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ABSTRACT 

Clustering of gene expression profiles is a core technique used to reveal hidden biological structures and differentiate disease 

subtypes in high-dimensional biomedical datasets. Nevertheless, translating cluster structures into biologically meaningful insights 

requires integrative analytical strategies that go beyond unsupervised learning. In this work, we introduce a novel integrative 

computational approach that emphasizes post-clustering interpretation by combining statistical functional enrichment with network-

based modeling. Clusters of gene expression profiles, previously identified in patients with distinct cancer types, were subjected to 

enrichment analysis using Gene Ontology, the Kyoto Encyclopedia of Genes and Genomes, and Reactome databases. The 

enrichment was performed with the g:Profiler tool, allowing the detection of significantly overrepresented biological processes, 

molecular functions, cellular components, and signaling pathways within each cluster. To visualize and further interpret the enriched 

functional categories, Cytoscape software was employed. Functional interaction networks were constructed using two key modules: 

ClueGO, which integrates Gene Ontology and pathway annotation into a functionally grouped network, and CluePedia, which 

expands these networks by showing relationships between genes and enriched terms. This network-based visualization enabled 

deeper biological interpretation and facilitated the identification of core functional themes. The analysis revealed that each gene 

cluster is associated with distinct biological processes, such as immune signaling, metabolic pathways, DNA repair, or cell cycle 

regulation. The novelty of the proposed approach lies in its systematic integration of enrichment statistics with graph-based 

visualization, ensuring both computational rigor and biological interpretability. These findings confirm that the method can extract 

biologically consistent knowledge from complex gene expression data. In summary, the study presents an innovative post-clustering 

interpretation strategy that bridges unsupervised machine learning and functional genomics. This approach advances the 

explainability of computational analysis and supports its application in disease subtyping, biomarker discovery, and personalized 

medicine research. 
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INTRODUCTION  

Clustering of gene expression profiles is a widely 

used unsupervised learning technique for identifying 

genes with similar regulatory behavior across 

experimental conditions or patient groups [1], [2], 

[3]. Although clustering reveals underlying structure 

in high-dimensional biological data, the resulting 

clusters alone offer limited insight unless 

complemented by biological interpretation. A 

critical post-clustering step involves evaluating the 

functional coherence of genes within each cluster 

and identifying biologically relevant functional 

modules. 
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Genes grouped together often participate in 

common cellular pathways or molecular functions. 

Thus, functional enrichment analysis enables 

researchers to assess whether gene clusters are 

significantly associated with specific biological 

processes, molecular functions, cellular components, 

or signaling pathways. Among the most established 

resources for such analyses are Gene Ontology (GO) 

[4], [5], the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) [6], and the Reactome pathway 

database [7]. Kyoto Encyclopedia of Genes and 

Genomes provides detailed maps of metabolic and 

signaling pathways, while Reactome offers a 

comprehensive and curated database of biological 

reactions, spanning from signal transduction to 

metabolism. These resources support the contextual 
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interpretation of clustered genes in terms of 

biological meaning. 

Beyond enrichment statistics, network-based 

methods provide deeper insight by visualizing and 

analyzing interactions between genes and functional 

categories. In this study, we used an integrative 

approach that combines the R programming 

environment with Cytoscape – an open-source 

platform for network visualization and analysis [8]. 

The Cytoscape plugins ClueGO [9] and CluePedia 

[10] were employed to generate functionally 

grouped GO/pathway networks. 

The interpretation pipeline includes the 

following key steps. 

1. Preparing gene lists for each cluster based on 

the clustering output. 

2. Importing gene lists into Cytoscape using the 

ClueGO plugin. 

3. Performing enrichment analysis using GO 

(Biological Process, Molecular Function, Cellular 

Component), KEGG, or Reactome. 

4. Visualizing enriched terms as functionally 

grouped GO networks. 

5. Interpreting the biological role of each cluster 

using enriched functional terms and visualized 

relationships. 

This integrative strategy bridges the gap 

between unsupervised clustering and biological 

relevance, enhancing the interpretability of gene 

expression patterns in the context of complex 

diseases such as cancer. 

LITERATURE SURVEY 

Biological interpretation of gene expression 

clustering results has become an essential task in 

transcriptomic studies, particularly for understanding 

the functional coherence of gene groups in relation 

to disease mechanisms. While clustering methods 

can identify genes with similar expression profiles, 

the biological relevance of these clusters must be 

established using domain-specific resources and 

tools developed in recent years. 

Gene Ontology (GO), KEGG, and Reactome 

are the three primary knowledge bases widely used 

for functional enrichment analysis. GO offers a 

hierarchical structure of gene annotations spanning 

biological processes, molecular functions, and 

cellular components, and has evolved substantially 

over the past decade to reflect current biological 

knowledge [11]. KEGG provides detailed pathway 

maps for interpreting the biological context of genes, 

including signaling cascades and metabolic routes 

[6]. Similarly, Reactome presents curated pathways 

and reactions with a high level of biological 

granularity, making it suitable for comprehensive 

interpretation of gene clusters [7]. 

Recent methodological advancements focus on 

the integration of functional annotation and network-

based visualization. The Cytoscape platform [8] and 

its plugins such as ClueGO [9] and CluePedia [10] 

have gained popularity for creating functionally 

grouped networks from enriched GO and pathway 

terms. These tools allow not only for the 

identification of overrepresented categories but also 

for the exploration of their interrelations, which is 

critical for elucidating higher-level biological 

mechanisms. 

Furthermore, several studies emphasize the 

importance of combining clustering with ontology 

analysis to extract informative subsets of genes. For 

example, in [12], [13] the authors demonstrated the 

use of biclustering techniques in conjunction with 

GO-based enrichment to identify condition-specific 

gene modules in high-dimensional cancer datasets. 

Their work illustrates the potential of such hybrid 

frameworks for biomarker discovery and disease 

classification. 

Advances in computational tools, such as edgeR 

[14] and DESeq2 [15], have also enabled more 

accurate differential expression analysis, which 

precedes clustering and enrichment. Enrichment 

platforms like g:Profiler, integrated in many 

pipelines, support multi-database analysis for robust 

biological interpretation [16]. 

In summary, the literature analysis highlights a 

growing consensus around the integration of 

statistical enrichment and network visualization as 

key components in post-clustering gene expression 

analysis. These approaches bridge the gap between 

computational findings and biological interpretation, 

making them indispensable in modern 

bioinformatics and personalized medicine research. 

The goal of this study is to develop and 

validate an integrative method for the biological 

interpretation of clustered gene expression profiles 

using functional enrichment techniques and 

network-based visualization. 

To achieve this goal, the following tasks are 

addressed: 

 comparison of the methods for the biological 

interpretation of clustering results of gene 

expression profiles using functional enrichment 

analysis (GO, KEGG, Reactome) and network-based 

modeling;  

 implementation of the analytical pipeline 

combining R and Cytoscape for visualization of 

functional networks using ClueGO and CluePedia 

plugins;  
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 validation of the proposed method on real-

world gene expression datasets from patients 

diagnosed with various cancer types. 

GENE ONTOLOGY: CONCEPT AND 

IMPLEMENTATION 

Gene Ontology is a widely adopted framework 

for the functional annotation of genes in the form of 

a structured ontology. GO encompasses three 

primary domains: Biological Process (BP), 

Molecular Function (MF), and Cellular Component 

(CC), reflecting, respectively, the biological 

objectives a gene contributes to, the biochemical 

activity it performs, and the cellular location where 

the activity occurs. GO-based analysis serves as a 

foundation for the biological interpretation of gene 

lists derived from clustering results. It enables the 

assessment of whether a given gene set (e.g., genes 

in a cluster) is statistically enriched for specific GO 

categories beyond random expectation. 

The main types of GO analysis include: 

 Over-Representation Analysis (ORA): 

assesses whether certain GO terms occur more 

frequently in the input gene list compared to a 

reference background; 

 Gene Set Enrichment Analysis (GSEA): 

identifies GO terms that are enriched in a ranked list 

of genes without requiring an explicit cutoff. 

In this study, GO analysis was performed in the 

R environment using the clusterProfiler package 

[17]. This package supports the use of Entrez Gene 

IDs, offers both ORA and GSEA methodologies, 

and includes extensive options for visualization such 

as enrichment plots, dot plots, and term similarity 

networks. Since each GO domain captures a 

different aspect of gene function, a combined 

analysis across BP, MF, and CC was adopted to 

provide a comprehensive functional interpretation of 

gene clusters. After merging enrichment results from 

all domains, duplicates were removed and only the 

most statistically significant terms were retained. 

This strategy enables simultaneous consideration of 

gene function, molecular activity, and subcellular 

localization. 

The step-by-step GO analysis procedure is as 

follows. 

1. Gene list preparation: Extract Entrez Gene 

IDs for each expression profile cluster, treating each 

cluster independently. 

2. Library import: Load R libraries for GO 

analysis, including the annotation database for 

Homo sapiens. 

3. GO enrichment: Perform enrichment 

analysis separately for BP, MF, and CC, applying 

multiple testing correction. Merge the results across 

domains into a unified list, removing duplicates. 

4. Result simplification: Reduce redundancy by 

eliminating highly similar GO terms based on 

semantic similarity, retaining the most representative 

ones. 

5. Visualization: Display the results using dot 

plots or similarity-based term graphs to facilitate 

interpretation. 

6. Interpretation: Focus on GO terms with the 

highest statistical significance and coverage, 

enabling inference about the dominant biological 

functions within each cluster. 

Thus, GO analysis is a critical first step in the 

biological interpretation of gene expression clusters. 

Its integration into the clustering analysis pipeline 

provides a quantitative means of evaluating the 

functional relevance of each identified cluster. 

KEGG: ANALYSIS OF METABOLIC AND 

SIGNALING PATHWAYS 

The Kyoto Encyclopedia of Genes and 

Genomes [6] is one of the most comprehensive 

databases for understanding high-level functions and 

utilities of biological systems, particularly in terms 

of gene–gene, gene–protein, and gene–metabolite 

interactions. Unlike GO, which focuses on general 

biological functions, KEGG provides context-

specific knowledge by representing genes as 

components of biochemical networks and molecular 

pathways. These pathways are directly associated 

with physiological and pathological processes, 

making KEGG a valuable resource for interpreting 

clusters of gene expression profiles. 

The KEGG enrichment analysis was carried out 

using the clusterProfiler package in R, which 

enables pathway enrichment based on Entrez Gene 

IDs, incorporates multiple testing correction (e.g., 

Benjamini-Hochberg), and supports output formats 

suitable for downstream interpretation and 

visualization. 

The step-by-step KEGG enrichment procedure 

is as follows. 

1. Input data preparation: For each gene 

expression cluster, a list of Entrez Gene IDs is 

compiled to serve as the basis for enrichment 

analysis.   

2. Identification of enriched KEGG pathways: 

Hypothesis testing is applied to determine whether 

specific KEGG pathways are statistically 

overrepresented in the gene list relative to a 

reference background. Correction for multiple 

testing is performed to control the false discovery 

rate. 
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3. Aggregation of results: When multiple 

clusters are analyzed, results can be aggregated to 

identify both cluster-specific and shared enriched 

pathways. This enables the construction of a 

functional landscape across all clusters. 

4. Visualization: Results are visualized using 

dot plots, bar plots, or KEGG pathway networks, 

which illustrate the distribution of genes across 

pathways, their statistical significance, and 

coverage. 

5. Interpretation: KEGG pathways with high 

statistical significance and dense gene coverage are 

considered biologically informative. These pathways 

often reflect key cellular processes such as 

metabolism, signal transduction, cell proliferation, 

apoptosis, and immune response. 

Thus, KEGG analysis provides a functional 

complement to GO-based interpretation by revealing 

biochemical and regulatory contexts in which gene 

clusters are involved. The integration of KEGG 

enrichment results into the cluster interpretation 

workflow offers a deeper understanding of the 

potential roles that expression modules play in 

complex molecular systems. 

REACTOME PATHWAY ANALYSIS: 

ONTOLOGY OF BIOLOGICAL REACTIONS 

Reactome [7] is an open-access, manually 

curated knowledge base focused on modeling 

biological reactions and molecular interaction 

cascades that constitute key cellular processes such 

as signal transduction, transcription, metabolism, the 

cell cycle, and immune responses. Unlike GO, 

which classifies gene function based on descriptive 

categories, Reactome adopts an event-based 

approach, modeling biological knowledge as 

interconnected reactions – from elementary 

molecular events to complex signaling pathways. 

Owing to its hierarchical organization, Reactome 

enables the reconstruction of biological context in 

the form of ordered biochemical steps. Applying 

Reactome enrichment analysis to gene expression 

clusters allows us to determine which reactions or 

high-level processes the clustered genes are involved 

in, as well as to explore potential functional links 

across clusters. 

The step-by-step Reactome analysis procedure 

is as follows. 

1. Input data preparation: For each cluster, a 

gene list in Entrez ID format is generated to serve as 

input for identifying enriched pathways in the 

Reactome database. 

2. Identification of enriched pathways: 

Statistical enrichment analysis is performed to detect 

biological reactions in which the cluster genes are 

significantly overrepresented compared to a 

background distribution. Correction for multiple 

testing (e.g., Benjamini-Hochberg method) is 

applied to reduce false discovery rates. 

3. Hierarchical grouping of results: Due to 

Reactome’s hierarchical architecture, enriched 

pathways can be organized into broader functional 

categories (e.g., receptor signaling, lipid 

metabolism, T-cell activation), which facilitates 

biological interpretation. 

4. Visualization of enriched reactions: Results 

can be presented as tree-structured diagrams, dot 

plots, or interactive pathway maps showing the 

number and proportion of genes involved in each 

enriched pathway. 

5. Result interpretation: Key pathways with 

high statistical significance and broad gene coverage 

are analyzed to identify dominant cellular programs 

associated with each expression cluster. 

Reactome pathway analysis serves as a 

powerful complement to GO and KEGG by not only 

identifying functional themes but also enabling the 

reconstruction of causal logic in cellular systems. 

Through its integration with external ontologies and 

curated evidence, Reactome improves the biological 

plausibility of functional interpretations and 

strengthens conclusions regarding the molecular 

roles of gene expression clusters. 

FUNCTIONAL ENRICHMENT IN 

CYTOSCAPE: CLUEGO AND CLUEPEDIA 

To enhance the interpretability of functional 

analysis results for clusters of gene expression 

profiles, visual representation of enrichment data 

plays a critical role. In this context, the Cytoscape 

platform serves as a powerful tool for the integration 

and visualization of bioinformatics data. 

Specifically, the ClueGO and CluePedia plugins 

enable the transformation of enrichment results into 

functionally grouped networks. 

ClueGO is a Cytoscape plugin that integrates 

results from GO, KEGG, Reactome, and other 

biological databases into a unified graph-based 

structure. In these functional maps, each node 

represents a GO term or pathway, and edges indicate 

semantic similarity or gene set overlap between 

terms. 

CluePedia extends ClueGO functionality by 

displaying gene–term and gene–gene interactions, 

and by integrating additional layers of information 

such as gene expression levels, fold changes, or 

correlation metrics. These are typically visualized 

through color-coded scales or heatmaps directly 

within the network. 
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The integration of ClueGO and CluePedia into 

the functional analysis pipeline overcomes the 

limitations of purely tabular representations by 

offering intuitive, interactive, and biologically 

coherent views. This facilitates comparison across 

clusters, identification of dominant biological 

themes, and the generation of hypotheses about gene 

coordination and functional modules. 

The procedure for implementing functional 

enrichment analysis in Cytoscape is as follows. 

1. Genes ID list import: For each gene 

expression cluster, a list of Entrez Gene IDs is 

generated and imported into Cytoscape through the 

ClueGO interface. 

2. Selection of functional databases: The user 

specifies which annotation sources to include – GO 

(BP), MF, CC), KEGG, Reactome – providing a 

comprehensive view of gene function, localization, 

and involvement in signaling pathways. 

3. Enrichment parameters: Statistical 

thresholds such as minimum gene count per term, p-

value cutoffs, and multiple testing correction 

methods (e.g., Bonferroni or Benjamini-Hochberg) 

are configured. ClueGO also supports term grouping 

based on shared genes or biological themes. 

4. Network generation: ClueGO automatically 

converts the enrichment results into a functional 

network, where nodes correspond to significant 

terms grouped by biological relevance (e.g., "mitotic 

cell cycle," "immune activation"). 

5. Gene-to-term visualization: CluePedia 

overlays gene-term relationships and optionally 

displays expression metrics, enabling dynamic 

exploration of gene-level contributions using color 

gradients or intensity coding. 

6. Interpretation: Analysis of the resulting 

network allows for the identification of central 

functional nodes, clusters of related processes, and 

potentially regulatory genes. This facilitates a 

systems-level understanding of the functional 

architecture of each cluster. 

In summary, the use of ClueGO and CluePedia 

significantly enhances biological interpretation by 

providing an interactive and structured visualization 

of the functional relationships among genes and 

biological terms. This approach is particularly useful 

for analyzing large clusters or when multi-parameter 

visualization is required for in-depth exploratory 

analysis. 

EXPERIMENTAL DATA 

This study utilized RNA-Seq gene expression 
data obtained from The Cancer Genome Atlas 
(TCGA) [18] via the Genomic Data Commons 
(GDC) data portal, using the TCGAbiolinks R 

package [19,20]. Gene expression quantification was 
performed using the workflow type “STAR– Counts”. 
The dataset included samples from 13 different cancer 
types. For each tumor type, samples were categorized 
as “Primary Tumor” or “Solid Tissue Normal” based 
on the sample_type metadata field. 

Data preprocessing followed the methodology 
described in [4], which includes normalization, 
quality control, and removal of low-expression 
genes. In the final filtering stage, genes were 
selected based on Gene Ontology (GO) 
classification, retaining only unique genes associated 
with at least one of the GO domains: BP, MF, or 
CC. This ensured that only biologically interpretable 
genes were included in the downstream analysis. 

As a result, 13 tumor-specific subsets were 
constructed, corresponding to the selected cancer 
types. Additionally, a fourteenth subset was 
generated by aggregating all non-cancerous samples 
into a unified class, representing "Solid Tissue 
Normal" controls. This yielded a 14-class 
classification structure, with each class 
corresponding to a specific tumor type or healthy 
control group. 

Subsequent steps – such as variance-based gene 
filtering and quantile normalization – were 
performed using Bioconductor tools in R. The 
resulting gene expression matrix consisted of 6,310 
biological samples (rows) and 18,564 genes 
(columns), representing a high-dimensional dataset 
for integrative machine learning and functional 
analysis. Fig. 1 presents the classification of the 
experimental data. 

 

Fig. 1. Clfssification of the experimental data 
Source: compiled by the authors 

To explore the biological structure within this 

dataset, the gene expression matrix was clustered 

using a hybrid approach combining the Self-

Organizing Tree Algorithm (SOTA) with consensus 

spectral clustering. This approach partitioned the 
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expression profiles into four distinct clusters, each 

capturing a coherent gene expression pattern. 

To validate the biological relevance of these 

clusters, a supervised classification was performed 

using a Random Forest algorithm within a stacked 

ensemble framework. Genes from each cluster were 

used as feature subsets to train the classifier. The 

model achieved perfect classification results across all 

evaluation metrics, correctly classifying 100% of the 

test samples, thereby confirming the discriminative 

power of the cluster-derived gene sets. 

FUNCTIONAL COMPARISON OF 

ENRICHMENT STRATEGIES: GO, KEGG, 

AND REACTOME 

To assess the biological validity of the 

identified gene expression clusters, we performed a 

comparative functional annotation using three 

complementary knowledge bases: GO, KEGG, and 

Reactome. Each of these resources offers a unique 

perspective – GO classifies gene function by process 

and localization, KEGG maps genes onto pathway 

diagrams, while Reactome represents biochemical 

events as interconnected reaction cascades. This 

integrated strategy enables cross-validation of 

functional coherence and improves interpretability 

for downstream applications such as classification 

models and feature selection in high-dimensional 

transcriptomic data. 

Fig. 2–4 provide dot plot visualizations of the 

GO, KEGG, and Reactome enrichment results 

respectively, clearly demonstrating the functional 

divergence between clusters and the consistent 

enrichment across databases: 

 Fig. 2: GO enrichment of clusters; 

 Fig. 3: KEGG pathway enrichment; 

 Fig. 4: Reactome reaction cascade 

enrichment. 

The strong agreement among the GO, KEGG, 

and Reactome results validates the biological 

relevance of the clusters. Based on the analysis, the 

following functional consistencies were identified 

for each cluster: 

Cluster 1 – Neural signaling and synaptic 

activity: 

 GO: Enriched in terms such as regulation of 

synapse structure, postsynapse organization, and 

dendrite morphogenesis; 

 KEGG: Highlighted calcium signaling, 

neuroactive ligand-receptor interaction, and 

glutamatergic/dopaminergic synapse signaling; 
 Reactome: Confirmed relevance through 

neuronal system, transmission across chemical 
synapses, and synaptic protein interactions. 

 

 

Fig. 2. Comparative GO enrichment analysis across four gene expression clusters 
Source: compiled by the authors 
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Fig. 3. Kyoto Encyclopedia of Genes and Genomes enrichment of signaling and metabolic  

pathways across four gene expression clusters 
Source: compiled by the authors 

This consistent neural-specific signature 
suggests potential neuroendocrine reprogramming in 
certain tumor subtypes and underlines the diagnostic 
value of neural gene expression profiles. 

Cluster 2 – Ribosomal biosynthesis and 
immune/viral response: 

 GO: Strongly associated with ribosome 
biogenesis, ribonucleoprotein complex assembly, 
and telomere maintenance; 

 KEGG: Revealed involvement in viral 
carcinogenesis, Epstein–Barr virus infection, and 
TNF signaling; 

 Reactome: Indicated DNA replication, M 
phase progression, and rRNA processing. 

These results reflect high transcriptional and 
translational activity and possible viral influence—
common features in aggressive or immune-evasive 
cancers. 

Cluster 3 – Olfactory and sensory perception: 
 GO: Enriched in sensory perception of 

smell, detection of chemical stimulus, and ion 
transport; 

 KEGG: Identified olfactory transduction, 
hormonal signaling, and neuroactive signaling; 

 Reactome: Highlighted olfactory signaling 
pathway and olfactory receptor expression. 

This cluster illustrates an unconventional but 
well-documented phenomenon of ectopic olfactory 
gene expression in epithelial tumors, particularly 
those of head and neck origin. 

Cluster 4 – Protein synthesis, cytokine 
signaling, and antiviral response. 

 GO: Captured keratinocyte and epidermal 
differentiation, and cytoplasmic translation; 

 KEGG: Indicated cytokine-cytokine 
receptor interaction, cell cycle, and COVID-19-
related immune pathways; 

 Reactome: Emphasized translation, 
influenza infection, and rRNA processing. 

This cluster aligns with highly proliferative 
tumors showing immune signaling involvement and 
elevated protein synthesis. Its features may serve as 
a predictive marker of immunogenicity and tumor 
aggressiveness. 
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Fig. 4. Reactome pathway enrichment of biological reactions across four gene  

expression clusters 
Source: compiled by the authors 

It should be noted that this analysis confirms 

that each cluster represents a coherent and 

biologically distinct module, validated through 

multi-database functional annotation. The high 

degree of concordance across enrichment results 

supports the robustness of the applied SOTA 

combined with spectral consensus clustering 

method. Furthermore, the consistency of functional 

annotations facilitates the integration of biological 

knowledge into diagnostic rule generation, machine 

learning pipelines, and feature engineering for 

classification models – effectively linking 

transcriptomic insights with data-driven medical 

applications. 

FUNCTIONAL PATHWAY NETWORKS OF 

GENE EXPRESSION CLUSTERS BASED ON 

KEGG: VISUAL MODELING IN CYTOSCAPE 

Despite the informative value of GO and 

Reactome enrichment results, applying these 

databases to the full set of gene expression data 

within each cluster produced overly dense networks 

that hindered effective graphical interpretation. The 

excess complexity of the resulting networks 

obstructed the identification of functional modules, 

even when GO-term grouping was applied. To 

overcome this limitation, pathway enrichment 

analysis was performed separately for each gene 

expression cluster using KEGG as the primary 

knowledge base. This approach enabled the 

generation of more interpretable and compact 

network graphs, particularly in the context of 

signaling cascades and pathological processes. The 

modeling was performed using the ClueGO and 

CluePedia modules within the Cytoscape 

environment. Table 1 summarizes the configuration 

parameters used for KEGG-based network 

generation.  

Based on the KEGG enrichment analysis, a 

separate functional network was constructed for 

each of the four clusters, as shown in Fig. 5–8. 
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Table 1. ClueGO configuration parameters for KEGG-Based network generation 

Parameter Value and Description 

Knowledge Base KEGG (335 pathways, updated: 25.05.2022). Only KEGG ontology was 

selected without overlap with other sources. 

p-value Threshold p ≤ 0.05 (Benjamini-Hochberg correction with mid-P-values enabled). Only 

statistically significant pathways are displayed. 

Minimum Gene Proportion 4.0% of genes per cluster to include KEGG pathway (filters weakly 

enriched terms). 

Network Specificity Medium level – balances detail and generalization. 

Kappa Score 0.4 – minimum functional similarity threshold to define links between 

nodes. 

Term Grouping Enabled. Nodes are grouped by Kappa Score. The leading term is selected 

based on the lowest p-value. 

Node Layout Prefuse Force Directed Layout – an interactive physics-based model for 

intuitive spatial arrangement of nodes. 
 

Source: compiled by the authors 

 
Fig. 5. KEGG-Based functional pathway network of gene expression cluster 1 

Source: compiled by the authors 

This cluster aligns with highly proliferative 

tumors showing immune signaling involvement and 

elevated protein synthesis. Its features may serve as 

a predictive marker of immunogenicity and tumor 

aggressiveness. 

The analysis of KEGG-based functional 

networks reveals that each cluster forms a well-

structured functional core. In the case of Cluster 1 

(Fig. 5), the enriched pathways are associated with 

neurotransmission, circadian rhythms, and long-term 

potentiation. Key nodes include: Circadian 

entrainment, Dopaminergic synapse, and Long-term 

potentiation. Circadian entrainment holds a central 

position in the network, acting as a hub with 

numerous interactions. Its activation is crucial for 

regulating biological rhythms, and disruptions in 

circadian regulation – such as altered expression of 

core-clock genes – have been linked to tumor 

progression in hepatocellular carcinoma, breast 

cancer, and lung cancer. The presence of 

Dopaminergic synapse and Long-term potentiation 

nodes indicates involvement of neuroplasticity and 

neuromodulatory signaling mechanisms. In the 

oncological context, these may influence the tumor 

microenvironment, proliferation, and immune 

modulation. This functional hub is further supported 

by activation of Cholinergic synapse, Glutamatergic 

synapse, and cAMP signaling pathways, forming a 

neuro-signaling module relevant to neuro-

oncological scenarios. 
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Fig. 6. KEGG-Based functional pathway network of gene expression cluster 2 

Source: compiled by the authors 

 

 

Fig. 7. KEGG-Based functional pathway network of gene expression cluster 3 
Source: compiled by the authors 

The network derived from Cluster 2 (Fig. 6) 

highlights pathways associated with viral infection, 

inflammation, and DNA homeostasis disruption. 

Prominent nodes include: Epstein-Barr virus 

infection, NF-kappa B signaling pathway, and 

Parkinson disease. The presence of the Epstein-Barr 

virus infection pathway suggests activation of 

antiviral mechanisms and possible involvement in 

oncogenesis, particularly in lymphoproliferative 

disorders. NF-kappa B signaling plays a central role 

in immune response regulation, apoptosis, and cell 

survival, often activated in chronic inflammation 

driven by infection or mutations in cancer cells. The 

integration of Parkinson disease as a functional node 

may reflect mitochondrial dysfunction and oxidative 

stress – hallmarks of various tumor types. 

Altogether, this cluster's functional network points 

to immune-pathological and virus-induced signaling 

cascades potentially contributing to malignancy. 
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Fig. 8. KEGG-Based functional pathway network of gene expression cluster 4 

Source: compiled by the authors 

Cluster 3 (Fig. 7) is characterized by 

enrichment in infection-related, inflammatory, and 

metabolic pathways. Key functional nodes include: 

Coronavirus disease, IL-17 signaling pathway, and 

Ribosome biogenesis in eukaryotes. Coronavirus 

disease enrichment suggests activation of genes 

involved in antiviral defense, transcriptional 

activation, and cytokine regulation – features that 

align with immune alterations in tumor 

development. IL-17 signaling emphasizes the pro-

inflammatory tumor microenvironment, stimulating 

cytokine and chemokine production to support 

angiogenesis and invasion. Ribosome biogenesis 

indicates high translational activity, typical of 

proliferating cancer cells. These processes together 

reflect the cluster's association with cellular 

activation, immune reactivity, and translational 

reprogramming – hallmarks of oncological 

progression. 

The functional network for Cluster 4 (Fig. 8) 

reveals dominance of metabolic and signaling 

pathways strongly linked to cancer pathogenesis. 

Key nodes include: MicroRNAs in cancer, Calcium 

signaling pathway, and Pathogenic Escherichia coli 

infection. Enrichment in MicroRNAs in cancer 

points to the role of regulatory miRNAs in 

controlling oncogenes and tumor suppressors. 

Calcium signaling is critical for cell proliferation, 

apoptosis, and stress response, all pivotal in shaping 

the tumor microenvironment. The presence of 

Pathogenic Escherichia coli infection may reflect 

immune and inflammatory reactions triggered by 

compromised tissue barriers – common during 

oncogenic transformation. Overall, the cluster’s 

functional profile illustrates the interplay between 

metabolic, signaling, and immune mechanisms 

involved in malignant cell behavior. 

The results of KEGG-based network analysis 

using ClueGO and CluePedia confirm the high 

quality of the identified gene expression cluster 

structure. Each cluster exhibits a functionally 

coherent core, with dominance of specific groups of 

signaling, metabolic, or immunological pathways. 

This supports the internal homogeneity and 

biological specialization of each gene group. Given 

that the dataset consists of transcriptomic profiles 

from patients with diverse cancer types, these 

distinct functional signatures are not random – they 

reflect key biological programs linked to specific 

pathophysiological conditions. 

Thus, KEGG-based network analysis not only 

complements GO and Reactome enrichment but also 

confirms that gene expression clustering captures 

deeply rooted molecular mechanisms underlying 

tumor development. The resulting structure is both 

statistically sound and biologically relevant, 
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demonstrating its potential utility in diagnostics, 

feature selection, and bioinformatic modeling of 

cancer heterogeneity. 

CONCLUSIONS 

This study presents an integrative approach for 

the post-clustering biological interpretation of gene 

expression data using statistical enrichment and 

network-based visualization. Gene expression 

profiles from patients with 13 types of cancer and a 

reference cohort were clustered using the Self-

Organizing Tree Algorithm (SOTA) in combination 

with spectral consensus clustering. The resulting 

four-cluster structure was subsequently validated 

through multi-database functional enrichment 

analysis, including Gene Ontology, KEGG, and 

Reactome, as well as graph-based modeling in 

Cytoscape using ClueGO and CluePedia. 

The findings demonstrate a high degree of 

concordance between enrichment sources, 

confirming that each cluster represents a biologically 

coherent module with distinct functional signatures. 

These signatures span neuronal signaling, immune 

response, translational regulation, and inflammation-

associated pathways. Such clear functional 

specialization supports the reliability of the 

clustering method and underlines the internal 

consistency of the identified transcriptomic patterns. 

Moreover, KEGG-based network analysis 

allowed for visual dissection of functional modules 

within each cluster, highlighting central pathway 

hubs such as Circadian entrainment, NF-kappa B 

signaling, and MicroRNAs in cancer. The functional 

coherence and specificity of the networks reinforce 

their potential utility for downstream applications in 

machine learning, diagnostic rule generation, and 

automated feature extraction. 

From the perspective of information 

technologies, the proposed approach focuses on the 

interpretation stage, linking unsupervised clustering 

results with biological knowledge bases through 

statistical and network-based analysis. This 

contributes to interpretable modeling of 

transcriptomic heterogeneity and enhances the 

explainability of computational results. 

Future research will concentrate on integrating 

these biologically validated clusters into 

classification pipelines, combining functional 

interpretation with predictive modeling to improve 

cancer subtype diagnosis and support personalized 

treatment strategies. 
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АНОТАЦІЯ 
 

Кластеризація профілів експресії генів є ключовим методом для виявлення прихованих біологічних структур і 

диференціації підтипів захворювань у високорозмірних біомедичних наборах даних. Проте перехід від кластерних структур 

до біологічно значущих висновків потребує інтегративних аналітичних стратегій, що виходять за межі неконтрольованого 

навчання. У цьому дослідженні представлено новий інтегративний обчислювальний підхід, який робить акцент на 

посткластерній інтерпретації результатів шляхом поєднання статистичного функціонального збагачення з мережевим 

моделюванням. Кластери профілів експресії генів, попередньо виявлені у пацієнтів із різними типами раку, були 

проаналізовані з використанням баз даних Gene Ontology, Kyoto Encyclopedia of Genes and Genomes  та Reactome. 

Збагачення виконувалося інструментом g:Profiler, що дозволило виявити статистично значущі біологічні процеси, 

молекулярні функції, клітинні компоненти та сигнальні шляхи в межах кожного кластера. Для візуалізації та поглибленої 

інтерпретації функціональних категорій застосовано програмне середовище Cytoscape з модулями ClueGO та CluePedia, які 

формують функціональні мережі та демонструють взаємозв’язки між генами і біологічними термінами. Новизна роботи 

полягає у системному поєднанні статистичних методів функціонального збагачення та графового представлення, що 

забезпечує як обчислювальну строгість, так і біологічну інтерпретованість. Запропонований підхід продемонстрував, що 

кожен кластер має відмінні функціональні підписи (імунна відповідь, метаболічні шляхи, репарація ДНК, регуляція 

клітинного циклу тощо), що підтверджує його здатність вилучати біологічно узгоджені знання зі складних 

транскриптомних даних. У підсумку дослідження пропонує інноваційну стратегію посткластерної інтерпретації, яка 

поєднує машинне навчання без учителя та функціональну геноміку. Такий підхід підвищує пояснюваність обчислювальних 

результатів і може бути застосований для стратифікації захворювань, відкриття біомаркерів та у персоналізованій медицині. 

Ключові слова: обчислювальний аналіз біологічних даних; біоінформатика; інтегративний аналіз; дані експресії 

генів; посткластерна інтерпретація; функціональне збагачення; онтологія генів ; KEGG; reactome; cytoscape; мережевий 

аналіз 
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