
Kurinko D. D. / Applied Aspects of Information Technology

 2025; Vol.8 No.3: 274–285

274 Computer science and software

engineering
ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

DOI: https://doi.org/10.15276/aait.08.2025.18

UDC 004.8:004.42:519.17

Hybrid graphs for code smells: a multi-level model for

anti-pattern detection in software components

Dmytro D. Kurinko

ORCID: https://orcid.org/0000-0001-8304-3257; dmitrykurinko@gmail.com
Odesa Polytechnic National University, 1, Shevchenko Avenue. Odesa, 65044, Ukraine

ABSTRACT

The paper proposes a hybrid, multi-level method for detecting code smells and anti-patterns in software components, where
structure, semantics, metrics, and evolution are treated as first-class signals. A heterogeneous Code Property Graph (Abstract Syntax
Tree + Control-flow Graph + Program Dependence Graph) is constructed and enriched with textual embeddings from a pretrained
code language model, classical quality metrics (Chidamber–Kemerer, Halstead), and version-control history (churn, co-change,
recency). Local idioms are summarized via a sequence–graph encoder at the method/block level, component structure is aggregated
by a relation-aware Graph Neural Network at the class/module level, and project context is propagated over a component-interaction
graph. To support deployment in evolving codebases, an open-set head is introduced: energy, entropy, and stochastic variance are
combined to enable calibrated abstention on unfamiliar patterns. The approach is evaluated on polyglot Java Virtual Machine corpora

using time-aware, cross-project splits with multi-label targets (Long Method, God Class, Feature Envy, Data Class, Shotgun-
Surgery–like, No-smell). Improvements in macro Area under the Precision–Recall Curve and F1 overrule/metric baselines, Abstract
Syntax Tree-only, and text-only models are observed, while FPR@95TPR is maintained or reduced. Withheld-class experiments
show that open-set gating increases Area under ROC for Open-Set Recognition and TNR@TPR and lowers calibration error,
yielding probabilities suitable for thresholded automation and human triage. Cross-language transfer (train Java → test Kotlin/Scala)
is shown to be stronger than with single-view models, aided by language-agnostic typing and per-project normalization. Incremental
graph maintenance confines computation to changed regions, aligning inference time with CI/CD budgets. By exposing hierarchical
attention and channel gates, explanations are produced that align with practitioner reasoning. It is concluded that hybrid graphs with

hierarchical reasoning and selective prediction deliver detectors that are more accurate, transferable, and operationally safer for
evolving software systems.

Keywords: Machine learning; software engineering; program analysis; graph representation learning; static analysis;
uncertainty estimation; transfer learning; empirical evaluation

For citation: Kurinko D. D. “Hybrid graphs for code smells: a multi-level model for anti-pattern detection in software components”. Applied

Aspects of Information Technology. 2025; Vol.8 No.3: 274–285. DOI: https://doi.org/10.15276/aait.08.2025.18

INTRODUCTION, FORMULATION OF THE

PROBLEM

Industrial software systems are rapidly growing

in size, language diversity, and rate of change.

Under these conditions, maintainability is
determined not only by formal correctness but also

by the internal quality of code – specifically, by the

presence or absence of anti-patterns (code smells)
that impair readability, complicate testing, slow

evolution, and increase defect risk [1]. Traditional

detection tools built on fixed rules and threshold
metrics are useful at early stages but show limited

cross-project and cross-language transfer, are

sensitive to idiosyncratic coding styles, and often

either over-report (high false positives) or miss
atypical manifestations (low recall). Moreover,

contemporary development practices (CI/CD, code

review, rapid release cycles) demand that analysis
tools operate incrementally and account for change

history, inter-component relations, and the broader

evolution context [2].

© Kurinko D., 2025

Prior work on machine learning for code quality
has typically focused on one representational plane:
(i) structural models exploiting Abstract Syntax
Trees (AST), Control-Flow Graphs (CFG), or
Program Dependence Graphs (PDG) to capture
formal structure; (ii) textual/semantic models that
leverage token/identifier or LLM-based embeddings
of code and comments; (iii) metric-oriented
approaches (e.g., CK metrics, Halstead) that
compress artifacts into engineered features; and (iv)
historical/evolutionary approaches that track change
frequency, churn, co-editing patterns, and diff-based
indicators across versions. Despite successes along
each line, anti-patterns are inherently multi-
dimensional: the same structural smell may be
“normal” within a project’s style; textual naming
may mask or reveal semantic idioms; and change
history often signals latent issues (e.g., component
instability) before they surface in static features [3].

Consequently, a key methodological gap is the
absence of an integral representation that jointly and
naturally models code structure, its semantic
content, and the evolution context across multiple
levels of abstraction – from local idioms to

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

https://doi.org/

Kurinko D. D. / Applied Aspects of Information Technology

 2025; Vol.8 No.3: 274–285

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)
Computer science and software

engineering
275

component and project scope. A second gap is the

lack of explicit open-set thinking: most models are

trained to discriminate among a fixed set of smell
classes and, at inference time, implicitly assume

every instance belongs to one of the known classes.

In real codebases that continuously evolve; a tool
must be able to signal “unknown” or “out-of-

distribution” when encountering atypical or novel

anti-patterns. A third gap concerns multilinguality
and transferability: models tuned for one language

(e.g., Java) often degrade on closely related

languages (Kotlin, Scala) due to differences in

syntax, idioms, and library practices [4].
In this work, we propose a multi-level model

for anti-pattern detection in software components

that combines a hybrid graph representation of code
with a project/component/local architecture and

explicit handling of uncertainty in open-set

scenarios. At its core lies a Hybrid Code Graph: we

model code as a Code Property Graph (unifying
AST, CFG, and PDG) and augment nodes/edges

with textual-semantic embeddings (e.g., LLM-

derived vectors for tokens, identifiers, and
fragments) and quality metrics (CK, Halstead,

simple complexity/length indicators). At the project

level, the graph is enriched with evolutionary
features: diff-based measures, change frequency, co-

editing relationships, artifact “age,” and stability.

Over this representation, we employ a multi-level

GNN architecture with attention: a local sequence
submodel captures idioms within methods/blocks; a

component-level encoder aggregates structural-

semantic and metric signals on the component
subgraph; and a project-level encoder models inter-

component interactions and evolutionary context.

Cross-level fusion is realized via hierarchical
attention/gating to produce consistent predictions

and calibrated uncertainty estimates [5].

A salient property of the approach is open-set

handling. We instrument uncertainty heads (e.g.,
stochastic inference, energy-based scores, or

ensembles) and calibrate decision thresholds to

separate known smells from unknown/atypical
manifestations. This capability is critical for realistic

CI/CD and code-review pipelines, where it is safer

to abstain (flagging a case as “needs attention”) than

to misclassify a novel artifact as one of the known
classes. Additionally, by hybridizing feature sources

and explicitly modeling evolution, the architecture

achieves a favorable precision–recall trade-off:
improved recall does not entail a substantial rise in

false positives, and a “robust mode” supports

transfer across related languages (Java/Kotlin/Scala)
and coding styles.

1. BACKGROUND AND RELATED WORK

This section condenses prior art relevant to our

hybrid, multi-level and open-set treatment of code
smell / anti-pattern detection. We group works into

six strands: (i) rule- and metric-based detectors; (ii)

graph/structure learning; (iii) neural representation
learning for code; (iv) evolution-aware analytics; (v)

open-set and uncertainty; (vi) multilingual and

cross-project transfer – and close with a synthesis
that motivates our design [6].

Rule- and metric-based detectors of code

smells / anti-patterns. Industrial practice long relied

on rule engines (e.g., AST predicates, naming
heuristics) and metric thresholds (CK, Halstead,

coupling/cohesion) to flag smells such as Long

Method, God Class, or Feature Envy [7].
These approaches are valued for speed and

explainability but face persistent limits: (a)

brittleness to local coding style and configuration;

(b) difficulty encoding non-local or composite
smells spanning multiple files; (c) poor portability

across projects and languages; and (d) a familiar

recall–precision trade-off – tight thresholds shrink
false positives yet miss atypical manifestations,

whereas relaxed thresholds inflate noise. Later

works attempted adaptive thresholds or project-
specific calibration, improving precision locally but

not addressing deeper issues of semantics, structure–

text interplay, or temporal context [8].

Graph- and structure-based learning over
code. Static program artifacts admit graph

formalisms – AST for syntax, CFG for control flow,

PDG for data/control dependence [9]. Learning over
these graphs progressed from path-based encoders to

GNNs with typed edges. AST-only methods capture

local idioms but often miss long-range
dependencies; CFG models reason about

branching/depth but are costly to construct precisely;

PDG models add semantic dependence yet raise

scalability concerns. Code Property Graphs (CPG)
unifies AST/CFG/PDG, enabling multi-relation

message passing and cross-view reasoning [10].

Parallel work in clone detection showed that
structural regularities are learnable, yet smells are

not clones: they are contextual and often semantic,

so structure must be complemented by text and

history. Overall, structural learning improves
generalization beyond rules but remains single-view

when used alone [11].

Representation learning for code: tokens,
identifiers, and LLMs. Neural models recover
lexical and idiomatic signals from code.
Token/identifier embeddings and pretrained code
LMs (e.g., CodeBERT/CodeT5 families; hybrid

Kurinko D. D. / Applied Aspects of Information Technology

 2025; Vol.8 No.3: 274–285

276 Computer science and software

engineering
ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

text+path encoders) have advanced tasks from code
search to defect prediction [12]. Strengths include
sensitivity to naming conventions, API idioms, and
commentary, which are often key cues for smells.
Weaknesses mirror the inverse of graph methods:
text-only encoders may overfit surface forms, lack
precise control/data-flow grounding, and struggle to
tell “complex but warranted” from “complex and
smelly.” Hybrid text+structure models outperform
single-modality baselines, but most fuse two views
(e.g., AST+text) at a single granularity
(method/file), leaving project-level context and
evolution underused [13].

Evolution-aware analytics and just-in-time
quality prediction. A complementary line models
change processes: churn, change frequency, recency,
developer experience, co-change networks, and diff
semantics. Robust findings show that hotspots and
socio-technical signals forecast future quality issues
across ecosystems [14]. For smells, evolution helps
detect emergence (accretion of responsibilities) and
instability (frequent edits). However, most detectors
either ignore history or use it post-hoc for ranking
rather than as a first-class input. Integrating
evolution within the representation – rather than
“after the fact” – promises earlier, more reliable
detection, especially for composite/architectural
smells whose symptoms crystallize over releases
[15].

Open-set recognition, OOD detection, and
uncertainty in SE. Software datasets are non-
stationary; frameworks and idioms evolve, and novel
smells appear. Closed-set classifiers force every
instance into known classes, yielding overconfident
errors on unfamiliar inputs. The broader ML
literature offers open-set/OOD tools (energy scores,
margin losses, selective classification) and
uncertainty estimation (ensembles, MC-dropout,
evidential heads, post-hoc calibration) [16]. In SE,
adoption is early: a handful of works calibrate defect
predictors or test across repositories, but open-set
protocols for smell detection remain under-specified.
Without explicit abstention, detectors either inflate
false positives or silently mislabel novelty. This gap
motivates uncertainty-aware architectures and
evaluation that measures TNR@TPR on unknowns,
not only classical precision/recall [17].

Multilingual and cross-project transfer.
Smell manifestations depend on language idioms,
standard libraries, and ecosystem conventions.
Transfer from Java to Kotlin/Scala is non-trivial
(null-safety idioms, extension functions, lambdas,
typical architectural styles). Thresholds and rule
parameters rarely transfer as-is; domain shifts arise
from framework usage and team practices.
Mitigations include domain-adversarial training,

meta-learning, project-aware normalization, and
rigorous split protocols (by repository/time) to avoid
leakage. Yet many evaluations remain within-project
or within-language, leaving the true robustness of
detectors underexplored [18].

Synthesis and positioning. The strands above
reveal complementary strengths and blind spots
[19]:

 rules/metrics: interpretable and fast, but
brittle and weak on non-local/composite smells;

 graphs/GNNs: capture dependencies and
program structure, but miss lexical nuance and
history when used alone;

 text/LLMs: capture naming and idioms, but
lack explicit flow/dependence; can over-rely on
surface cues;

 evolution signals: expose emergence or
instability, yet are seldom integrated end-to-end;

 open-set/uncertainty: essential for non-
stationary codebases, but rarely operationalized for
smells;

 transfer: necessary in polyglot repos but
undermined by language/project drift without
normalization and hierarchy.

These observations motivate our Hybrid Code
Graph and multi-level encoder with open-set
handling. Concretely, we (i) unify AST+CFG+PDG
with textual-semantic embeddings, quality metrics,
and evolution features in a single heterogeneous
graph; (ii) reason hierarchically (local → component
→ project) so that micro-idioms, meso-structure,
and macro-context can each influence a decision;
(iii) incorporate uncertainty heads and energy-based
abstention to handle novelty safely; and (iv) adopt
cross-language normalization and project/time splits
to target real-world transfer. This positioning
directly addresses the principal methodological gaps:
lack of a full-stack representation (structure + text +
metrics + evolution), absence of multi-granular
reasoning, and missing open-set evaluation for anti-
pattern detection [20].

The purpose of this study is to design,
formalize, and empirically validate a multi-level,
hybrid-graph model for detecting code smells and
anti-patterns in software components under realistic
development conditions (polyglot codebases,
evolving repositories, and partially labeled data).
Concretely, we aim to (i) demonstrate that an
integral representation – combining structure
(AST + CFG + PDG), semantics (LLM-based
embeddings), quality metrics (CK, Halstead, simple
structural indicators), and evolutionary signals (diff
metrics, churn, co-editing, age/stability) – improves
detection quality without sacrificing precision; (ii)
show that multi-level reasoning (local → component

Kurinko D. D. / Applied Aspects of Information Technology

 2025; Vol.8 No.3: 274–285

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)
Computer science and software

engineering
277

→ project) enables better disambiguation of context-
dependent smells; and (iii) establish that uncertainty-
aware, open-set treatment is necessary and effective
for safely handling novel or atypical manifestations
in the wild.

2. PROPOSED MODEL

We detect code smells and anti-patterns by

fusing four evidence channels – program structure,
textual/semantic cues, quality metrics, and

evolution/history – within a single Hybrid Code

Graph and a multi-level encoder (local → component
→ project). The classifier is paired with uncertainty

and an open-set gate so that unfamiliar phenomena

are flagged rather than mislabelled. Below, the

narrative and equations are integrated: each formula is
introduced by intuition, then tied to its role in the

pipeline.

2.1. Hybrid Code Graph (CPG) and

Channelized Features

Smells rarely live in one “view” of code. We

therefore cast a project snapshot at time ttt as a typed
multigraph that unifies syntax (AST), control (CFG),

and dependence (PDG):

 𝐺𝑇(𝑉, 𝐸, 𝑅), 𝐸 ⊆ 𝑉 × 𝑉 × 𝑅,

𝑅 = {𝐴𝑆𝑇, 𝐶𝐹𝐺, 𝐷𝐴𝑇𝐴, 𝐶𝑇𝑅𝐿, … }.
(1)

Local units (methods/blocks) and components

(classes/modules) are induced subgraphs 𝐺𝑡[𝑙] and

𝐺𝑡[𝑐]. To let structure, text, metrics, and time speak
with equal voice, each node v carries a four-part

feature tuple:

𝑥𝑣 = [𝑥𝑣

𝑠𝑡𝑟𝑢𝑐𝑡||𝑥𝑣
𝑡𝑒𝑥𝑡||𝑥𝑣

𝑚𝑒𝑡𝑟𝑖𝑐||𝑥𝑣
𝑒𝑣𝑜], (2)

where 𝑥𝑣
𝑠𝑡𝑟𝑢𝑐𝑡 encodes type/role, degrees, loop

depth, dominance/post-dominance flags; 𝑥𝑣
𝑡𝑒𝑥𝑡

aggregates LLM embeddings of

identifiers/comments aligned to v; 𝑥𝑣
𝑚𝑒𝑡𝑟𝑖𝑐 injects

CK/Halstead, LOC, nesting; 𝑥𝑣
𝑒𝑣𝑜 captures churn,

change frequency, recency, co-edit centrality, and

diff semantics [21].
Because repositories/languages differ, we

stabilize each channel via robust, per-project scaling:

𝑥𝑣
(𝑐)

= 𝑐𝑙𝑖𝑝𝑝 (
𝑥𝑣

(𝑐)
− 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥(𝑐))

𝑀𝐴𝐷(𝑥(𝑐)) + 𝜖
),

𝑐 ∈ {𝑠𝑡𝑟𝑢𝑐𝑡, 𝑡𝑒𝑥𝑡, 𝑚𝑒𝑡𝑟𝑖𝑐, 𝑒𝑣𝑜},

(3)

then map channels into a shared latent space ℝ𝑑

with small MLPs:

𝑥𝑣

(𝑐)
= 𝑀𝐿𝑃(𝑐) (𝑥̃𝑣

(𝑐)) ∈ ℝ𝑑 . (4)

A non-negative gated mixture produces the

initial node state; gates are lightly sparsified so

decisions lean on a few channels (interpretable):

ℎ𝑣
(0)

= 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (∑ 𝑤𝑐𝑥𝑣
(𝑐)

𝑐

) ,

𝑤𝑐
≥ 0,

∑ 𝑤𝑐 = 1, 𝐿𝑔𝑎𝑡𝑒 = ∑‖𝑤𝑐‖1

𝑐

.
𝑐

(5)

Evolution features privilege recent changes via

exponential decay; in practice we concatenate

multiple decays (short/mid/long horizons):

𝑤(Δ𝑡) = exp (−
Δ𝑡

𝜏
), 𝑥𝑣

𝑒𝑣𝑜 = ∑ 𝑤(Δ𝑡𝑖)𝑓𝑖

𝑖

. (6)

2.2. Local Encoder: Marrying Tokens and

Relations

Smells have micro-signatures (e.g., guard
clauses, deep nesting, tell-don’t-ask chains). We

therefore summarize each method/block 𝑙 with two

streams and then fuse them per node.
(a) Sequence stream. A light Transformer (or

bi-GRU) yields contextual token states 𝑠1, … , 𝑠𝑇 .

Span-to-node attention returns lexical semantics to

the graph nodes:

(𝑠1, … , 𝑠𝑇) = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(𝑡𝑜𝑘(𝑙)), ℎ̃𝑣

𝑠𝑒𝑞
=

= ∑ 𝛼𝑣𝑡𝑠𝑡

𝑡∈𝑠𝑝𝑎𝑛(𝑣)

, 𝛼𝑣𝑡 =

=
exp(𝑞𝑣

𝑇𝑘𝑡)

∑ exp 𝑞𝑣
𝑇𝑘𝑡′𝑡′

.

(7)

(b) Heterogeneous GNN stream. Relation-

aware message passing respects the different roles of
AST/CFG/PDG:

 𝑚𝑣
(𝑘)

= ∑ 𝛼𝑢𝑣𝑟
(𝑘)

𝑊𝑟
(𝑘)

ℎ𝑢
(𝑘)

, 𝛼𝑢𝑣𝑟
(𝑘)

=

(𝑢,𝑣,𝑟)∈𝑁(𝑣)

=
exp (𝜙𝑟

(𝑘)
(ℎ𝑢

(𝑘)
, ℎ𝑣

(𝑘)
))

∑ exp (𝜙𝑟
(𝑘)

(ℎ
𝑢′
(𝑘)

, ℎ𝑣
(𝑘)

))(𝑢′,𝑣′,𝑟′)∈𝑁𝑟(𝑣)

,
(8)

 ℎ𝑣
(𝑘+1)

= 𝐹𝐹𝑁 (ℎ𝑣
(𝑘)

+ 𝑚𝑣
(𝑘)). (9)

Here, the per-relation softmax normalizes

within relation 𝑟; only after relation-specific

transforms 𝑊𝑟
(𝑘)

 are messages combined, preventing

AST from overwhelming PDG (or vice versa).

(c) Gated fusion and pooling. For nodes rich

in lexical cues (e.g., well-named APIs), the gate
favors the sequence stream; otherwise, structure

dominates. We obtain a local summary 𝑧𝑙 with

evidence-aware pooling:

Kurinko D. D. / Applied Aspects of Information Technology

 2025; Vol.8 No.3: 274–285

278 Computer science and software

engineering
ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

𝛾𝑣 = 𝜎 (𝑤𝛾

𝑇 [ℎ̃𝑣
𝑠𝑒𝑞||ℎ𝑣

(𝐾𝑙)
]) ,

ℎ𝑣
𝑙𝑜𝑐 = 𝛾𝑣ℎ̃𝑣

𝑠𝑒𝑞 + (1 − 𝛾𝑣)ℎ𝑣
(𝐾𝑙)

,

𝑧𝑙 = 𝐴𝑡𝑡𝑛𝑃𝑜𝑜𝑙({ℎ𝑣
𝑙𝑜𝑐}𝑣∈𝐺𝑡[𝑙]).

(10)

23. Component Encoder and Project Context

Composite smells (e.g., God Class, Shotgun
Surgery) require meso-scale structure and project

context.

(a) Component level. On 𝐺𝑡[𝑐] we run 𝐾𝑐

heterogeneous layers, augmenting with virtual edges
for cohesion/coupling (LCOM, fan-in/out). In

parallel, the SetTransformer summarizes local units
{𝑧𝑙} without assuming a fixed method count. A gated
join reconciles both views:

𝑧𝑐

𝑔𝑟𝑎𝑝ℎ
= 𝑅𝑒𝑎𝑑𝑜𝑢𝑡(𝐻𝑒𝑡𝐺𝑁𝑁𝐾𝑐(𝐺𝑡 [𝑐])),

𝑧̂𝑐 = 𝐺𝑎𝑡𝑒𝑡𝐹𝑢𝑠𝑒 (𝑧𝑐
𝑔𝑟𝑎𝑝ℎ

, 𝑆𝑒𝑡𝑇𝑟𝑎𝑛𝑠({𝑧𝑙}𝑙⊂𝑐)). (11)

(b) Project level. A component-interaction

graph 𝐻𝑡 encodes calls/imports/co-change/ownership
with evolutionary edge attributes and provides

contextualization by light message passing:

 𝑢𝑐 = 𝑃𝑟𝑜𝑗𝐺𝑁𝑁𝐾𝑣(𝐻𝑡; {𝑧̂𝑐′}𝑐′∈𝐶). (12)

(c) Hierarchical consolidation. Rather than
concatenate, we use hierarchical attention to

aggregate project, components, and selected local

cues into the final component embedding:

 𝑔𝑐 = 𝐻𝑖𝑒𝑟𝐴𝑡𝑡𝑛(𝑢𝑐 , 𝑧̂𝑐 , {𝑧𝑙}𝑙⊂𝑐). (13)

The attention weights across these three inputs,

together with relation-wise attentions 𝛼𝑢𝑣𝑟 , form the

core of our explanations in IDE/CI.

2.4. Decision Layer, Open-Set Gate, and

Learning Objectives

Given 𝑔𝑐, we support multi-label detection by
default (components may exhibit multiple smells),

with multi-class as a configurable alternative:

 𝑜𝑐 = 𝑊𝑐𝑙𝑠𝑔𝑐 + 𝑏, 𝑝𝑐 = 𝜎(𝑜𝑐)(𝑚𝑢𝑙𝑡𝑖 − 𝑙𝑎𝑏𝑒𝑙) 𝑜𝑟

𝑝𝑐 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑜𝑐)(𝑚𝑢𝑙𝑡𝑖 − 𝑐𝑙𝑎𝑠𝑠).
(14)

To resist overconfident errors on novel patterns,

we compute an energy score (lower is in-
distribution):

𝐸𝑐 = − log ∑ exp (
𝑜𝑐.𝑘

𝜏
)

𝐾

𝑘=1

, (15)

and complement it with entropy and epistemic
variance (MC-dropout or a small ensemble). We

abstain if any uncertainty indicator is high:

𝐸𝑐 > 𝜃𝐸 𝑜𝑟 𝐻(𝑝𝑐) > 𝜃𝐻 𝑜𝑟 𝑉𝑎𝑟(𝑝𝑐) > 𝜃𝑉 . (16)

Training minimizes a composite loss that
balances accuracy, separation of unknowns,

calibration, and interpretability:

 𝐿 = 𝜆1𝐿𝑐𝑙𝑠 + 𝜆2𝐿𝑒𝑛𝑒𝑟𝑔𝑦 + 𝜆3𝐿𝑠𝑢𝑝𝑐𝑜𝑛 + 𝜆4𝐿𝑐𝑎𝑙 + 𝜆5𝐿𝑔𝑎𝑡𝑒 , (17)

with an energy margin between knowns and

synthesized outliers,

 𝐿𝑛 = 𝔼𝑐∈𝑘𝑛[max(0, 𝐸𝑐 − 𝑚𝑖𝑛)] + 𝔼𝑐̃∈𝑜𝑟[max(0, 𝑚𝑜𝑢𝑡 − 𝐸𝑐̃)],

𝑚𝑜𝑢𝑡 > 𝑚𝑖𝑛 ,
(18)

a supervised contrastive term that sharpens class
geometry,

𝐿𝑠𝑢𝑝𝑐𝑜𝑛 = ∑
−1

|𝑃(𝑖)|
∑ log

exp (
𝑠𝑖𝑚(𝑔𝑖, 𝑔𝑝)

𝜂
)

∑ exp (
𝑠𝑖𝑚(𝑔𝑖, 𝑔𝑎)

𝜂
)𝑎∈𝐴(𝑖)𝑝∈𝑃(𝑖)𝑖

, (19)

and a differentiable ECE surrogate to improve
probability usefulness:

𝐿𝑐𝑎𝑙 ≈ ∑
|𝑆𝑏|

𝑁
|𝑎𝑐𝑐(𝑆𝑏) − 𝑐𝑜𝑛𝑓(𝑆𝑏)|

𝐵

𝑏=1

. (20)

Outliers for open-set training. We simulate

“unknowns” by (i) time-shifted components from

unrelated repos, (ii) cross-channel perturbations that
break structure–text consistency (identifier

shuffling; mild PDG edge dropout under semantic

safety), and (iii) domains known to be smell-scarce.

Thresholding practice. (𝜃𝐸 , 𝜃𝐻 , 𝜃𝑉) are tuned on
novelty-aware validation (holding out whole projects

or smell classes) to avoid leakage and to match

deployment.

2.5. Incremental Inference and Complexity

(CI/CD-oriented)

To meet PR latency budgets, we maintain 𝐺𝑡

incrementally: on a diff Δ, rebuild only touched
AST/CFG/PDG slices; recompute local encodings

for changed methods; refresh summaries for

impacted components and their 1–2-hop neighbors

in 𝐻𝑡; and roll evolution features forward using (6).

If 𝑛, 𝑚 are nodes/edges in the affected region, a 𝐾-

layer heterogeneous GNN costs 𝑂(𝐾(𝑚 + 𝑛)𝑑); the

local encoder scales with changed tokens 𝑇

(Transformer 𝑂(𝑇2), GRU 𝑂(𝑇)). Mixed precision

and caching keep memory/time within typical

CI/CD budgets [22].

2.6. Interpretability and Practitioner

Feedback

The model surfaces three first-class

explanations per decision: (i) hierarchical attention

Kurinko D. D. / Applied Aspects of Information Technology

 2025; Vol.8 No.3: 274–285

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)
Computer science and software

engineering
279

weights in (13), clarifying whether evidence was

local, component-level, or project-contextual; (ii)

relation-wise attentions 𝛼𝑢𝑣𝑟 in (8), showing
whether PDG (def–use), CFG (nesting), or AST cues

dominated; (iii) channel gates 𝑤𝑐 in (5), quantifying

reliance on structure/text/metrics/evolution. IDE/CI
plugins render these as an evidence card (top-k

salient nodes/edges; attention bars; gate vector). For

abstentions, we additionally report 𝐸𝑐, 𝐻(𝑝𝑐), and

ensemble variance with guidance (“novel pattern
likely – review recommended”) [24].

3. EXPERIMENTAL SETUP AND RESULTS

This section describes the evaluation design and
reports the main findings for the proposed hybrid,

multi-level, open-set detector. We begin with the

corpora, labels, and baselines, then detail the

experimental protocol and metrics, and finally
present results on closed-set detection, open-set

robustness, cross-language transfer, calibration,

efficiency, and qualitative analysis. Where
appropriate, we refer to the summary tables

introduced in the previous subsection.

Corpora, taxonomy, and labeling. We
assembled a polyglot JVM benchmark comprising

mature Java projects and mid-sized Kotlin/Scala

repositories with multi-year histories [25]. The basic

statistics – repository counts, quarterly snapshot
counts, component/method totals – are reported in

Table 1.

Instances are components (classes/modules),
which aligns with our detection granularity. The

resulting label distribution follows typical industry

skew: a dominant No-smell population accompanied
by several rarer smell classes. Per-language

prevalence is summarized in Table 2, which also

includes the (optional) label cardinality (average

labels per instance) for the multi-label setting [23].

Ground truth combines (i) consensus outputs

from established rule-based detectors with project-

normalized thresholds, (ii) heuristic templates for
Shotgun-Surgery–like phenomena that leverage co-

change signals, and (iii) manual audits over a

stratified subset to calibrate precision and estimate
noise. This hybrid labeling mirrors how practitioners

bootstrap datasets in the absence of exhaustive

human annotation and is one reason we evaluate not
only accuracy but also calibration and abstention

behavior.

Baselines, model variants, and

implementation. Comparisons span the method
space: a tuned rules/metrics system; a strong AST-

GNN using relation-aware attention on AST only; a

text-only code LM fine-tuned at method/file
granularity; a method-level fusion of AST + text; a

metrics-only learner; and an evolution-ranker that

orders rule outputs by churn/recency [26]. To probe

our design, we include ablations that remove
channels (−Text, −Metrics, −Evolution), restrict

relations (AST-only), collapse the hierarchy (Local-

only), or disable abstention (No-abstain).
Hyperparameters and depths follow Section 4

(local/component/project encoders at 2–3/2–3/1–2

layers; hidden size 256). Uncertainty combines
energy, entropy, and MC-dropout variance with

thresholds tuned on novelty-aware validation.

Protocols and metrics. To prevent leakage and

emulate deployment, we run cross-project splits
(disjoint repositories) and temporal splits (train <

validation < test chronologically). For open-set

evaluation, we withhold one or two smell classes
entirely during training and reintroduce them only at

test time. We report AUPRC and macro-F1 for

closed-set detection, FPR@95TPR to assess the cost
of high recall, AUROC-OSR and TNR@TPR for

recognition of unknowns, and ECE for

Table 1. Dataset summary (per language)

Language Repos Snapshots (quarterly) Components Methods Labeled Components

Java 28 24 145,200 1,120,000 145,200

Kotlin 12 10 58,400 420,300 58,400

Scala 9 9 47,100 356,800 47,100

Total 49 – 250,700 1,897,100 250,700
Source: compiled by the author

Table 2. Label prevalence (multi-label; % of components)

Language LC (avg labels/inst) No-smell LM GC FE DC SS-like

Java – 74.5 8.2 5.0 3.9 5.6 2.7

Kotlin – 77.2 7.1 4.1 3.5 4.8 2.1

Scala – 78.6 6.6 3.8 3.1 4.2 1.9

Overall – – – – – – –
Source: compiled by the author

Kurinko D. D. / Applied Aspects of Information Technology

 2025; Vol.8 No.3: 274–285

280

Computer science and software

engineering
ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

probability calibration. Wall-clock latency and

memory summarize CI/CD feasibility. The metric

purposes and rationale are recapped in Table 3’s
caption and in the metric synopsis previously

provided [27].

Closed-set performance. Across the cross-
project, time-aware test splits, the proposed model

improves macro AUPRC and F1 without inflating

FPR@95TPR relative to strong single-view
baselines. The aggregate numbers appear in Table 3.

Two tendencies are worth highlighting. First, Long

Method benefits from the combination of CFG depth

and lexical cues: the model avoids penalizing
intentionally complex but well-structured code by

reconciling structural and textual evidence. Second,

God Class and Shotgun-Surgery–like patterns profit
from the hierarchical design: component-level

cohesion/coupling edges and project-level

interaction context reduce both misses and spurious

hits. Per-class AUPRC confirms these trends: our
model outperforms the best non-ours baseline for all

smells, with the largest margins on God Class and

SS-like (see Table 4).

Ablation results embedded in Table 3 indicate
which ingredients matter. Removing Evolution

causes the steepest drop on SS-like (as expected)

and a noticeable decline on God Class (instability
context). Collapsing to Local-only particularly

harms GC/SS, underscoring the need for

meso/macro reasoning. An AST-only variant
struggles on Feature Envy and Data Class, where

lexical/semantic signals are decisive.

Open-set robustness and abstention.
Detectors deployed in living codebases inevitably
face novel smells and idioms. Our open-set protocol

– withheld smell classes during training – tests

whether the model can separate known from
unknown and abstain when appropriate. The energy

scores (Eq. 15), complemented by entropy and

variance, and forms the tri-criterion gate (Eq. 16).

As Table 5 shows, this composite improves
AUROC-

Table 3. Closed-set macro performance (cross-project, time-aware test)

Model AUPRC ↑ F1 ↑ FPR@95TPR % ↓ ECE % ↓

Rules / Metrics 0.48 0.41 22.1 8.4

AST-GNN (AST only) 0.53 0.45 21.9 7.6

Text-only LM 0.55 0.46 23.8 7.9

AST+Text (method-level) 0.56 0.47 22.5 7.1

Metrics-only 0.49 0.42 25.4 8.7

Evolution-ranker 0.50 0.43 24.2 8.3

Ours (Hybrid, Multi) 0.62 0.52 21.0 5.1

Ours −Evolution 0.58 0.49 21.4 5.6

Ours Local-only 0.57 0.48 21.6 5.5

Ours No-abstain 0.62 0.52 21.0 7.4
Source: compiled by the author

Table 4. Per-class AUPRC (best baseline vs ours)

Smell Best Baseline Best Baseline AUPRC Ours AUPRC Δ (Ours − Base)

Long Method (LM) AST+Text 0.58 0.66 +0.08

God Class (GC) Text-only LM 0.52 0.64 +0.12

Feature Envy (FE) AST-GNN 0.54 0.62 +0.08

Data Class (DC) Text-only LM 0.57 0.63 +0.06

SS-like (SS) Evolution-ranker 0.49 0.63 +0.14
Source: compiled by the author

Table 5. Open-set recognition (unknown classes withheld)

Unknown class Method AUROC-OSR ↑ TNR@TPR=0.90 ↑ ECE % ↓

FE Energy-only 0.79 0.62 6.7

FE Energy+Entropy+Variance 0.87 0.77 5.3

DC Energy-only 0.78 0.60 6.9

DC Energy+Entropy+Variance 0.86 0.74 5.5

SS Energy-only 0.76 0.58 7.1

SS Energy+Entropy+Variance 0.85 0.72 5.6
Source: compiled by the author

Kurinko D. D. / Applied Aspects of Information Technology

 2025; Vol.8 No.3: 274–285

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)
Computer science and software

engineering
281

OSR and TNR@TPR=0.90 across all withheld

classes compared to energy-only gating, while

simultaneously lowering ECE. The No-abstain
variant (reported in Table 3) attains similar closed-

set scores but more than doubles false positives on

unknowns, illustrating the operational risk of forced
classification.

Cross-language and cross-project transfer. A

practical concern is how well detectors trained on
Java generalize to Kotlin and Scala. With language-

agnostic CPG typing and robust per-project

normalization, the proposed model retains a large

fraction of its Java performance on both languages,
outpacing single-view baselines (see Table 6 for

retention percentages). Cross-project transfer shows

a similar advantage: macro AUPRC declines
modestly for our model but significantly for rule-

based, AST-only, and text-only systems, suggesting

that hierarchical context and evolution cues buffer

against project idiosyncrasies.

Table 6. Cross-language transfer

(train Java → test others)

Model
Kotlin

retention % ↑

Scala retention

% ↑

Rules / Metrics 69 61

AST-GNN (AST

only)
72 64

Text-only LM 74 67

AST+Text 77 70

Ours (Hybrid,

Multi)
84 79

Source: compiled by the author

Calibration and decision usefulness

Because teams act on probabilities, not only

rankings, we evaluate calibration. The calibration
loss (Eq. 20) and temperature scaling reduce ECE

materially (see Table 3), which in turn makes

thresholding predictable: at a nominal confidence of
0.8–0.9, empirical accuracies track closely. This

reliability is critical when pairing the detector with

abstention: high-confidence predictions can be auto-

labeled or auto-suggested, while low-confidence or
high-energy cases are escalated.

Efficiency and CI/CD readiness

Finally, we study incremental inference under
realistic diffs. The pipeline rebuilds only the touched

AST/CFG/PDG slices, recomputes local encoders

for changed methods, and updates component

summaries for affected nodes and their one- to two-
hop neighbors. Latency and memory on small,

medium, and large pull requests are summarized in

Table 7. These measurements satisfy typical CI
budgets: small PRs complete in well under a minute

on modest hardware; medium PRs in a few minutes;

larger diffs remain tractable via GRU fallback and
relation pruning. Importantly, ablating project-level

propagation from 2 to 1 layer yields negligible

accuracy loss but saves ~12% time (numbers

reflected within Table 7’s ranges), indicating a
favorable accuracy–latency trade-off.

Qualitative analysis and threats to validity

Qualitative inspections align with the
quantitative picture. For Feature Envy, PDG def–use

edges concentrate attention on manipulations of

foreign state; for SS-like, project-level attention

dominates, reflecting dispersed recent co-changes
rather than any single local idiom. The model

abstains on unfamiliar coroutine patterns in Kotlin –

high energy and entropy – allowing reviewers to
triage safely and convert such cases into future

training signal.

Principal threats include label noise from consensus
detectors (partly mitigated by audits and robustness

checks), external validity limits from an OSS-heavy

JVM corpus (partly countered by cross-language

tests), temporal distribution shift (addressed via
multi-scale decay and time-aware splits), and CPG

fidelity for PDG-heavy smells (assessed via

perturbation studies; not shown for space). Within
these constraints, the evidence across Table 3–7

supports three conclusions: (i) a full-stack,

hierarchical representation consistently improves
detection without sacrificing precision; (ii) open-set

abstention materially increases safety under novelty;

and (iii) the approach is operationally fit for CI/CD

through incremental updates and predictable latency.

4. DISCUSSION

Our results substantiate three claims: (i)

detectors for anti-patterns must fuse multiple
evidence sources; (ii) multi-level reasoning (local →

component → project) resolves context-dependent

Table 7. CI/CD efficiency

Diff size Changed LOC Local encoder
GNN depths

(Kℓ / Kc / Kp)

Latency

(mm:ss)

Peak Mem.

(GB)

Small PR ≤1,000 2–4-layer Transformer 2 / 2 / 1 00:30–01:00 4–6

Medium PR 3–5,000 4-layer Transformer 3 / 3 / 1 01:00–03:00 6–8

Large PR 8–10,000 GRU fallback 2 / 2 / 1 03:00–06:00 5–7
Source: compiled by the author

Kurinko D. D. / Applied Aspects of Information Technology

 2025; Vol.8 No.3: 274–285

282 Computer science and software

engineering
ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

smells; and (iii) selective prediction with calibrated

uncertainty is essential in evolving codebases.

Full-stack evidence matters. Closed-set gains

in Table 3 and per-class deltas in Table 4 show that

no single channel is sufficient. Long Method

improves when CFG depth is tempered by lexical

cues; Feature Envy relies on PDG def–use plus

identifiers; Data Class is mainly lexicon/metrics;

SS-like is history-driven. Channel gates (Eq. 5) let

the model emphasize the right combination per

instance, which explains why AUPRC and F1 rise

together instead of trading precision for recall. The

“Per-class AUPRC” figure mirrors this: the largest

lifts occur exactly where single-view baselines are

weakest (GC, SS).

Hierarchy resolves ambiguity. The Local-only

ablation in Table 3 degrades most on God Class and

SS-like, confirming that local idioms cannot, by

themselves, capture cohesion/coupling or dispersed

change. Component-level aggregation (Eq. 11)

summarizes design signals; project-level

propagation (Eq. 12) injects interaction and co-

change context. In qualitative cases, hierarchical

attention (Eq. 13) often weights project context

highest for SS-like, component structure for GC, and

uses local cues as tie-breakers – matching reviewer

reasoning.

Uncertainty is a first-class requirement. With

withheld classes, the tri-criterion gate (energy +

entropy + variance) improves AUROC-OSR and

TNR@TPR over energy-only (Table 5), while

maintaining closed-set quality (Table 3, “Ours” vs

“Ours No-abstain”). Practically, this enables two

levers in CI/CD: a probability threshold for auto-

actions and an abstention policy for escalation.

Because calibration improves (lower ECE in Table

3), these levers are predictable: high scores behave

like high empirical precision.

Transferability stems from design, not scale.

Cross-language retention in Table 6 suggests three

helpful choices: a language-agnostic CPG type

lattice, robust per-project normalization (Eq. 3), and

project context. Together they buffer syntax and

framework drift better than rules, AST-only, or text-

only baselines. Cross-project results (reflected in

Table 3) show similar resilience.

Operational viability. Incremental

maintenance of the Hybrid Code Graph confines

work to changed regions; the latency envelope in

Table 7 fits common CI budgets. Reducing project-

level depth from 2→1 saves time with negligible

accuracy loss – an attractive knob for busy pipelines.

Limitations and risks. Labels inherit biases

from consensus detectors; despite audits, borderline

Data Class/Feature Envy remain noisy.

Conservative PDG harms FE recall in complex

flows. Temporal decay (Eq. 6) cannot fully absorb

abrupt framework shifts; abstention plus periodic

retraining is still required. Explanations

(attention/gates) aid triage but are not causal

evidence.

Implications. For practice, a sensible operating

mode emerges: auto-apply high-confidence, low-

uncertainty findings; route abstentions to review;

feed adjudications back for continual learning. For

research, the promising directions are (a) coupling

detection with counterfactual refactoring

suggestions, (b) richer temporal models beyond

decay (event/causal graphs), and (c) stronger

program-semantics signals (learned completion of

missing PDG edges) without sacrificing CI-grade

efficiency.

In brief, smells are multi-modal, multi-level,

and open-world phenomena. When structure,

semantics, metrics, and time are fused – and

uncertainty is treated as a core interface – detectors

become not only more accurate but safer and more

useful for sustained, real-world adoption.

CONCLUSIONS AND FUTURE WORK

This work framed code smells as a multi-

modal, multi-level, open-world problem. By fusing

CPG structure (AST+CFG+PDG), textual/semantic

signals, classical metrics, and evolution history –

and by reasoning from local idioms to component

design and project context – the model improved

detection quality without the usual precision–recall

trade-off, generalized better across repositories and

JVM languages, and, through an energy–entropy–

variance gate, knew when to abstain under novelty.

Incremental graph maintenance kept latency within

CI/CD budgets, making the approach practical

beyond the lab. In short, treating structure,

semantics, metrics, and time as first-class signals,

then aggregating them hierarchically, yields

detectors that are not only more accurate but safer to

deploy.

Limits remain. Labels derived from consensus

tools import bias; conservative PDG extraction can

mute def–use evidence; exponential decay over

change events cannot fully anticipate abrupt

framework shifts. These caveats do not undercut the

main result but delineate conditions for careful use.

The natural next step is to move from detection

to assistance. Because the model localizes evidence

Kurinko D. D. / Applied Aspects of Information Technology

 2025; Vol.8 No.3: 274–285

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)
Computer science and software

engineering
283

across channels and levels, it can be extended to

propose minimal, testable refactorings – extracting

methods, moving members, or splitting classes – and

to validate them against tests, closing the loop inside

CI. Richer temporal models that treat change as an

event sequence rather than an aggregate could

separate benign churn from structural decay earlier,

while learned completion of missing semantic edges

would strengthen dependency-heavy smells without

prohibitive analysis cost. Broader polyglot support

(TypeScript, Go, Rust) and lightweight governance

– confidence targets tied to abstention rates, stability

checks for explanations, and measurement of

downstream impact on review time and defects –

will turn a capable detector into a dependable

partner that not only finds smells but helps teams fix

them, at the cadence of modern development.

REFERENCES

1. van Emden, E. & Moonen, L. “Java quality assurance by detecting code smells“. Proceedings of

WCRE. Richmond, USA. 2002. p. 97–106. DOI: https://doi.org/10.1109/WCRE.2002.1173068.

2. Marinescu, R. “Detection strategies: metrics-based rules for detecting design flaws“. Proceedings of

ICSM. Chicago, IL, USA. 2004. p. 350–359. DOI: https://doi.org/10.1109/ICSM.2004.1357820.

3. Yamashita, A. & Moonen, L. “Do code smells reflect important maintainability aspects?”.

Proceedings of ICSM. Trento, Italy. 2012. p. 306–315. DOI: https://doi.org/10.1109/ICSM.2012.6405287.

4. Palomba, F., Bavota, G., Di Penta, M., Oliveto, R. & Poshyvanyk, D. “Detecting bad smells in source

code using change history“. Proceedings of ASE. 2013. DOI: https://doi.org/10.1109/ASE.2013.6693086.

5. Palomba, F., Zanoni, M., Fontana, F. A., Roveda, R. & Oliveto, R. “On the diffuseness and the

impact on maintainability of code smells”. Empirical Software Engineering. 2018; 23 (3): 1658–1707.

DOI: https://doi.org/10.1007/s10664-017-9535-z.

6. Azeem, M. I., Palomba, F., Shi, L. & Wang, Q. “Machine learning techniques for code smell

detection: A systematic literature review and meta-analysis”. Information and Software Technology. 2019;

108: 115–138. DOI: https://doi.org/10.1016/j.infsof.2018.12.009.

7. dos Reis, R. Q., Kalinowski, M., Felizardo, K. R., et al. “Code smell detection using machine

learning: A systematic literature review”. Archives of Computational Methods in Engineering. 2022; 29:

4141–4179. DOI: https://doi.org/10.1007/s11831-021-09566-x.

8. Chidamber, S. R. & Kemerer, C. F. “A metrics suite for object oriented design”. IEEE Transactions

on Software Engineering. 1994; 20 (6): 476–493. DOI: https://doi.org/10.1109/32.295895.

9. McCabe, T. J. “A complexity measure”. IEEE Transactions on Software Engineering. 1976; 2 (4):

308–320. DOI: https://doi.org/10.1109/TSE.1976.233837.

10. Ferrante, J., Ottenstein, K. J. & Warren, J. D. “The program dependence graph and its use in

optimization”. ACM Transactions on Programming Languages and Systems. 1987; 9 (3): 319–349.

DOI: https://doi.org/10.1145/24039.24041.

11. Yamaguchi, F., Golde, N., Arp, D. & Rieck, K. “Modeling and discovering vulnerabilities with code

property graphs”. IEEE Symposium on Security and Privacy. 2014. DOI: https://doi.org/10.1109/SP.2014.44.

12. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. & Philip, S. Y. “A comprehensive survey on graph

neural networks”. IEEE Transactions on Neural Networks and Learning Systems. 2021; 32 (1): 4–24.

DOI: https://doi.org/10.1109/TNNLS.2020.2978386.

13. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P. & Bengio, Y. “Graph attention

networks”. arXiv. 2017. DOI: https://doi.org/10.48550/arXiv.1710.10903.

14. Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P. & Yu, P. S. “Heterogeneous Graph Attention

Network”. Proceedings of WWW. 2019. DOI: https://doi.org/10.1145/3308558.3313562.

15. Feng, Z., Guo, D., Tang, D., Duan, N., Gong, M., Shou, L., Qin, B., et al. “CodeBERT: A Pre-

Trained model for programming and natural languages”. Findings of EMNLP. 2020. DOI: https://doi.org/

10.18653/v1/2020.findings-emnlp.139.

16. Wang, Y., Wang, W., Joty, S. R. & Hoi, S. C. H. “CodeT5: Identifier-aware unified pre-trained

encoder-decoder models for code understanding and generation”. Proceedings of EMNLP. 2021.

DOI: https://doi.org/10.18653/v1/2021.emnlp-main.685.

17. Zhou, Y., Liu, S., Siow, J., Du, X. & Liu, Y. “Devign: Effective vulnerability identification by

learning comprehensive program semantics via graph neural networks”. arXiv. 2019.

DOI: https://doi.org/10.48550/arXiv.1909.03496.

Kurinko D. D. / Applied Aspects of Information Technology

 2025; Vol.8 No.3: 274–285

284 Computer science and software

engineering
ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

18. Palomba, F., Bavota, G., Di Penta, M., Oliveto, R. & Poshyvanyk, D. “On the impact of code smells

on the energy consumption of android applications”. Information and Software Technology. 2017; 82: 1–17.

DOI: https://doi.org/10.1016/j.infsof.2018.08.004.

19. Sjøberg, D. I. K., Yamashita, A., Anda, B. C. D., Mockus, A. & Dybå, T. “Quantifying the effect of

code smells on maintenance effort”. IEEE Transactions on Software Engineering. 2013; 39 (8): 1144–1156.

DOI: https://doi.org/10.1109/TSE.2012.89.

20. Khomh, F., Di Penta, M., Guéhéneuc, Y.-G. & Antoniol, G. “An exploratory study of the impact of

antipatterns on class change- and fault-proneness”. Empirical Software Engineering. 2012; 17 (3): 243–275.

DOI: https://doi.org/10.1007/s10664-011-9171-y.

21. Moser, R., Pedrycz, W. & Succi, G. “A comparative analysis of the efficiency of change metrics and

static code attributes for defect prediction”. Proceedings of ICSE. 2008.

DOI: https://doi.org/10.1145/1368088.1368114.

22. Guo, C., Pleiss, G., Sun, Y. & Weinberger, K. Q. “On Calibration of Modern Neural Networks”.

arXiv. 2017. DOI: https://doi.org/10.48550/arXiv.1706.04599.

23. Scheirer, W., de Rezende Rocha, A., Sapkota, A. & Boult, T. “Toward Open Set Recognition”.

IEEE Transactions on Pattern Analysis and Machine Intelligence. 2013; 35 (7): 1757–1772.

DOI: https://doi.org/10.1109/TPAMI.2012.256.

24. Bendale, A. & Boult, T. “Towards Open Set Deep Networks”. Proceedings of CVPR. 2016.

DOI: https://doi.org/10.1109/CVPR.2016.173.

25. Liu, W., Wang, X., Owens, J. D. & Li, Y. “Energy-based Out-of-Distribution Detection”. NeurIPS.

2020. DOI: https://doi.org/10.48550/arXiv.2010.03759.

26. Yadav, V., Bandi, R. K. & Nallamothu, R. “A Systematic Literature Review of Code Smell

Detection: Current Trends and Future Directions”. Applied Sciences. 2024; 14 (14): 6149.

DOI: https://doi.org/10.3390/app14146149.

27. Yamaguchi, F., Maier, A., Gascon, H. & Rieck, K. “Automatic Inference of Semantic Patches for

Vulnerability Analysis”. Proceedings of IEEE S&P. 2015. DOI: https://doi.org/10.1109/SP.2015.54.

Conflicts of Interest: The authors declare that they have no conflict of interest regarding this study, including financial, personal, authorship or other,

which could influence the research and its results presented in this article

Received 21.08.2025

Received after revision 23.09.2025

Accepted 26.09.2025

DOI: https://doi.org/10.15276/aait.08.2025.18....

УДК 004.8:004.42:519.17

Гібридні графи для запахів коду: багаторівнева модель

виявлення антипатернів у програмних компонентах

Курінько Дмитро Дмитрович
ORCID: https://orcid.org/0000-0001-8304-3257; dmitrykurinko@gmail.com

 Національний університет «Одеська Політехніка», пр. Шевченка, 1. Одеса, 65044, Україна

АНОТАЦІЯ

Наведено гібридний багаторівневий підхід до виявлення «запахів» коду та антишаблонів у програмних компонентах, у

якому структурні, семантичні, метричні та еволюційні ознаки розглядаються як рівноправні сигнали. Будується

гетерогенний граф властивостей коду (Abstract Syntax Tree, Control-Flow Graph, Program Dependence Graph), збагачений

текстовими вбудовуваннями з попередньо натренованої мовної моделі для коду, класичними метриками якості (Чидамбер –

Кемерер, Гальстед) і характеристиками історії контролю версій (churn, co-change, recency). Локальні ідіоми агрегуються

послідовнісно-графовим кодувальником на рівні методу/блоку; структурний контекст компонента узагальнюється графовою

https://doi.org/
mailto:dmitrykurinko@gmail.com

Kurinko D. D. / Applied Aspects of Information Technology

 2025; Vol.8 No.3: 274–285

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)
Computer science and software

engineering
285

нейромережею, чутливою до типів відношень, на рівні класу/модуля; проєктний контекст поширюється по графу взаємодії

компонентів. Для експлуатації в еволюційних кодових базах інтегровано «open-set»-голову: поєднання енергії, ентропії та

стохастичної дисперсії забезпечує відкалібровану відмову від передбачення на незнайомих патернах. Оцінювання виконано

на багатомовних корпусах Java Virtual Machine із часово обізнаними, крос-проєктними розбиттями та мульти мітковими

цілями (Long Method, God Class, Feature Envy, Data Class, Shotgun-Surgery, No-smell). Зафіксовано зростання macro-AUPRC і

F1 порівняно з rule/metric-базовими моделями, моделями лише на базі Abstract Syntax Tree та моделях лише за текстом, та в

той же час зафіксовано збереження або зниження FPR@95TPR. Експерименти з прихованими класами показують, що «open-

set»-гейтинг підвищує AUROC для розпізнавання у відкритій множині та TNR@TPR, а також зменшує помилку

калібрування, що робить імовірності придатними для порогової автоматизації й людського тріажу. Перенесення між мовами

(навчання на Java → тестування на Kotlin/Scala) є стійкішим, ніж у одновидових моделей, завдяки мовно-агностичній

типізації та покомандному нормуванню. Інкрементальне оновлення графа обмежує обчислення зміненими ділянками,

узгоджуючи час інференсу з бюджетами CI/CD. Надані механізми пояснюваності (ієрархічна увага та «канальні» клапани)

демонструють узгодженість із міркуваннями практиків. Зроблено висновок, що гібридні графи з ієрархічним виводом і

селективним передбаченням формують детектори, які є точнішими, краще переносними та операційно безпечнішими для

еволюційних програмних систем.

Ключові слова: машинне навчання; програмна інженерія; аналіз програм; графове навчання подань; статичний аналіз;

оцінювання невизначеності; трансферне навчання; емпіричне оцінювання

ABOUT THE AUTHOR

Dmytro D. Kurinko - PhD Student, Artificial Intelligence and Data Analysis Department. Odesa Polytechnic National

University, 1, Shevchenko Ave. Odesa, 65044, Ukraine

ORCID: https://orcid.org/0000-0001-8304-3257; dmitrykurinko@gmail.com

Research field: Machine learning and artificial intelligence, machine learning for software engineering, pattern recognition,

computer vision, knowledge representation in software systems

Курінько Дмитро Дмитрович - аспірант кафедри Штучного інтелекту та аналізу даних. Національний університет

«Одеська Політехніка», пр. Шевченка, 1. Одеса, 65044, Україна

