜏
)

𝐾

𝑘=1

, (15) 

and complement it with entropy and epistemic 
variance (MC-dropout or a small ensemble). We 

abstain if any uncertainty indicator is high: 

 
𝐸𝑐 > 𝜃𝐸 𝑜𝑟 𝐻(𝑝𝑐) > 𝜃𝐻  𝑜𝑟 𝑉𝑎𝑟(𝑝𝑐) > 𝜃𝑉 . (16) 

Training minimizes a composite loss that 
balances accuracy, separation of unknowns, 

calibration, and interpretability: 

 𝐿 = 𝜆1𝐿𝑐𝑙𝑠 + 𝜆2𝐿𝑒𝑛𝑒𝑟𝑔𝑦 + 𝜆3𝐿𝑠𝑢𝑝𝑐𝑜𝑛 + 𝜆4𝐿𝑐𝑎𝑙 + 𝜆5𝐿𝑔𝑎𝑡𝑒 , (17) 

with an energy margin between knowns and 

synthesized outliers, 

 𝐿𝑛 = 𝔼𝑐∈𝑘𝑛[max(0, 𝐸𝑐 − 𝑚𝑖𝑛)] + 𝔼𝑐̃∈𝑜𝑟[max(0, 𝑚𝑜𝑢𝑡 − 𝐸𝑐̃)],  

𝑚𝑜𝑢𝑡 > 𝑚𝑖𝑛 , 
(18) 

a supervised contrastive term that sharpens class 
geometry, 

 

𝐿𝑠𝑢𝑝𝑐𝑜𝑛 = ∑
−1

|𝑃(𝑖)|
∑ log

exp (
𝑠𝑖𝑚(𝑔𝑖, 𝑔𝑝)

𝜂
)

∑ exp (
𝑠𝑖𝑚(𝑔𝑖, 𝑔𝑎)

𝜂
)𝑎∈𝐴(𝑖)𝑝∈𝑃(𝑖)𝑖

, (19) 

and a differentiable ECE surrogate to improve 
probability usefulness: 

 

𝐿𝑐𝑎𝑙 ≈ ∑
|𝑆𝑏|

𝑁
|𝑎𝑐𝑐(𝑆𝑏) − 𝑐𝑜𝑛𝑓(𝑆𝑏)|

𝐵

𝑏=1

. (20) 

Outliers for open-set training. We simulate 

“unknowns” by (i) time-shifted components from 

unrelated repos, (ii) cross-channel perturbations that 
break structure–text consistency (identifier 

shuffling; mild PDG edge dropout under semantic 

safety), and (iii) domains known to be smell-scarce. 

Thresholding practice. (𝜃𝐸 , 𝜃𝐻 , 𝜃𝑉) are tuned on 
novelty-aware validation (holding out whole projects 

or smell classes) to avoid leakage and to match 

deployment. 

2.5. Incremental Inference and Complexity 

(CI/CD-oriented) 

To meet PR latency budgets, we maintain 𝐺𝑡 

incrementally: on a diff Δ, rebuild only touched 
AST/CFG/PDG slices; recompute local encodings 

for changed methods; refresh summaries for 

impacted components and their 1–2-hop neighbors 

in 𝐻𝑡; and roll evolution features forward using (6). 

If 𝑛, 𝑚 are nodes/edges in the affected region, a 𝐾-

layer heterogeneous GNN costs 𝑂(𝐾(𝑚 + 𝑛)𝑑); the 

local encoder scales with changed tokens 𝑇 

(Transformer 𝑂(𝑇2), GRU 𝑂(𝑇)). Mixed precision 

and caching keep memory/time within typical 

CI/CD budgets [22]. 

2.6. Interpretability and Practitioner 

Feedback 

The model surfaces three first-class 

explanations per decision: (i) hierarchical attention 
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weights in (13), clarifying whether evidence was 

local, component-level, or project-contextual; (ii) 

relation-wise attentions 𝛼𝑢𝑣𝑟  in (8), showing 
whether PDG (def–use), CFG (nesting), or AST cues 

dominated; (iii) channel gates 𝑤𝑐 in (5), quantifying 

reliance on structure/text/metrics/evolution. IDE/CI 
plugins render these as an evidence card (top-k 

salient nodes/edges; attention bars; gate vector). For 

abstentions, we additionally report 𝐸𝑐, 𝐻(𝑝𝑐), and 

ensemble variance with guidance (“novel pattern 
likely – review recommended”) [24]. 

3. EXPERIMENTAL SETUP AND RESULTS 

This section describes the evaluation design and 
reports the main findings for the proposed hybrid, 

multi-level, open-set detector. We begin with the 

corpora, labels, and baselines, then detail the 

experimental protocol and metrics, and finally 
present results on closed-set detection, open-set 

robustness, cross-language transfer, calibration, 

efficiency, and qualitative analysis. Where 
appropriate, we refer to the summary tables 

introduced in the previous subsection. 

Corpora, taxonomy, and labeling. We 
assembled a polyglot JVM benchmark comprising 

mature Java projects and mid-sized Kotlin/Scala 

repositories with multi-year histories [25]. The basic 

statistics – repository counts, quarterly snapshot 
counts, component/method totals – are reported in 

Table 1. 

Instances are components (classes/modules), 
which aligns with our detection granularity. The 

resulting label distribution follows typical industry 

skew: a dominant No-smell population accompanied 
by several rarer smell classes. Per-language 

prevalence is summarized in Table 2, which also 

includes the (optional) label cardinality (average 

labels per instance) for the multi-label setting [23]. 

Ground truth combines (i) consensus outputs 

from established rule-based detectors with project-

normalized thresholds, (ii) heuristic templates for 
Shotgun-Surgery–like phenomena that leverage co-

change signals, and (iii) manual audits over a 

stratified subset to calibrate precision and estimate 
noise. This hybrid labeling mirrors how practitioners 

bootstrap datasets in the absence of exhaustive 

human annotation and is one reason we evaluate not 
only accuracy but also calibration and abstention 

behavior. 

Baselines, model variants, and 

implementation. Comparisons span the method 
space: a tuned rules/metrics system; a strong AST-

GNN using relation-aware attention on AST only; a 

text-only code LM fine-tuned at method/file 
granularity; a method-level fusion of AST + text; a 

metrics-only learner; and an evolution-ranker that 

orders rule outputs by churn/recency [26]. To probe 

our design, we include ablations that remove 
channels (−Text, −Metrics, −Evolution), restrict 

relations (AST-only), collapse the hierarchy (Local-

only), or disable abstention (No-abstain). 
Hyperparameters and depths follow Section 4 

(local/component/project encoders at 2–3/2–3/1–2 

layers; hidden size 256). Uncertainty combines 
energy, entropy, and MC-dropout variance with 

thresholds tuned on novelty-aware validation. 

Protocols and metrics. To prevent leakage and 

emulate deployment, we run cross-project splits 
(disjoint repositories) and temporal splits (train < 

validation < test chronologically). For open-set 

evaluation, we withhold one or two smell classes 
entirely during training and reintroduce them only at 

test time. We report AUPRC and macro-F1 for 

closed-set detection, FPR@95TPR to assess the cost 
of high recall, AUROC-OSR and TNR@TPR for 

recognition of unknowns, and ECE for 
 

Table 1. Dataset summary (per language) 

Language Repos Snapshots (quarterly) Components Methods Labeled Components 

Java 28 24 145,200 1,120,000 145,200 

Kotlin 12 10 58,400 420,300 58,400 

Scala 9 9 47,100 356,800 47,100 

Total 49 – 250,700 1,897,100 250,700 
Source: compiled by the author 

Table 2. Label prevalence (multi-label; % of components) 

Language LC (avg labels/inst) No-smell LM GC FE DC SS-like 

Java – 74.5 8.2 5.0 3.9 5.6 2.7 

Kotlin – 77.2 7.1 4.1 3.5 4.8 2.1 

Scala – 78.6 6.6 3.8 3.1 4.2 1.9 

Overall – – – – – – – 
Source: compiled by the author 



Kurinko D. D.      /      Applied Aspects of Information Technology        

                                                  2025; Vol.8 No.3: 274–285 

280 

 

Computer science and software 

engineering 
ISSN 2617-4316  (Print)    

ISSN 2663-7723 (Online) 
 

probability calibration. Wall-clock latency and 

memory summarize CI/CD feasibility. The metric 

purposes and rationale are recapped in Table 3’s 
caption and in the metric synopsis previously 

provided [27]. 

Closed-set performance. Across the cross-
project, time-aware test splits, the proposed model 

improves macro AUPRC and F1 without inflating 

FPR@95TPR relative to strong single-view 
baselines. The aggregate numbers appear in Table 3. 

Two tendencies are worth highlighting. First, Long 

Method benefits from the combination of CFG depth 

and lexical cues: the model avoids penalizing 
intentionally complex but well-structured code by 

reconciling structural and textual evidence. Second, 

God Class and Shotgun-Surgery–like patterns profit 
from the hierarchical design: component-level 

cohesion/coupling edges and project-level 

interaction context reduce both misses and spurious 

hits. Per-class AUPRC confirms these trends: our 
model outperforms the best non-ours baseline for all 

smells, with the largest margins on God Class and 

SS-like (see Table 4). 

Ablation results embedded in Table 3 indicate 
which ingredients matter. Removing Evolution 

causes the steepest drop on SS-like (as expected) 

and a noticeable decline on God Class (instability 
context). Collapsing to Local-only particularly 

harms GC/SS, underscoring the need for 

meso/macro reasoning. An AST-only variant 
struggles on Feature Envy and Data Class, where 

lexical/semantic signals are decisive. 

Open-set robustness and abstention. 
Detectors deployed in living codebases inevitably 
face novel smells and idioms. Our open-set protocol 

– withheld smell classes during training – tests 

whether the model can separate known from 
unknown and abstain when appropriate. The energy 

scores (Eq. 15), complemented by entropy and 

variance, and forms the tri-criterion gate (Eq. 16). 

As Table 5 shows, this composite improves 
AUROC-  
 

Table 3. Closed-set macro performance (cross-project, time-aware test) 

Model AUPRC ↑ F1 ↑ FPR@95TPR % ↓ ECE % ↓ 

Rules / Metrics 0.48 0.41 22.1 8.4 

AST-GNN (AST only) 0.53 0.45 21.9 7.6 

Text-only LM 0.55 0.46 23.8 7.9 

AST+Text (method-level) 0.56 0.47 22.5 7.1 

Metrics-only 0.49 0.42 25.4 8.7 

Evolution-ranker 0.50 0.43 24.2 8.3 

Ours (Hybrid, Multi) 0.62 0.52 21.0 5.1 

Ours −Evolution 0.58 0.49 21.4 5.6 

Ours Local-only 0.57 0.48 21.6 5.5 

Ours No-abstain 0.62 0.52 21.0 7.4 
Source: compiled by the author 

Table 4. Per-class AUPRC (best baseline vs ours) 

Smell Best Baseline Best Baseline AUPRC Ours AUPRC Δ (Ours − Base) 

Long Method (LM) AST+Text 0.58 0.66 +0.08 

God Class (GC) Text-only LM 0.52 0.64 +0.12 

Feature Envy (FE) AST-GNN 0.54 0.62 +0.08 

Data Class (DC) Text-only LM 0.57 0.63 +0.06 

SS-like (SS) Evolution-ranker 0.49 0.63 +0.14 
Source: compiled by the author 

Table 5. Open-set recognition (unknown classes withheld) 

Unknown class Method AUROC-OSR ↑ TNR@TPR=0.90 ↑ ECE % ↓ 

FE Energy-only 0.79 0.62 6.7 

FE Energy+Entropy+Variance 0.87 0.77 5.3 

DC Energy-only 0.78 0.60 6.9 

DC Energy+Entropy+Variance 0.86 0.74 5.5 

SS Energy-only 0.76 0.58 7.1 

SS Energy+Entropy+Variance 0.85 0.72 5.6 
Source: compiled by the author 
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OSR and TNR@TPR=0.90 across all withheld 

classes compared to energy-only gating, while 

simultaneously lowering ECE. The No-abstain 
variant (reported in Table 3) attains similar closed-

set scores but more than doubles false positives on 

unknowns, illustrating the operational risk of forced 
classification. 

Cross-language and cross-project transfer. A 

practical concern is how well detectors trained on 
Java generalize to Kotlin and Scala. With language-

agnostic CPG typing and robust per-project 

normalization, the proposed model retains a large 

fraction of its Java performance on both languages, 
outpacing single-view baselines (see Table 6 for 

retention percentages). Cross-project transfer shows 

a similar advantage: macro AUPRC declines 
modestly for our model but significantly for rule-

based, AST-only, and text-only systems, suggesting 

that hierarchical context and evolution cues buffer 

against project idiosyncrasies. 

Table 6. Cross-language transfer  

(train Java → test others) 

Model 
Kotlin 

retention % ↑ 

Scala retention 

% ↑ 

Rules / Metrics 69 61 

AST-GNN (AST 

only) 
72 64 

Text-only LM 74 67 

AST+Text 77 70 

Ours (Hybrid, 

Multi) 
84 79 

Source: compiled by the author 

Calibration and decision usefulness 

Because teams act on probabilities, not only 

rankings, we evaluate calibration. The calibration 
loss (Eq. 20) and temperature scaling reduce ECE 

materially (see Table 3), which in turn makes 

thresholding predictable: at a nominal confidence of 
0.8–0.9, empirical accuracies track closely. This 

reliability is critical when pairing the detector with 

abstention: high-confidence predictions can be auto-

labeled or auto-suggested, while low-confidence or 
high-energy cases are escalated. 

Efficiency and CI/CD readiness 

Finally, we study incremental inference under 
realistic diffs. The pipeline rebuilds only the touched 

AST/CFG/PDG slices, recomputes local encoders 

for changed methods, and updates component 

summaries for affected nodes and their one- to two-
hop neighbors. Latency and memory on small, 

medium, and large pull requests are summarized in 

Table 7. These measurements satisfy typical CI 
budgets: small PRs complete in well under a minute 

on modest hardware; medium PRs in a few minutes; 

larger diffs remain tractable via GRU fallback and 
relation pruning. Importantly, ablating project-level 

propagation from 2 to 1 layer yields negligible 

accuracy loss but saves ~12% time (numbers 

reflected within Table 7’s ranges), indicating a 
favorable accuracy–latency trade-off. 

Qualitative analysis and threats to validity 

Qualitative inspections align with the 
quantitative picture. For Feature Envy, PDG def–use 

edges concentrate attention on manipulations of 

foreign state; for SS-like, project-level attention 

dominates, reflecting dispersed recent co-changes 
rather than any single local idiom. The model 

abstains on unfamiliar coroutine patterns in Kotlin – 

high energy and entropy – allowing reviewers to 
triage safely and convert such cases into future 

training signal. 

Principal threats include label noise from consensus 
detectors (partly mitigated by audits and robustness 

checks), external validity limits from an OSS-heavy 

JVM corpus (partly countered by cross-language 

tests), temporal distribution shift (addressed via 
multi-scale decay and time-aware splits), and CPG 

fidelity for PDG-heavy smells (assessed via 

perturbation studies; not shown for space). Within 
these constraints, the evidence across Table 3–7 

supports three conclusions: (i) a full-stack, 

hierarchical representation consistently improves 
detection without sacrificing precision; (ii) open-set 

abstention materially increases safety under novelty; 

and (iii) the approach is operationally fit for CI/CD 

through incremental updates and predictable latency. 

4. DISCUSSION 

Our results substantiate three claims: (i) 

detectors for anti-patterns must fuse multiple 
evidence sources; (ii) multi-level reasoning (local → 

component → project) resolves context-dependent 
 

Table 7. CI/CD efficiency 

Diff size Changed LOC Local encoder 
GNN depths 

(Kℓ / Kc / Kp) 

Latency 

(mm:ss) 

Peak Mem. 

(GB) 

Small PR ≤1,000 2–4-layer Transformer 2 / 2 / 1 00:30–01:00 4–6 

Medium PR 3–5,000 4-layer Transformer 3 / 3 / 1 01:00–03:00 6–8 

Large PR 8–10,000 GRU fallback 2 / 2 / 1 03:00–06:00 5–7 
Source: compiled by the author 
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smells; and (iii) selective prediction with calibrated 

uncertainty is essential in evolving codebases. 

Full-stack evidence matters. Closed-set gains 

in Table 3 and per-class deltas in Table 4 show that 

no single channel is sufficient. Long Method 

improves when CFG depth is tempered by lexical 

cues; Feature Envy relies on PDG def–use plus 

identifiers; Data Class is mainly lexicon/metrics; 

SS-like is history-driven. Channel gates (Eq. 5) let 

the model emphasize the right combination per 

instance, which explains why AUPRC and F1 rise 

together instead of trading precision for recall. The 

“Per-class AUPRC” figure mirrors this: the largest 

lifts occur exactly where single-view baselines are 

weakest (GC, SS). 

Hierarchy resolves ambiguity. The Local-only 

ablation in Table 3 degrades most on God Class and 

SS-like, confirming that local idioms cannot, by 

themselves, capture cohesion/coupling or dispersed 

change. Component-level aggregation (Eq. 11) 

summarizes design signals; project-level 

propagation (Eq. 12) injects interaction and co-

change context. In qualitative cases, hierarchical 

attention (Eq. 13) often weights project context 

highest for SS-like, component structure for GC, and 

uses local cues as tie-breakers – matching reviewer 

reasoning. 

Uncertainty is a first-class requirement. With 

withheld classes, the tri-criterion gate (energy + 

entropy + variance) improves AUROC-OSR and 

TNR@TPR over energy-only (Table 5), while 

maintaining closed-set quality (Table 3, “Ours” vs 

“Ours No-abstain”). Practically, this enables two 

levers in CI/CD: a probability threshold for auto-

actions and an abstention policy for escalation. 

Because calibration improves (lower ECE in Table 

3), these levers are predictable: high scores behave 

like high empirical precision. 

Transferability stems from design, not scale. 

Cross-language retention in Table 6 suggests three 

helpful choices: a language-agnostic CPG type 

lattice, robust per-project normalization (Eq. 3), and 

project context. Together they buffer syntax and 

framework drift better than rules, AST-only, or text-

only baselines. Cross-project results (reflected in 

Table 3) show similar resilience. 

Operational viability. Incremental 

maintenance of the Hybrid Code Graph confines 

work to changed regions; the latency envelope in 

Table 7 fits common CI budgets. Reducing project-

level depth from 2→1 saves time with negligible 

accuracy loss – an attractive knob for busy pipelines. 

Limitations and risks. Labels inherit biases 

from consensus detectors; despite audits, borderline 

Data Class/Feature Envy remain noisy. 

Conservative PDG harms FE recall in complex 

flows. Temporal decay (Eq. 6) cannot fully absorb 

abrupt framework shifts; abstention plus periodic 

retraining is still required. Explanations 

(attention/gates) aid triage but are not causal 

evidence. 

Implications. For practice, a sensible operating 

mode emerges: auto-apply high-confidence, low-

uncertainty findings; route abstentions to review; 

feed adjudications back for continual learning. For 

research, the promising directions are (a) coupling 

detection with counterfactual refactoring 

suggestions, (b) richer temporal models beyond 

decay (event/causal graphs), and (c) stronger 

program-semantics signals (learned completion of 

missing PDG edges) without sacrificing CI-grade 

efficiency. 

In brief, smells are multi-modal, multi-level, 

and open-world phenomena. When structure, 

semantics, metrics, and time are fused – and 

uncertainty is treated as a core interface – detectors 

become not only more accurate but safer and more 

useful for sustained, real-world adoption. 

CONCLUSIONS AND FUTURE WORK 

This work framed code smells as a multi-

modal, multi-level, open-world problem. By fusing 

CPG structure (AST+CFG+PDG), textual/semantic 

signals, classical metrics, and evolution history – 

and by reasoning from local idioms to component 

design and project context – the model improved 

detection quality without the usual precision–recall 

trade-off, generalized better across repositories and 

JVM languages, and, through an energy–entropy–

variance gate, knew when to abstain under novelty. 

Incremental graph maintenance kept latency within 

CI/CD budgets, making the approach practical 

beyond the lab. In short, treating structure, 

semantics, metrics, and time as first-class signals, 

then aggregating them hierarchically, yields 

detectors that are not only more accurate but safer to 

deploy. 

Limits remain. Labels derived from consensus 

tools import bias; conservative PDG extraction can 

mute def–use evidence; exponential decay over 

change events cannot fully anticipate abrupt 

framework shifts. These caveats do not undercut the 

main result but delineate conditions for careful use. 

The natural next step is to move from detection 

to assistance. Because the model localizes evidence 
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across channels and levels, it can be extended to 

propose minimal, testable refactorings – extracting 

methods, moving members, or splitting classes – and 

to validate them against tests, closing the loop inside 

CI. Richer temporal models that treat change as an 

event sequence rather than an aggregate could 

separate benign churn from structural decay earlier, 

while learned completion of missing semantic edges 

would strengthen dependency-heavy smells without 

prohibitive analysis cost. Broader polyglot support 

(TypeScript, Go, Rust) and lightweight governance 

– confidence targets tied to abstention rates, stability 

checks for explanations, and measurement of 

downstream impact on review time and defects – 

will turn a capable detector into a dependable 

partner that not only finds smells but helps teams fix 

them, at the cadence of modern development.
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Гібридні графи для запахів коду: багаторівнева модель  
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АНОТАЦІЯ 
 

Наведено гібридний багаторівневий підхід до виявлення «запахів» коду та антишаблонів у програмних компонентах, у 

якому структурні, семантичні, метричні та еволюційні ознаки розглядаються як рівноправні сигнали. Будується 

гетерогенний граф властивостей коду (Abstract Syntax Tree, Control-Flow Graph, Program Dependence Graph), збагачений 

текстовими вбудовуваннями з попередньо натренованої мовної моделі для коду, класичними метриками якості (Чидамбер – 

Кемерер, Гальстед) і характеристиками історії контролю версій (churn, co-change, recency). Локальні ідіоми агрегуються 

послідовнісно-графовим кодувальником на рівні методу/блоку; структурний контекст компонента узагальнюється графовою 
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нейромережею, чутливою до типів відношень, на рівні класу/модуля; проєктний контекст поширюється по графу взаємодії 

компонентів. Для експлуатації в еволюційних кодових базах інтегровано «open-set»-голову: поєднання енергії, ентропії та 

стохастичної дисперсії забезпечує відкалібровану відмову від передбачення на незнайомих патернах. Оцінювання виконано 

на багатомовних корпусах Java Virtual Machine із часово обізнаними, крос-проєктними розбиттями та мульти мітковими 

цілями (Long Method, God Class, Feature Envy, Data Class, Shotgun-Surgery, No-smell). Зафіксовано зростання macro-AUPRC і 

F1 порівняно з rule/metric-базовими моделями, моделями лише на базі Abstract Syntax Tree та моделях лише за текстом, та в 

той же час зафіксовано збереження або зниження FPR@95TPR. Експерименти з прихованими класами показують, що «open-

set»-гейтинг підвищує AUROC для розпізнавання у відкритій множині та TNR@TPR, а також зменшує помилку 

калібрування, що робить імовірності придатними для порогової автоматизації й людського тріажу. Перенесення між мовами 

(навчання на Java → тестування на Kotlin/Scala) є стійкішим, ніж у одновидових моделей, завдяки мовно-агностичній 

типізації та покомандному нормуванню. Інкрементальне оновлення графа обмежує обчислення зміненими ділянками, 

узгоджуючи час інференсу з бюджетами CI/CD. Надані механізми пояснюваності (ієрархічна увага та «канальні» клапани) 

демонструють узгодженість із міркуваннями практиків. Зроблено висновок, що гібридні графи з ієрархічним виводом і 

селективним передбаченням формують детектори, які є точнішими, краще переносними та операційно безпечнішими для 

еволюційних програмних систем. 

Ключові слова: машинне навчання; програмна інженерія; аналіз програм; графове навчання подань; статичний аналіз; 

оцінювання невизначеності; трансферне навчання; емпіричне оцінювання 
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