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ABSTRACT

Clustering of gene expression profiles is a core technique used to reveal hidden biological structures and differentiate disease
subtypes in high-dimensional biomedical datasets. Nevertheless, translating cluster structures into biologically meaningful insights
requires integrative analytical strategies that go beyond unsupervised learning. In this work, we introduce a novel integrative
computational approach that emphasizes post-clustering interpretation by combining statistical functional enrichment with network-
based modeling. Clusters of gene expression profiles, previously identified in patients with distinct cancer types, were subjected to
enrichment analysis using Gene Ontology, the Kyoto Encyclopedia of Genes and Genomes, and Reactome databases. The
enrichment was performed with the g:Profiler tool, allowing the detection of significantly overrepresented biological processes,
molecular functions, cellular components, and signaling pathways within each cluster. To visualize and further interpret the enriched
functional categories, Cytoscape software was employed. Functional interaction networks were constructed using two key modules:
ClueGO, which integrates Gene Ontology and pathway annotation into a functionally grouped network, and CluePedia, which
expands these networks by showing relationships between genes and enriched terms. This network-based visualization enabled
deeper biological interpretation and facilitated the identification of core functional themes. The analysis revealed that each gene
cluster is associated with distinct biological processes, such as immune signaling, metabolic pathways, DNA repair, or cell cycle
regulation. The novelty of the proposed approach lies in its systematic integration of enrichment statistics with graph-based
visualization, ensuring both computational rigor and biological interpretability. These findings confirm that the method can extract
biologically consistent knowledge from complex gene expression data. In summary, the study presents an innovative post-clustering
interpretation strategy that bridges unsupervised machine learning and functional genomics. This approach advances the
explainability of computational analysis and supports its application in disease subtyping, biomarker discovery, and personalized
medicine research.
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INTRODUCTION Genes grouped together often participate in
common cellular pathways or molecular functions.
Thus, functional enrichment analysis enables
researchers to assess whether gene clusters are
significantly associated with specific biological
processes, molecular functions, cellular components,
or signaling pathways. Among the most established
resources for such analyses are Gene Ontology (GO)
[4], [5], the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [6], and the Reactome pathway
database [7]. Kyoto Encyclopedia of Genes and
Genomes provides detailed maps of metabolic and
signaling pathways, while Reactome offers a
comprehensive and curated database of biological

Clustering of gene expression profiles is a widely
used unsupervised learning technique for identifying
genes with similar regulatory behavior across
experimental conditions or patient groups [1], [2],
[3]. Although clustering reveals underlying structure
in high-dimensional biological data, the resulting
clusters alone offer limited insight unless
complemented by biological interpretation. A
critical post-clustering step involves evaluating the
functional coherence of genes within each cluster
and identifying biologically relevant functional
modules.

reactions, spanning from signal transduction to

© Yarema 0., Senchishen D., Babichev C., 2025 metabolism. These resources support the contextual
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interpretation of clustered genes in terms of
biological meaning.

Beyond enrichment statistics, network-based
methods provide deeper insight by visualizing and
analyzing interactions between genes and functional
categories. In this study, we used an integrative
approach that combines the R programming
environment with Cytoscape — an open-source
platform for network visualization and analysis [8].
The Cytoscape plugins ClueGO [9] and CluePedia
[10] were employed to generate functionally
grouped GO/pathway networks.

The interpretation pipeline
following key steps.

1. Preparing gene lists for each cluster based on
the clustering output.

2. Importing gene lists into Cytoscape using the
ClueGO plugin.

3. Performing enrichment analysis using GO
(Biological Process, Molecular Function, Cellular
Component), KEGG, or Reactome.

4. Visualizing enriched terms as functionally
grouped GO networks.

5. Interpreting the biological role of each cluster
using enriched functional terms and visualized
relationships.

This integrative strategy bridges the gap
between unsupervised clustering and biological
relevance, enhancing the interpretability of gene
expression patterns in the context of complex
diseases such as cancer.

LITERATURE SURVEY

Biological interpretation of gene expression
clustering results has become an essential task in
transcriptomic studies, particularly for understanding
the functional coherence of gene groups in relation
to disease mechanisms. While clustering methods
can identify genes with similar expression profiles,
the biological relevance of these clusters must be
established using domain-specific resources and
tools developed in recent years.

Gene Ontology (GO), KEGG, and Reactome
are the three primary knowledge bases widely used
for functional enrichment analysis. GO offers a
hierarchical structure of gene annotations spanning
biological processes, molecular functions, and
cellular components, and has evolved substantially
over the past decade to reflect current biological
knowledge [11]. KEGG provides detailed pathway
maps for interpreting the biological context of genes,
including signaling cascades and metabolic routes
[6]. Similarly, Reactome presents curated pathways
and reactions with a high level of biological

includes the

granularity, making it suitable for comprehensive
interpretation of gene clusters [7].

Recent methodological advancements focus on
the integration of functional annotation and network-
based visualization. The Cytoscape platform [8] and
its plugins such as ClueGO [9] and CluePedia [10]
have gained popularity for creating functionally
grouped networks from enriched GO and pathway
terms. These tools allow not only for the
identification of overrepresented categories but also
for the exploration of their interrelations, which is
critical for elucidating higher-level biological
mechanisms.

Furthermore, several studies emphasize the
importance of combining clustering with ontology
analysis to extract informative subsets of genes. For
example, in [12], [13] the authors demonstrated the
use of biclustering techniques in conjunction with
GO-based enrichment to identify condition-specific
gene modules in high-dimensional cancer datasets.
Their work illustrates the potential of such hybrid
frameworks for biomarker discovery and disease
classification.

Advances in computational tools, such as edgeR
[14] and DESeq2 [15], have also enabled more
accurate differential expression analysis, which
precedes clustering and enrichment. Enrichment
platforms like g:Profiler, integrated in many
pipelines, support multi-database analysis for robust
biological interpretation [16].

In summary, the literature analysis highlights a
growing consensus around the integration of
statistical enrichment and network visualization as
key components in post-clustering gene expression
analysis. These approaches bridge the gap between
computational findings and biological interpretation,
making  them  indispensable in  modern
bioinformatics and personalized medicine research.

The goal of this study is to develop and
validate an integrative method for the biological
interpretation of clustered gene expression profiles
using functional enrichment techniques and
network-based visualization.

To achieve this goal, the following tasks are
addressed:

e comparison of the methods for the biological
interpretation of clustering results of gene
expression profiles using functional enrichment
analysis (GO, KEGG, Reactome) and network-based
modeling;

o implementation of the analytical pipeline
combining R and Cytoscape for visualization of
functional networks using ClueGO and CluePedia
plugins;
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¢ validation of the proposed method on real-
world gene expression datasets from patients
diagnosed with various cancer types.

GENE ONTOLOGY: CONCEPT AND
IMPLEMENTATION

Gene Ontology is a widely adopted framework
for the functional annotation of genes in the form of
a structured ontology. GO encompasses three
primary domains: Biological Process (BP),
Molecular Function (MF), and Cellular Component
(CC), reflecting, respectively, the biological
objectives a gene contributes to, the biochemical
activity it performs, and the cellular location where
the activity occurs. GO-based analysis serves as a
foundation for the biological interpretation of gene
lists derived from clustering results. It enables the
assessment of whether a given gene set (e.g., genes
in a cluster) is statistically enriched for specific GO
categories beyond random expectation.

The main types of GO analysis include:

e Over-Representation  Analysis  (ORA):
assesses whether certain GO terms occur more
frequently in the input gene list compared to a
reference background;

e Gene Set Enrichment Analysis (GSEA):
identifies GO terms that are enriched in a ranked list
of genes without requiring an explicit cutoff.

In this study, GO analysis was performed in the
R environment using the clusterProfiler package
[17]. This package supports the use of Entrez Gene
IDs, offers both ORA and GSEA methodologies,
and includes extensive options for visualization such
as enrichment plots, dot plots, and term similarity
networks. Since each GO domain captures a
different aspect of gene function, a combined
analysis across BP, MF, and CC was adopted to
provide a comprehensive functional interpretation of
gene clusters. After merging enrichment results from
all domains, duplicates were removed and only the
most statistically significant terms were retained.
This strategy enables simultaneous consideration of
gene function, molecular activity, and subcellular
localization.

The step-by-step GO analysis procedure is as
follows.

1. Gene list preparation: Extract Entrez Gene
IDs for each expression profile cluster, treating each
cluster independently.

2. Library import: Load R libraries for GO

analysis, including the annotation database for
Homo sapiens.
3. GO enrichment: Perform enrichment

analysis separately for BP, MF, and CC, applying

multiple testing correction. Merge the results across
domains into a unified list, removing duplicates.

4. Result simplification: Reduce redundancy by
eliminating highly similar GO terms based on
semantic similarity, retaining the most representative
ones.

5. Visualization: Display the results using dot
plots or similarity-based term graphs to facilitate
interpretation.

6. Interpretation: Focus on GO terms with the
highest statistical significance and coverage,
enabling inference about the dominant biological
functions within each cluster.

Thus, GO analysis is a critical first step in the
biological interpretation of gene expression clusters.
Its integration into the clustering analysis pipeline
provides a quantitative means of evaluating the
functional relevance of each identified cluster.

KEGG: ANALYSIS OF METABOLIC AND
SIGNALING PATHWAYS

The Kyoto Encyclopedia of Genes and
Genomes [6] is one of the most comprehensive
databases for understanding high-level functions and
utilities of biological systems, particularly in terms
of gene—gene, gene—protein, and gene—metabolite
interactions. Unlike GO, which focuses on general
biological functions, KEGG provides context-
specific knowledge by representing genes as
components of biochemical networks and molecular
pathways. These pathways are directly associated
with physiological and pathological processes,
making KEGG a valuable resource for interpreting
clusters of gene expression profiles.

The KEGG enrichment analysis was carried out
using the clusterProfiler package in R, which
enables pathway enrichment based on Entrez Gene
IDs, incorporates multiple testing correction (e.g.,
Benjamini-Hochberg), and supports output formats
suitable for downstream interpretation and
visualization.

The step-by-step KEGG enrichment procedure
is as follows.

1. Input data preparation: For each gene
expression cluster, a list of Entrez Gene IDs is
compiled to serve as the basis for enrichment
analysis.

2. ldentification of enriched KEGG pathways:
Hypothesis testing is applied to determine whether
specific  KEGG  pathways are statistically
overrepresented in the gene list relative to a
reference background. Correction for multiple
testing is performed to control the false discovery
rate.
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3. Aggregation of results: When multiple
clusters are analyzed, results can be aggregated to
identify both cluster-specific and shared enriched
pathways. This enables the construction of a
functional landscape across all clusters.

4. Visualization: Results are visualized using
dot plots, bar plots, or KEGG pathway networks,
which illustrate the distribution of genes across
pathways, their statistical significance, and
coverage.

5. Interpretation: KEGG pathways with high
statistical significance and dense gene coverage are
considered biologically informative. These pathways
often reflect key cellular processes such as
metabolism, signal transduction, cell proliferation,
apoptosis, and immune response.

Thus, KEGG analysis provides a functional
complement to GO-based interpretation by revealing
biochemical and regulatory contexts in which gene
clusters are involved. The integration of KEGG
enrichment results into the cluster interpretation
workflow offers a deeper understanding of the
potential roles that expression modules play in
complex molecular systems.

REACTOME PATHWAY ANALYSIS:
ONTOLOGY OF BIOLOGICAL REACTIONS

Reactome [7] is an open-access, manually
curated knowledge base focused on modeling
biological reactions and molecular interaction
cascades that constitute key cellular processes such
as signal transduction, transcription, metabolism, the
cell cycle, and immune responses. Unlike GO,
which classifies gene function based on descriptive

categories, Reactome adopts an event-based
approach, modeling biological knowledge as
interconnected reactions — from elementary

molecular events to complex signaling pathways.
Owing to its hierarchical organization, Reactome
enables the reconstruction of biological context in
the form of ordered biochemical steps. Applying
Reactome enrichment analysis to gene expression
clusters allows us to determine which reactions or
high-level processes the clustered genes are involved
in, as well as to explore potential functional links
across clusters.

The step-by-step Reactome analysis procedure
is as follows.

1. Input data preparation: For each cluster, a
gene list in Entrez ID format is generated to serve as
input for identifying enriched pathways in the
Reactome database.

2. ldentification of enriched pathways:
Statistical enrichment analysis is performed to detect
biological reactions in which the cluster genes are

significantly overrepresented compared to a
background distribution. Correction for multiple
testing (e.g., Benjamini-Hochberg method) is
applied to reduce false discovery rates.

3. Hierarchical grouping of results: Due to

Reactome’s hierarchical architecture, enriched
pathways can be organized into broader functional
categories  (e.g., receptor signaling, lipid

metabolism, T-cell activation), which facilitates
biological interpretation.

4. Visualization of enriched reactions: Results
can be presented as tree-structured diagrams, dot
plots, or interactive pathway maps showing the
number and proportion of genes involved in each
enriched pathway.

5. Result interpretation: Key pathways with
high statistical significance and broad gene coverage
are analyzed to identify dominant cellular programs
associated with each expression cluster.

Reactome pathway analysis serves as a
powerful complement to GO and KEGG by not only
identifying functional themes but also enabling the
reconstruction of causal logic in cellular systems.
Through its integration with external ontologies and
curated evidence, Reactome improves the biological
plausibility of functional interpretations and
strengthens conclusions regarding the molecular
roles of gene expression clusters.

FUNCTIONAL ENRICHMENT IN
CYTOSCAPE: CLUEGO AND CLUEPEDIA

To enhance the interpretability of functional
analysis results for clusters of gene expression
profiles, visual representation of enrichment data
plays a critical role. In this context, the Cytoscape
platform serves as a powerful tool for the integration
and  visualization of  bioinformatics  data.
Specifically, the ClueGO and CluePedia plugins
enable the transformation of enrichment results into
functionally grouped networks.

ClueGO is a Cytoscape plugin that integrates
results from GO, KEGG, Reactome, and other
biological databases into a unified graph-based
structure. In these functional maps, each node
represents a GO term or pathway, and edges indicate
semantic similarity or gene set overlap between
terms.

CluePedia extends ClueGO functionality by
displaying gene-term and gene—gene interactions,
and by integrating additional layers of information
such as gene expression levels, fold changes, or
correlation metrics. These are typically visualized
through color-coded scales or heatmaps directly
within the network.
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The integration of ClueGO and CluePedia into
the functional analysis pipeline overcomes the
limitations of purely tabular representations by
offering intuitive, interactive, and biologically
coherent views. This facilitates comparison across
clusters, identification of dominant biological
themes, and the generation of hypotheses about gene
coordination and functional modules.

The procedure for implementing functional
enrichment analysis in Cytoscape is as follows.

1. Genes ID list import: For each gene
expression cluster, a list of Entrez Gene IDs is
generated and imported into Cytoscape through the
ClueGO interface.

2. Selection of functional databases: The user
specifies which annotation sources to include — GO
(BP), MF, CC), KEGG, Reactome — providing a
comprehensive view of gene function, localization,
and involvement in signaling pathways.

3. Enrichment parameters: Statistical
thresholds such as minimum gene count per term, p-
value cutoffs, and multiple testing correction
methods (e.g., Bonferroni or Benjamini-Hochberg)
are configured. ClueGO also supports term grouping
based on shared genes or biological themes.

4. Network generation: ClueGO automatically
converts the enrichment results into a functional
network, where nodes correspond to significant
terms grouped by biological relevance (e.g., "mitotic
cell cycle,” "immune activation™).

5. Gene-to-term  visualization:  CluePedia
overlays gene-term relationships and optionally
displays expression metrics, enabling dynamic
exploration of gene-level contributions using color
gradients or intensity coding.

6. Interpretation: Analysis of the resulting
network allows for the identification of central
functional nodes, clusters of related processes, and
potentially regulatory genes. This facilitates a
systems-level understanding of the functional
architecture of each cluster.

In summary, the use of ClueGO and CluePedia
significantly enhances biological interpretation by
providing an interactive and structured visualization
of the functional relationships among genes and
biological terms. This approach is particularly useful
for analyzing large clusters or when multi-parameter
visualization is required for in-depth exploratory
analysis.

EXPERIMENTAL DATA

This study utilized RNA-Seq gene expression
data obtained from The Cancer Genome Atlas
(TCGA) [18] via the Genomic Data Commons
(GDC) data portal, using the TCGAbiolinks R

package [19,20]. Gene expression guantification was
performed using the workflow type “STAR- Counts”.
The dataset included samples from 13 different cancer
types. For each tumor type, samples were categorized
as “Primary Tumor” or “Solid Tissue Normal” based
on the sample_type metadata field.

Data preprocessing followed the methodology
described in [4], which includes normalization,
quality control, and removal of low-expression
genes. In the final filtering stage, genes were
selected based on Gene Ontology (GO)
classification, retaining only unique genes associated
with at least one of the GO domains: BP, MF, or
CC. This ensured that only biologically interpretable
genes were included in the downstream analysis.

As a result, 13 tumor-specific subsets were
constructed, corresponding to the selected cancer
types. Additionally, a fourteenth subset was
generated by aggregating all non-cancerous samples
into a unified class, representing "Solid Tissue
Normal” controls. This vyielded a 14-class
classification  structure, with  each class
corresponding to a specific tumor type or healthy
control group.

Subsequent steps — such as variance-based gene
filtering and quantile normalization — were
performed using Bioconductor tools in R. The
resulting gene expression matrix consisted of 6,310
biological samples (rows) and 18,564 genes
(columns), representing a high-dimensional dataset
for integrative machine learning and functional
analysis. Fig. 1 presents the classification of the
experimental data.

Number of Samples by Cancer Type
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B0
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Fig. 1. Clfssification of the experimental data
Source: compiled by the authors

To explore the biological structure within this
dataset, the gene expression matrix was clustered
using a hybrid approach combining the Self-
Organizing Tree Algorithm (SOTA) with consensus
spectral clustering. This approach partitioned the
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expression profiles into four distinct clusters, each
capturing a coherent gene expression pattern.

To validate the biological relevance of these
clusters, a supervised classification was performed
using a Random Forest algorithm within a stacked
ensemble framework. Genes from each cluster were
used as feature subsets to train the classifier. The
model achieved perfect classification results across all
evaluation metrics, correctly classifying 100% of the
test samples, thereby confirming the discriminative
power of the cluster-derived gene sets.

FUNCTIONAL COMPARISON OF
ENRICHMENT STRATEGIES: GO, KEGG,
AND REACTOME

To assess the biological validity of the
identified gene expression clusters, we performed a
comparative functional annotation using three
complementary knowledge bases: GO, KEGG, and
Reactome. Each of these resources offers a unique
perspective — GO classifies gene function by process
and localization, KEGG maps genes onto pathway
diagrams, while Reactome represents biochemical
events as interconnected reaction cascades. This
integrated strategy enables cross-validation of
functional coherence and improves interpretability
for downstream applications such as classification

GO enrichment for Cluster 1
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models and feature selection in high-dimensional
transcriptomic data.

Fig. 2-4 provide dot plot visualizations of the
GO, KEGG, and Reactome enrichment results
respectively, clearly demonstrating the functional
divergence between clusters and the consistent
enrichment across databases:

e Fig. 2: GO enrichment of clusters;

e Fig. 3: KEGG pathway enrichment;

o Fig. 4: Reactome reaction
enrichment.

The strong agreement among the GO, KEGG,
and Reactome results validates the biological
relevance of the clusters. Based on the analysis, the
following functional consistencies were identified
for each cluster:

Cluster 1 — Neural signaling and synaptic
activity:

e GO: Enriched in terms such as regulation of
synapse structure, postsynapse organization, and
dendrite morphogenesis;

o KEGG: Highlighted calcium signaling,
neuroactive  ligand-receptor interaction, and
glutamatergic/dopaminergic synapse signaling;

o Reactome: Confirmed relevance through
neuronal system, transmission across chemical
synapses, and synaptic protein interactions.

cascade

GO enrichment for Cluster 2
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Fig. 2. Comparative GO enrichment analysis across four gene expression clusters
Source: compiled by the authors
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Fig. 3. Kyoto Encyclopedia of Genes and Genomes enrichment of signaling and metabolic

pathways across four gene expression clusters
Source: compiled by the authors

This  consistent  neural-specific  signature
suggests potential neuroendocrine reprogramming in
certain tumor subtypes and underlines the diagnostic
value of neural gene expression profiles.

Cluster 2 — Ribosomal biosynthesis and
immune/viral response:

e GO: Strongly associated with ribosome
biogenesis, ribonucleoprotein complex assembly,
and telomere maintenance;

e KEGG: Revealed involvement in viral
carcinogenesis, Epstein—Barr virus infection, and
TNF signaling;

o Reactome: Indicated DNA replication, M
phase progression, and rRNA processing.

These results reflect high transcriptional and
translational activity and possible viral influence—
common features in aggressive or immune-evasive
cancers.

Cluster 3 — Olfactory and sensory perception:

e GO: Enriched in sensory perception of
smell, detection of chemical stimulus, and ion
transport;

o KEGG: Identified olfactory transduction,
hormonal signaling, and neuroactive signaling;

e Reactome: Highlighted olfactory signaling
pathway and olfactory receptor expression.

This cluster illustrates an unconventional but
well-documented phenomenon of ectopic olfactory
gene expression in epithelial tumors, particularly
those of head and neck origin.

Cluster 4 — Protein synthesis,
signaling, and antiviral response.

e GO: Captured keratinocyte and epidermal
differentiation, and cytoplasmic translation;

o KEGG: Indicated cytokine-cytokine
receptor interaction, cell cycle, and COVID-19-
related immune pathways;

e Reactome: Emphasized translation,
influenza infection, and rRNA processing.

This cluster aligns with highly proliferative
tumors showing immune signaling involvement and
elevated protein synthesis. Its features may serve as
a predictive marker of immunogenicity and tumor
aggressiveness.

cytokine
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Fig. 4. Reactome pathway enrichment of biological reactions across four gene

expression clusters
Source: compiled by the authors

It should be noted that this analysis confirms
that each cluster represents a coherent and
biologically distinct module, validated through
multi-database functional annotation. The high
degree of concordance across enrichment results
supports the robustness of the applied SOTA
combined with spectral consensus clustering
method. Furthermore, the consistency of functional
annotations facilitates the integration of biological
knowledge into diagnostic rule generation, machine
learning pipelines, and feature engineering for
classification models —  effectively linking
transcriptomic insights with data-driven medical
applications.

FUNCTIONAL PATHWAY NETWORKS OF
GENE EXPRESSION CLUSTERS BASED ON
KEGG: VISUAL MODELING IN CYTOSCAPE

Despite the informative value of GO and
Reactome enrichment results, applying these
databases to the full set of gene expression data

within each cluster produced overly dense networks
that hindered effective graphical interpretation. The
excess complexity of the resulting networks
obstructed the identification of functional modules,
even when GO-term grouping was applied. To
overcome this limitation, pathway enrichment
analysis was performed separately for each gene
expression cluster using KEGG as the primary
knowledge base. This approach enabled the
generation of more interpretable and compact
network graphs, particularly in the context of
signaling cascades and pathological processes. The
modeling was performed using the ClueGO and

CluePedia modules within the Cytoscape
environment. Table 1 summarizes the configuration
parameters used for KEGG-based network
generation.

Based on the KEGG enrichment analysis, a
separate functional network was constructed for
each of the four clusters, as shown in Fig. 5-8.

256

Computer science and software
engineering

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)



Yarema O.R., Senchishen D.O., Babichev C.A. [/

Applied Aspects of Information Technology
2025; Vol.8 No.3: 249-262

Table 1. ClueGO configuration parameters for KEGG-Based network generation

Parameter

Value and Description

Knowledge Base

KEGG (335 pathways, updated: 25.05.2022). Only KEGG ontology was
selected without overlap with other sources.

p-value Threshold

p < 0.05 (Benjamini-Hochberg correction with mid-P-values enabled). Only
statistically significant pathways are displayed.

Minimum Gene Proportion

4.0% of genes per cluster to include KEGG pathway (filters weakly
enriched terms).

Network Specificity

Medium level — balances detail and generalization.

Kappa Score

0.4 — minimum functional similarity threshold to define links between
nodes.

Term Grouping

Enabled. Nodes are grouped by Kappa Score. The leading term is selected
based on the lowest p-value.

Node Layout

Prefuse Force Directed Layout — an interactive physics-based model for
intuitive spatial arrangement of nodes.
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Cytokine-cytokine cytokine and o .
receptor interaction cytokine receptor
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Herpes simplex
virus 1 infection

Antigen processing
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. Cell cycle

Human T-cell
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pathway Bile secretion

NF-kappa B
signaling pathway

Autoimmune
thyroid disease

Fig. 5. KEGG-Based functional pathway network of gene expression cluster 1

Source: compiled by the authors

This cluster aligns with highly proliferative
tumors showing immune signaling involvement and
elevated protein synthesis. Its features may serve as
a predictive marker of immunogenicity and tumor
aggressiveness.

The analysis of KEGG-based functional
networks reveals that each cluster forms a well-
structured functional core. In the case of Cluster 1
(Fig. 5), the enriched pathways are associated with
neurotransmission, circadian rhythms, and long-term
potentiation. Key nodes include: Circadian
entrainment, Dopaminergic synapse, and Long-term
potentiation. Circadian entrainment holds a central

regulating biological rhythms, and disruptions in
circadian regulation — such as altered expression of
core-clock genes — have been linked to tumor
progression in hepatocellular carcinoma, breast
cancer, and lung cancer. The presence of
Dopaminergic synapse and Long-term potentiation
nodes indicates involvement of neuroplasticity and
neuromodulatory signaling mechanisms. In the
oncological context, these may influence the tumor
microenvironment, proliferation, and immune
modulation. This functional hub is further supported
by activation of Cholinergic synapse, Glutamatergic
synapse, and cAMP signaling pathways, forming a

position in the network, acting as a hub with neuro-signaling module relevant to neuro-
numerous interactions. Its activation is crucial for oncological scenarios.
ISSN 2617-4316 (Print) Computer science and software 257

ISSN 2663-7723 (Online)

engineering



Yarema O.R., Senchishen D.O., Babichev C.A.

[ Applied Aspects of Information Technology

2025; Vol.8 No.3: 249-262

TNF signaling

Necroptosis pathway

Neuroactive
ligand-receptor
interaction

Viral carcinogenesis

PPAR signaling
pathway

NF-kappa B
signaling pathway

Lipid and
atherosclerosis

Olfactory

Calmum signaling
pathway

GABAergic synapse

Epstein-Barr virus
infection

T . transduction

RNA polymerase

Fanconi anemia

. pathway
Parkinson disease
Pathogenic
Escherichia coli
infection
. Ribosome
Thyroid hormone biogenesis in
signaling pathway eukaryotes

Spliceosome

Fig. 6. KEGG-Based functional pathway network of gene expression cluster 2
Source: compiled by the authors
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Fig. 7. KEGG-Based functional pathway network of gene expression cluster 3
Source: compiled by the authors

The network derived from Cluster 2 (Fig. 6)
highlights pathways associated with viral infection,
inflammation, and DNA homeostasis disruption.
Prominent nodes include: Epstein-Barr virus
infection, NF-kappa B signaling pathway, and
Parkinson disease. The presence of the Epstein-Barr
virus infection pathway suggests activation of
antiviral mechanisms and possible involvement in
oncogenesis, particularly in lymphoproliferative
disorders. NF-kappa B signaling plays a central role

in immune response regulation, apoptosis, and cell
survival, often activated in chronic inflammation
driven by infection or mutations in cancer cells. The
integration of Parkinson disease as a functional node
may reflect mitochondrial dysfunction and oxidative
stress — hallmarks of various tumor types.
Altogether, this cluster's functional network points
to immune-pathological and virus-induced signaling
cascades potentially contributing to malignancy.
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Cluster 3 (Fig. 7) is characterized by
enrichment in infection-related, inflammatory, and
metabolic pathways. Key functional nodes include:
Coronavirus disease, 1L-17 signaling pathway, and
Ribosome biogenesis in eukaryotes. Coronavirus
disease enrichment suggests activation of genes
involved in antiviral defense, transcriptional
activation, and cytokine regulation — features that
align  with  immune alterations in  tumor
development. IL-17 signaling emphasizes the pro-
inflammatory tumor microenvironment, stimulating
cytokine and chemokine production to support
angiogenesis and invasion. Ribosome biogenesis
indicates high translational activity, typical of
proliferating cancer cells. These processes together
reflect the cluster's association with cellular
activation, immune reactivity, and translational
reprogramming hallmarks of oncological
progression.

The functional network for Cluster 4 (Fig. 8)
reveals dominance of metabolic and signaling
pathways strongly linked to cancer pathogenesis.
Key nodes include: MicroRNAs in cancer, Calcium
signaling pathway, and Pathogenic Escherichia coli
infection. Enrichment in MicroRNAs in cancer
points to the role of regulatory miRNAs in
controlling oncogenes and tumor Suppressors.
Calcium signaling is critical for cell proliferation,

apoptosis, and stress response, all pivotal in shaping
the tumor microenvironment. The presence of
Pathogenic Escherichia coli infection may reflect
immune and inflammatory reactions triggered by
compromised tissue barriers — common during
oncogenic transformation. Overall, the cluster’s
functional profile illustrates the interplay between
metabolic, signaling, and immune mechanisms
involved in malignant cell behavior.

The results of KEGG-based network analysis
using ClueGO and CluePedia confirm the high
guality of the identified gene expression cluster
structure. Each cluster exhibits a functionally
coherent core, with dominance of specific groups of
signaling, metabolic, or immunological pathways.
This supports the internal homogeneity and
biological specialization of each gene group. Given
that the dataset consists of transcriptomic profiles
from patients with diverse cancer types, these
distinct functional signatures are not random — they
reflect key biological programs linked to specific
pathophysiological conditions.

Thus, KEGG-based network analysis not only
complements GO and Reactome enrichment but also
confirms that gene expression clustering captures
deeply rooted molecular mechanisms underlying
tumor development. The resulting structure is both
statistically sound and biologically relevant,
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demonstrating its potential utility in diagnostics,
feature selection, and bioinformatic modeling of
cancer heterogeneity.

CONCLUSIONS

This study presents an integrative approach for
the post-clustering biological interpretation of gene
expression data using statistical enrichment and
network-based visualization. Gene expression
profiles from patients with 13 types of cancer and a
reference cohort were clustered using the Self-
Organizing Tree Algorithm (SOTA) in combination
with spectral consensus clustering. The resulting
four-cluster structure was subsequently validated
through  multi-database  functional enrichment
analysis, including Gene Ontology, KEGG, and
Reactome, as well as graph-based modeling in
Cytoscape using ClueGO and CluePedia.

The findings demonstrate a high degree of
concordance between enrichment  sources,
confirming that each cluster represents a biologically
coherent module with distinct functional signatures.
These signatures span neuronal signaling, immune
response, translational regulation, and inflammation-
associated  pathways. Such clear functional
specialization supports the reliability of the

clustering method and underlines the internal
consistency of the identified transcriptomic patterns.

Moreover, KEGG-based network analysis
allowed for visual dissection of functional modules
within each cluster, highlighting central pathway
hubs such as Circadian entrainment, NF-kappa B
signaling, and MicroRNAs in cancer. The functional
coherence and specificity of the networks reinforce
their potential utility for downstream applications in
machine learning, diagnostic rule generation, and
automated feature extraction.

From the perspective of information
technologies, the proposed approach focuses on the
interpretation stage, linking unsupervised clustering
results with biological knowledge bases through
statistical and network-based analysis. This
contributes  to  interpretable  modeling  of
transcriptomic heterogeneity and enhances the
explainability of computational results.

Future research will concentrate on integrating
these  biologically  validated clusters into
classification pipelines, combining functional
interpretation with predictive modeling to improve
cancer subtype diagnosis and support personalized
treatment strategies.
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AHOTAIISA

Krnacrepusaniss npo¢iniB excnpecii Te€HIB € KIIOYOBHM METOJIOM JUISL BHSBICHHS INPHUXOBAaHHX OIlONOTIYHHMX CTPYKTYp 1
nmudepenmianii mTUITB 3aXBOPIOBAaHb y BUCOKOPO3MIpHUX OioMequYHMX Habopax maHuX. [IpoTe mepexix Bix KIACTEPHHX CTPYKTYP
110 610JIOTIYHO 3HAUYYIIMX BHUCHOBKIB MOTpeOy€e IHTETPaTUBHUX AHAJITUYHUX CTPATETiH, 10 BUXOAATH 32 MEXi HEKOHTPOJIbOBAHOTO
HaBUaHHA. Y IIbOMY JOCTI/UKEHHI MPEICTaBIEHO HOBUH IHTEIpAaTHBHUHA OOYMCIIOBANIBHMNA WiIXil, SKAH pOOHTH AaKIEHT Ha
MOCTKJIACTEPHIN 1HTEepHpeTamii pe3yapTaTiB LUIIXOM IO€JHAHHS CTaTUCTUYHOTO (DYHKLIOHAIBHOTO 30aradeHHs 3 MEpEeXEeBUM
MozemoBaHHAM. Kilacrepu mnpodinmiB excmpecii TeHiB, NMONEpPEeIHbO BHUABICHI y MAI€HTIB 13 PI3HUMH TUIAMH paky, Oymu
npoaHaii3oBaHi 3 BHKopucTaHHsM 6a3 naHux Gene Ontology, Kyoto Encyclopedia of Genes and Genomes ta Reactome.
30arayeHHs BHKOHYyBanocsi iHCTpyMeHTOM g:Profiler, mo 1n03BONMIIO BHUSBHTH CTaTHCTHYHO 3HAYyNIi OI0JIOTiYHI IIpowecH,
MOJIEKYJIApHI (QYHKIII, KIITHHHI KOMIOHEHTH Ta CHTHAIBHI IMIJSIXH B MEXaxX KOXKHOTO Kiacrepa. [ Bisyamizamil Ta morauGiaeHol
iHTepnperanii GpyHKIIOHATFHUX KaTeropiit 3acrocoBano nporpamue cepenouiie Cytoscape 3 moxymsimu ClueGO ta CluePedia, siki
GbopMyIoTh (QYHKI[IOHATBHI Mepexi Ta IeMOHCTPYIOTh B3a€MO3B’SI3KH MiX reHamu 1 Giomoriynumu Tepminamu. HoBusna po6otu
MOJIATAE Y CHUCTEMHOMY IIO€JHAHHI CTATUCTUYHHMX METOIB (yHKI[ioHanpHOro 30aradeHHs Ta rpad)oBOro MpenCTaBICHHS, IO
3a0e3nedye SIK 0OYHMCITIOBAaJIbHY CTPOTICTh, TaK 1 Ol0NOTiYHY iHTEpHIpPETOBAHICTh. 3alpONOHOBAHMHI MiAXiA MPOJEMOHCTPYBaB, IIO
KOXKeH KiacTep Mae BinMiHHI (yHKIiOHanpHI miamucu (iMyHHa BifnoBims, Merabomiui nuwixu, pemapauis JHK, perymsmis
KIITHHHOTO IWKIy TOINO), IO IIATBEp/Kye HOTO 3[aTHICTh BHIydaTH OIOJOTIYHO Y3rOJUKEHI 3HAHHA 31 CKJIAJHHX
TPaHCKPHNTOMHHUX JaHHMX. Y MiJCYMKY IOCIIJDKEHHS HpPOIOHYE IHHOBAIlIHHY CTpaTerilo MOCTKIACTEPHOI IHTeprpeTamii, sKa
MOETHY€E MallMHHE HaBYaHHS 0e3 yuuTels Ta (yHKLiOHaIbHY reHOMiKy. Takui miIXix MmifABUIIYE MOSCHIOBAHICTh 00YNCIIFOBATBEHUX
pe3yabTaTiB i MOXe OyTH 3aCTOCOBaHUI s cTpaTH(dikalii 3aXBOPIOBaHb, BIAKPHUTTS OioOMapKepiB Ta y IMepCOHaTi30BaHiil MEUIIHI.
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