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ABSTRACT

The article is devoted to methods for constructing GL-models of fault-tolerant multiprocessor systems. GL-models can be used
as behavioral models of such systems under failure flows to evaluate their reliability metrics through statistical experiments. The
study considers two types of systems: consecutive two-dimensional systems and mixed-type systems. A consecutive two-dimensional
system is defined as one in which components are arranged in the form of a rectangular matrix, and the system fails when a
rectangular block of a certain size appears, consisting entirely of failed components. A mixed-type system fails if at least one of the
following conditions is met: a specified number of arbitrary components have failed; a specified number of consecutive components
have failed; or a rectangular block of a certain size, consisting entirely of failed components, appears within the component matrix.
Currently, there are no formalized methods for constructing GL-models for the aforementioned types of systems. The objective of
this work is to develop a universal method for constructing GL-models for both consecutive two-dimensional systems and mixed-
type systems. It is shown that, to construct a GL-model for such a system, it is sufficient to determine the maximum number of failed
components under which the system remains operational. Based on this threshold, a basic system model is constructed without
considering additional failure conditions. Then, all combinations of component failures that lead to system failure are identified. The
basic model is subsequently weakened at the vectors corresponding to these critical failure combinations. This paper presents, for the
first time, an algorithm for constructing GL-models for consecutive two-dimensional systems and mixed-type systems. In addition, it
introduces methods for calculating the maximum allowable number of component failures under which the system remains
functional, as well as estimating the total number of failure combinations that result in system failure. Experimental results confirm
that the proposed models adequately represent the real behavior of such systems under failure flows. Examples are provided to
illustrate the GL-model construction process for both of the aforementioned system types.
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INTRODUCTION computational complexity. Such CS are based on
microprocessor systems capable of receiving signals
from control devices, sensors, or monitoring systems,
processing them, and generating appropriate control
signals depending on the received information.
Failures of control systems in fields such as
aviation, space industry, energy, and critical
infrastructure objects can cause significant material
damage and financial losses. Equally critical are
failures in CS for wvehicles and aircraft using

Human involvement in the control of complex
systems has significantly reduced by modern
automated control systems (CS) [1], [2]. The reduced
influence of the human factor has improved the
stability of such systems, and the operator has been
freed from monotonous routine tasks. Moreover, the
performance of such systems has significantly
increased, allowing them to solve problems with high

autopilots. Since these systems operate autonomously
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from the environment, the failure of a component can
lead to the loss of the vehicle or even fatal
consequences.

Therefore, it is essential for the above-mentioned
systems to be capable of continuously performing
their specified functions for a certain period under
defined conditions. In other words, a certain level of
reliability must be ensured for such systems.

However, failures can occur even in the most
reliable systems. Thus, fault tolerance plays a vital
role — namely, the system’s ability to maintain
operability or quickly recover in the event of partial
failures.

Given the critical importance of maintaining the
required level of reliability in such systems, fault-
tolerant multiprocessor systems (FTMS) are used to
build their CS. Such systems consist of many
processors and can continue operating even when
some of them fail. In the design of FTMS, significant
attention is paid to reliability and safety calculations.

LITERATURE REVIEW AND PROBLEM
STATEMENT

A fault-tolerant multiprocessor systems is
referred to as basic if it continues to operate when
the number of failures does not exceed m, or, in
other words, when the number of functioning
processors is at least » — m, where n is the total
number of processors in the system. Non-basic
systems, in contrast, can demonstrate different
behavior under the same number of failures,
depending on their combination: the system may fail
for one failure combination and remain operable for
another combination of failures of the same
multiplicity. In several studies, basic systems are
referred to as k-out-of-n: F or k-out-of-n:G systems —
such systems fail when k components fail, or,
conversely, remain operational when k components
continue to function. In this paper, the notation k-
out-of-n will refer to k-out-of-n:F systems. It is
important to note that many real-world systems are
not basic.

There exists a wide range of analytical methods
for evaluating the reliability of both basic and non-
basic systems. Depending on the specific
configuration — and, accordingly, the conditions
under which the system fails — the following types of
systems can be distinguished: k-out-of-n systems [3],
[4], [5]; consecutive-k-out-of-n [6], [7], [8];

consecutive-k-out-of-n [15], [16], [17], [18]; (n, f, k)
systems [19], [20], [21]; (n, f, k) systems [20], [21];
m-consecutive-k, I-out-of-n [22], [23], [24]; kc-out-
of-n [17], [18]; consecutive-(r, s)-out-of-(m, n) [25],
[26], [27]; consecutive-k.-out-of-n, [28]; and others.
However, the main drawback of analytical
approaches is the need to develop new methods each
time the failure condition changes, or new
conditions are introduced.

In addition to analytical methods for evaluating
the reliability of FTMS, there are also methods
based on statistical experiments with models of
system behavior in the failure flow. Despite the
drawback of such methods — namely, the accuracy of
the reliability parameter estimate depends on the
number of experiments — this approach is considered
universal. GL-models [29], [30] can be used as
models of FTMS behavior in the failure flow. A GL-
model is a undirected graph in which each edge is
assigned a predefined Boolean function. The
Boolean function takes arguments x; (elements of the
system state vector), each of which represents the
state of a corresponding processor in the system. The
value of x; is 1 if the processor is operational, and 0
if the processor has failed. If the Boolean function
assigned to an edge evaluates to O, the edge is
removed from the graph. The loss of graph
connectivity corresponds to the failure of the entire
system.

Like FTMS, GL-models can be classified as
basic or non-basic. A basic GL-model corresponds to
the behavior of a system in the failure flow that
consists of n components and remains operational if
no more than m failures occur (n > m). Accordingly,
the graph of a basic GL-model loses connectivity
when the system state vector contains m + 1 or more
zZeros.

A non-basic GL-model can be obtained by
modifying a basic model. As a result, the model's
behavior changes compared to the basic model on
certain system state vectors, and the model
accurately reflects the system’s behavior in the
failure flow. A change in model behavior on a
specific state vector is referred to as the blocking of
that vector. According to [31], we consider that a
model K(m, n) can be modified either by weakening
— so that its graph loses connectivity on some

consecutive-k-within-m-out-of-n  [9], [10], [11]; Vectors C(_)ntaining m or fewer zeros — or _by
consecutive-k-out-of-r-from-n [12], [13], [14]; m- Strengthening, ~ meaning the graph  retains
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connectivity on some vectors containing more than
m zeros. A system can be modified in several ways:
by changing the expressions of the edge functions,
by altering the graph structure, or by combining both
approaches.

When additional system failure conditions are
introduced — such as the failure of a specific group
of processors or the failure of any sequence of k
consecutively connected processors — it is relatively
easy to represent these conditions in a GL-model,
whereas analytical methods may require significant
recalculations. It is also fairly straightforward to
construct a GL-model for a system composed of
subsystems, each of which fails under different
conditions, while developing an analytical method
for such a system can prove to be a rather complex
task.

Despite the universality of GL-models and the
ubiquity of non-basic k-out-of-n systems, there is no
universal method for constructing GL-models for
these types of systems. Thus, the aim of this work is
to develop methods for constructing GL-models for
certain types of non-basic k-out-of-n systems.

PURPOSE AND OBJECTIVES OF THE
RESEARCH

In [32], methods for constructing GL-models
were proposed for consecutive-k-out-of-n and
(n, f, k) systems. However, systems of the
consecutive-(r, s)-out-of-(m, n) type [25], [26], [27]
were not considered in that study, leaving open the
question of whether GL-models can be constructed
for this type of system. The consecutive-(r, s)-out-
of-(m, n) system reflects a two-dimensional
arrangement of processors, as, for example, in
multiprocessor matrix structures. This type of
system allows for more complex failure conditions
compared to classical configurations such as
consecutive-k-out-of-n or k-out-of-n.

Mixed systems that combine the properties of
several types of systems deserve special attention.
An example of such a system is a combined system
of the k-out-of-n, consecutive-k-out-of-n, and
consecutive-(r, s)-out-of-(m, n) types [33]. Since the
failure of such a system can be caused by the
fulfillment of one of three different conditions, the
calculation of its reliability indicators is more
complicated compared to systems that have only one
type of failure condition. Real-world systems [33]
may be of a mixed type, which makes the analysis of

such systems relevant from both theoretical and
practical perspectives.

Therefore, the purpose of the study is to create
universal methods for constructing GL-models for
such type of systems as consecutive-(r, s)-out-of-
(m, n) systems and for mixed of the k-out-of-n,
consecutive-k-out-of-n, and consecutive-(r, s)-out-
of-(m, n) systems. To this end, formulae for
calculating the model parameters will be derived,
algorithms for constructing GL-models for the
aforementioned types of systems will be developed,
and the adequacy of these models in representing
system behavior under failure flow will be
experimentally assessed.

MLE-MODELS

A GL-model of a basic system consisting of N
processors that remain operational under no more
than m failures will be denoted as K(m, N). The
method for constructing GL-models for consecutive-
(r, s)-out-of-(m, n) systems are based on the use of
MLE-models (minimum lost edges) [34]. In [32], a
method for constructing a GL-model for a
consecutive-k-out-of-n system is described, which
also uses on MLE-models as its basis. Therefore, the
method for constructing a GL-model for a mixed
system of the k-out-of-n, consecutive-k-out-of-n, and
consecutive-(r, s)-out-of-(m, n) types will also be
based on MLE-models.

One of the features of MLE-models is that the
model's graph loses exactly one edge when m
failures occur, and exactly two edges when m + 1
failures occur. Since the graph of a basic model is
cyclic, the graph loses connectivity when m + 1
failure occur. In turn, the graph does not lose any
edges if the number of failures is less than m. The
number of lost edges can be calculated using the
formula:

0,if  <m
[-m+Llifl>m

y(m,) ={ 1)

The total number of edges in the graph — and,
accordingly, the number of edge functions — can be
calculated using formula [35]:

p(mny=n-m+1. 2
COMMON APPROACH
Let's consider a common approach for

constructing GL-models of consecutive-(r, s)-out-of-
(m, n) systems and mixed systems. We begin by
determining the maximum number of failures under
which the system remains operational. It is easy to
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observe that for a consecutive-(r, s)-out-of-(m, n)
system, the maximum number of failures under
which the system remains operational can be
achieved when the system is conditionally divided
into blocks of size rxs, assuming that only one
functioning element remains in each such block. For
a mixed system, it is sufficient to calculate the
maximum allowable number of failures for each
condition separately (M:, M. Ms) and determine
Mmin:

Mmin =min(M1,M2,M3). (3)

Next, we construct the MLE-model K(Mmin, N).

The resulting MLE-model is modified to take
into account additional system failure conditions:
failure of a block of elements of size rxs, failure of k
consecutive elements, etc. To do this, we identify the
vectors on which the graph must lose connectivity
and block them by weakening the model. This can
be done by modifying the expressions of the model's
edge functions, altering the structure of its graph, or
by combining both approaches. The resulting GL-
model will correspond the behavior of the given
system in the failure flow.

CONSECUTIVE-(R, S)-OUT-OF-(M, N)
SYSTEMS

Consecutive-(r, s)-out-of-(m, n) systems are a
generalization of k-out-of-n systems. In fact, such a
system can be viewed as a two-dimensional
modification of a consecutive-k-out-of-n:F system,
i.e.,, a system consisting of n elements that fails
when k consecutive elements fail. In the case of a
consecutive-(r, s)-out-of-(m, n):F system, the system
consists of m rows and n columns. The failure
condition for such a system is the failure of a block
of elements of size rxs (where 1 <r<m, 1 <s<n).
A consecutive-(r, s)-out-of-(m, n):G  system, in
contrast, continues to function only if there exists at
least one block of size rxs in which all elements
remain operational. In this paper, we consider
consecutive-(r, s)-out-of-(m, n):F systems, and we
will refer to them simply as consecutive-(r, s)-out-
of-(m, n).

To construct an auxiliary MLE-model K(M, N),
it is necessary to determine the maximum allowable
number of failures M under which the system
remains operational. The value of the maximum
number of failures is not directly derived from the
parameters of the consecutive-(r, s)-out-of-(m, n)
model, so it must be calculated before building the
model.

Theorem 1. The maximum allowable number
of failures for a consecutive-(r, s)-out-of-(m, n)
system is equal to:

M=mxn—{?J>{2J. (4)

Proving. We will conditionally divide the entire
system into rxs blocks. For the system to remain
operational, each rxs block must contain at least one
functioning element. To achieve this, the functioning
elements can be placed at intervals of r vertically

and s horizontally. As a result, we obtain LEJXPJ
r s

functioning elements. The total number of elements
in the system is mxn. Subtract the number of
functioning elements from the total to determine the
number of failed elements:

mxn_mxm, (5)

and this gives us M — the maximum number of failed
elements under which the system remains
operational.m

Let's look at an example. Suppose we are given
a consecutive-(3, 4)-out-of-(7, 7) system, i.e., m =n
=7, r =23, s=4. We will now determine the value of
M:

M =7x7—EJxHJ=4g—2x1=47. (6)

The system can be schematically represented as
a 7x7 table, where each cell represents the state of a
corresponding processor. Table 1 shows such a
system under the condition that all its processors are
functioning.

As shown, M = 47, meaning that the system
under consideration can function even if 47 out of 49
elements fail. Table 2 provides an example of such a
situation. As can be seen, the system indeed contains
no 3x4 blocks composed entirely of failed elements.

After determining the maximum number of
failures under which the system remains operational,
we can construct the MLE-model K(M, mxn), i.e.
K(47,49). The resulting MLE-model is then
weakened on all failure blocks of size rxs (i.e., 3x4)

The number of such blocks can be determined
using the formula:

c=(m—-r+)xm—-s+1). (7

Theorem 2. To weaken the basic MLE-model
on vectors that contain zeros at positions
corresponding to a block of rxs elements, it is
sufficient to multiply any two edge functions of the
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GL-model by the expression f(X) — the conjunction
of all possible disjunctions of elements forming rxs
blocks.

Proving. For each block of processors of size
rxs, we construct a disjunction:

Di,j :Xi,j VXi,j+1V"'VXi,j+sVXi+1,j \Y4
; (8)
VXigg j+r VoV Xigr eV Xigr s
D :v=+r—1 V|_+s—l X

i j i

It is clear that Di; will take the value O if and
only if all variables representing the states of the
corresponding processors take the value 0 — which
corresponds to the situation where all these
processors have failed.

We combine the disjunctions of all rxs blocks
into a conjunction:

f’ = DL]_ A D1,2 VANTTWAN Dl,m7r+l A D2,1 VAN
/\D2’2 VANPVAN D2,m—r+1/\"'/\ Dn—s+1,l/\ (9)
ADy s412 Ao ADpsiimoran

In other words,

m-r+l1  n-s+1
f'=/\p:1 /\q:]_ DI J =
_/\m—r+l /\n—s+1 vi+r—1 i+s-1, (10)
—p=l q=1 I=p 1= “n1)

As can be seen, if all processors in at least one
block fail, the conjunction f* will take the value 0,
and if there are no such blocks, /" will take the
value 1.

Multiply any two edge functions of the model
by the expression /. Thus, if all processors in at least
one block fail, f* will take the value 0, and
consequently, both modified edge functions will also
take the value 0, resulting in the exclusion of these
two edges from the graph. The loss of at least two
edges in a cyclic graph leads to a loss of
connectivity in the model’s graph, which accurately
corresponds to the system’s failure.

If the system contains no block composed
entirely of failed processors, then 7 = 1, and the
modified functions will take the same values as they
did before the modification. In this case, the
behavior of the model will remain unchanged. m

It is worth noting that weakening the model by
modifying any two of its edge functions, although it
changes the model so that it corresponds to a given
system, this approach is not always optimal and
requires further research.

COMBINED K-OUT-OF-N,
CONSECUTIVE-K-OUT-OF-N AND
CONSECUTIVE-(R, S)-OUT-OF-(M, N)
SYSTEMS

The system considered above, although not a
basic system — since it can operate with varying
numbers of functioning components — still fails
when a single condition is met: the failure of a
cluster of elements of size rxs. However, real-world
systems are often more complex and may fail under
multiple conditions.

For example, in [33], the system consists of
elements arranged in multiple rows. The system has
m rows, each containing n elements.

The described system fails when any of the
following three conditions is met:

1) k-out-of-n — failure of a fixed number of any
elements. Essentially, this condition describes the
behavior of a basic system. In [33], an example is
given of a system that fails when 10 percent or more
of the elements fail;

2) Consecutive-kc-out-of-n  — failure of k
consecutive elements in a single row. That is, the
entire system fails if k consecutively connected
elements fail in any one row;

3) Consecutive-(r, s)-out-of-(m, n) — failure of
a cluster of elements of size rxs.

It should be noted that in [33] k-out-of-n:F,
consecutive-kc-out-of-n:F, and consecutive-(r, s)-
out-of-(m, n):F  systems type are considered.
However, for the sake of brevity, we will refer to
these system types simply as k-out-of-n,
consecutive-ke.-out-of-n, and consecutive-(r, s)-out-
of-(m, n), respectively, keeping in mind that all these
types describe conditions under which the system
fails: failure of any k components, failure of k.
consecutive components, or failure of a block of
components of size rxs.

Table 1. A schematic representation of a
consecutive-(r, s)-out-of-(m, n) system with
m=n=7;,r=3;s=4

1 /1 (1 (1 |1 |1 |1
1 /1 (1 (1 |1 |1 |1
1 /1 (1 (1 |1 |1 |1
1 /1 (1 (1 |1 |1 |1
1 /1 (1 (1 |1 |1 |1
1 (1 (1 (1 |1 |1 |1
1 (1 (1 (1 |1 |1 |1

Source: compiled by the authors
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Table 2. An example of a maximum failure
configuration under which the system remains

operational
0O |0 |O O |O |O (O
0O |0 |O O |O |O (O
0O |0 |0 |2 |0 |0 |O
0O |0 |O O |O |O (O
0 |0 |O O |O|O (O
0O |0 |0 |2 |0 |0 |O
0 |0 |O O |O |O|O

Source: compiled by the authors

Let's start building a GL-model by analyzing
the given conditions. First, determine whether the
conditions are mutually consistent. It is known that
the system fails when k components fail.

Clearly, under this condition, the maximum
allowable number of failures is:

M=n-k+1. (12)

It is also possible to determine the maximum
allowable number of failures Mgrs under which the
system remains operational for the consecutive-
(r, s)-out-of-(m, n) condition using formula (4). In
addition, [32] describes a method for determining
the maximum allowable number of failures for the
consecutive-k-out-of-n condition. According to this
condition, failures in each row are considered
separately, since the system fails when k.
consecutive components fail, and components in
different rows cannot be consecutive. Therefore, we
calculate the maximum allowable number of failures
per row and multiply the resulting number by m —
the number of rows in the system. The resulting
number, Mc, will be the maximum allowable number
of failures wunder the consecutive-k-out-of-n
condition. Thus, the minimum of M, Mc, and Mgs
will represent the overall maximum allowable
number of failures.

It is important to note that the value of k. must
be greater than s from the consecutive-(r, s)-out-of-
(m, n) condition, i.e., greater than the number of
consecutive failed elements in each row of the block.
Otherwise, the  consecutive-(r, s)-out-of-(m, n)
condition may be completely ignored, since
regardless of how many rows of a block contain s
failures, the system will fail anyway due to the
failure of k; <'s consecutively connected elements.

After analyzing all system failure conditions
and determining the maximum allowable number of
failures, we construct the MLE-model. For the
consecutive-kc-out-of-n  and consecutive-(r, s)-out-

of-(m, n) conditions, we determine the vectors that
cause system failure. The MLE-model is then
weakened on all identified vectors. The resulting
GL-model will correspond to the mixed system.

ALGORITHM

Thus, to summarize the above, the general
algorithm for constructing GL-models for systems of
the consecutive-(r, s)-out-of-(m, n) type, as well as
for mixed systems of the k-out-of-n, consecutive-k-
out-of-n, and consecutive-(r, s)-out-of-(m, n) types,
is as follows:

1) determine the maximum allowable number
of failures M under which the system remains
operational. If there is more than one failure
condition, M is taken as the minimum among the
corresponding values calculated for each condition
individually;

2) construct an auxiliary MLE-model of the
basic system, using M as the allowable number of
failures;

3) identify all failure combinations that cause
the system to fail but which are not reflected on
MLE-model;

4) weaken the model on the system state
vectors corresponding to the failure combinations
identified in the previous step.

EXAMPLES

Example 1. Consider a linear consecutive-
(r, s)-out-of-(m, n) system. An example of such a
system may be a system composed of sensors and
processors. The processors are arranged in a matrix
with m rows and n columns. Each sensor is
connected to a block of processors of size rxs. Each
processor is connected to an external node as well as
to all neighboring processors. A processor may be
connected to multiple sensors. In the reliability
analysis of the system, external nodes will not be
taken into account (as they introduce additional
failure conditions). Thus, the system fails when all
elements in a block of size rxs fail.

Suppose a consecutive-(r, s)-out-of-(m, n) is
given,wherem=3,n=4,r=2,s=2 (Fig. 1).

Let's find the maximum allowable number of
failures using formula (4):

M =3x4—BJxEJ=1z—1x2=1o. (12)

For example, the system will remain
operational under the failure configuration shown in
Table 3. Let's construct MLE-model K(10, 12).
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Fig. 1. An example of a consecutive-(r, s)-out-of-(m, n) system with
m=3;n=4;r=2;s=2
Source: compiled by the authors

Define the edge functions and the graph

structure (Fig. 2):

VXg v Xg v X10X1%2 ) (X7 v Xg) (X7 Xg v
VXg) v (X10 v X41)(X10X11 V X12)) (X7 XgXg v
VX VX1V X)),

A((X VX)) (X Xo V X3) V X4 V X5V Xg) V
V(X7 v Xg v Xg v (X0 v X11)(X10%11 V X12)) A
A(X7 v Xg)(X7X3 v Xg) Vv X410 V X11 V Xq2);
A X v X3) v (X4 V X5)(Xe X7 v Xg)) A
A(XXoXg V Xq V X5V Xg) V X7 V Xg V Xg V

Table 3. An example of a maximum failure
configuration under which the system remains
operational

Source: compiled by the authors

As the next step, we modify the GL-model to

take into account the system failure condition due to
the failure of a block of elements of size rxs. To do
this, we weaken the obtained model on the vectors
corresponding to all possible combinations of failure
blocks of size rxs. According to (7), the number of
such combinations is:

c=(3-2+D)x(4-2+1)=6.  (13)

The above mentioned vectors are shown in Table 4.

fi

Fig. 2. The graph of the GL-model K(10, 12)

Source: compiled by the authors

In this example, the model will be weakened by

modifying the expressions of the edge functions. The
function 7" represents all possible combinations of
rxs blocks that cause the system to fail:
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A(X3V Xg V X7V Xg)(X5 Vv Xg V Xg V X10) A

Table 4. All vectors corresponding to a failed
block of elements of size rxs

XL | X2 | X3 | X4 | X5 | X6 | X7 | X8 | Xo | X10 | X1z | X12
ojo|j1y1j010|12}1]1 1 1 1
i1(0(0(1}j1|0|0|1]1 1 1 1
i1(1(0(0|1|1|0|0]1 1 1 1
i1j1}j1,1j0j0}1)|1]0 0 1 1
111110011 0 0 1
11,1111 0|0]|1 1 0 0

Source: compiled by the authors

Modify the functions f; and f, by multiplying their
expressions by 1"

fll:(lexzvx3vx4vX5vX6v(X7v
VXg V Xg V X30%1%12 )((X7 v Xg) (X7 Xg v
VXg) Vv (Xqg V X11)(X0Xa1 V X12)) (X7 XgXg v
VX V X1 V X (X v Xo v X5 Vv Xg )(Xo v
VX3V Xg VX7) A(Xg VvV Xq Vv X7 Vv Xg)(X5 Vv
VXg V Xg V X10) A (Xg Vv X7 V Xig Vv X1) (X7 v
VXg VX1 V Xi2));

fo =((% v Xo v X3 v (X4 Vv X5) (X4 X5 V X5)) A
A(X VX)) (XX V X3) V Xg V X5V Xg) V

V(X7 v Xg v Xg v (Xqg v Xq1) (X101 V X12)) A
A(X7 v %g)(X7Xg Vv Xg) V X30 V X1 V X12)) A
A((X VX9 Vv X5V Xg)(Xo V X3V Xg V X7) A
A(X3 V Xg V X7 V Xg) A (X5 V Xg V Xg V Xq0) A
A(Xg V X7 V X0 V Xq1) A (X7 V Xg V X1 V Xg0)).

Lets make sure that the resulting model
corresponds to the given system. For example, the
graph loses connectivity on vectors 001100111111,
111111001100, 111100110011, 110011001111. At
the same time, connectivity is preserved on such
vectors as 000001010000, 000011110000, and
010101010101.

Example 2. Consider a mixed system that
simultaneously satisfies three conditions: k-out-of-n,
consecutive-k.-out-of-n and consecutive-(r, s)-out-
of-(m, n) (Fig. 3).

Let's take the FTMS from the previous example
as a basis and modify it so that it also satisfies the
other two conditions. To meet the consecutive-k.-
out-of-n condition, we connect each row of
processors to additional nodes in such a way that
connectivity between the nodes is lost when three
consecutively connected processors fail, i.e., ke = 3.
From the previous example, we recall that m = 3,

——a

B
L =

=
B
—
B

—

Fig. 3. An example of a mixed k-out-of-n, consecutive-k.-out-of-n, and
consecutive-(r, s)-out-of-(m, n) systemwithk =7; k=3; m=3;n=4;r=2;s=2
Source: compiled by the authors
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n=4,r=2,s=2. Thus, since s < k¢, both conditions
must be taken into account.

For the k-out-of-n condition, the structure does
not need to be changed. We only specify that the
system fails, for example, when any 7 processors fail.
In other words, k = 7. Let us determine the minimum
allowable number of failures.

Recall that k = 7, therefore:

M=n-k+1=12-7+1=6. (14)

For the consecutive-(r, s)-out-of-(m, n)
condition, Mgrs was determined in the previous
example and is equal to 10.

Using the method proposed in [32], we
determine the Using the method proposed in [32],
we determine the maximum allowable number of
failures in a single row under which the system
remains operational:

|, 4]
Mr_nr—hJ_zl LJ 3. (15)

Let's compare the maximum allowable number
of failures for the different conditions:

M <M¢ <Mgg. (16)

Thus, the system fails when any M + 1 elements
fail, so we construct the MLE-model K(M, n), or
K(6, 12).

Accordingly, Mc and Mgs are not considered in
further calculations. For K(6,12), we obtain the
following edge functions:

fo=(x VX VX3V (X Vv X5)(Xa X5 Vv Xg)) A
VX7 XgXgX10X11 %12,

fa=((x v X v X3 v Xy X5 X6 ) (X1 Vv Xp) A
AKX v Xg) v (X v X5)(XgX7 v Xg)) A
A(X7Xg v Xg)(X7XgXg V X10X41X12) A

Ao v Xq1)(Xa0Xa1 V X12));

fa =04 v X v X3)(0g v X2 )(Xa X v X3) v
VXgX5Xg ) (X Xo Xz V (X4 v X5)(XgX5 v Xg)) A
AXg VX5V Xg) V(X7 v Xg v Xg ) (X7 v Xg) A
A(X7Xg v Xg) V Xg0Xq1X12) (X7 XgXg

V(%0 v Xq1)(X0X1 v X42)) (X0 V X1V X423

f5 = (X v X2 ) (XX v X3) (X1 XpXg V X4 X5Xg) A
(X4 v X5)(XgX5 v Xg)) v (X7 v Xg v Xg v
VX10X11%2 ) (X7 v Xg)(X7 X3 V Xg) v
V(X v X11)(XoX11 V X12)) v
(X7XgXg V Xq0 V X1 V X43))
fg = X Xo Xg X4 X5 Xg v
V(X7 v Xg v Xg v (X0 V X11) (XX V X2)) A
A(X7 v Xg) (X7 Xg Vv Xg) V Xqg V Xq1 V Xg2);
T2 =XV Xg VvV Xg V Xig V X1 V Xi5.
According to [32], let's determine the number
of vectors with three consecutive failures in a single
row that lead to system failure:

c, =n, —k, +1=4-3+1=2. (17)
The total number of such vectors is:
c=cC, xm=2x3=6. (18)

Table 5 lists all
consecutive failures.

We weaken the MLE-model on these vectors by
modifying the edge functions f; and f7:

vectors containing k¢

AV X9 vV Xg)(Xo V Xg V Xg ) (X5 V Xg v X7) A
A(Xg V X7V Xg)(Xg V X1 V Xq1) A

A0 V X1V X12);

(% V X VX3) (X9 V X3V X4 ) (X5 V Xg V X7) A
A(Xg v X7 vV Xg)(Xg V X0 V Xq1) A

Ao V X11 V Xg).

The modified model K'(6, 12) is obtained.

Table 5. All vectors with three consecutive failures

Xt | X2 | X3 | X4 | X5 | X6 | X7 | X8 | Xo | X10 | X11 | X12
ojojo|j1j1;1}1|1/|1 1 1 1
i1{0(0jO0O |2 |12 |1|1]|1 1 1 1
i1({1|1|1|0|0|0|1]|1 1 1 1
1({1}|1|1|1|0|0}|0]|1 1 1 1
i1({1}|1|1(|11(1|1]0 0 0 1
111111 1|1]|1 0 0 0

Source: compiled by the authors

To satisfy the consecutive-(r, s)-out-of-(m, n)
condition, we will weaken K'(6, 12) on the vectors
defined in the previous example (Table 4). To do
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this, we modify the functions f» and fs.
The resulting model, K"(6,12), will have the
following edge functions:

fl = (X V Xy V XgV Xy V X5 V Xg) A

AV X9 vV Xg)(Xo V Xg V Xg ) (X5 V Xg v X7) A
A(Xg V X7V Xg)(Xg V X1 V Xq1) A

AN(Xo v X1V X02);

fo = (v X v X5 v (X v X6)(XaXs v %)) A
A((X V X)X Xo V X3) V Xg V X5 V Xg) V

VX7 XgXgX10%41%12))((X V X v X5 v Xg ) (X v
VX3V Xg V X7) A (Xg V Xg Vv X7V Xg ) (X5 v
VXg V Xg V X10) A (Xg V X7V Xig Vv X1)(X7 v
VXg VX1V X2));

fa = (% v X2 v X3 v Xy X5 X6 ) (X1 Vv Xp) A
A(XaXo v X3) V (X4 V X5)(X4X5 V Xg)) A

A XoX3 V Xy V X5V Xg)) V(X7 V Xg) A
A(X7Xg v Xg)(X7XgXg V X10X41X12) A

Ao v X1)(Xa0Xa1 V X12));

fy =04 v X v X3)(0g v X2 )(Xa X v X3) v
VX X5 X6 ) (XX X3 v (Xg v X5)(Xg X5 V Xg)) A
AXg VX5V Xg) V(X7 v Xg v Xg)(X7 v Xg) A
N(X7Xg V Xg) V Xq0X41X12) (X7 XgXg v

V(X0 v X1) (X041 V X12))(Xa0 V X11 V X0p);
f5 = (% v X)X v X3) (XX Xz v X4 X5 X5 ) A
(X4 Vv X5)(X4%5 v Xg)) v (X7 v Xg v Xg v
VX10X11%12) (X7 v Xg)(X7Xg v Xg) v

V(X0 v X11)(X10X11 V X2)) A

(X7X3Xg V X0 V X1 V X12))

e = (XX XgXg X5 Xg v

V(X7 vV Xg Vv Xg V (X0 v Xa1)(X10%01 V X2)) A
A(X7 v Xg) (X7 Xg V Xg) V Xq0 V Xq1 V X32)) A
A((X V X9 Vv X5V Xg)(Xo V X3 V Xg V X7) A
A(X3V Xg V X7V Xg)(X5 V VX V Xg V X10) A
A(Xg V X7 v X0 Vv X1)(X7 V Xg V Xq1 V Xg2));
fo=(X; v Xg vV Xg V X V X1 V Xgp) A

(% V X VX3)(Xg V X3V X4 ) (X5 V Xg V X7) A
A(Xg V X7V Xg)(Xg V X0 V Xq1) A

A0 v X1 v X2).

Let us verify that the resulting model satisfies
the specified conditions. For instance, its graph loses

connectivity on vectors containing 7 or more zeros:
001001101001, 010001010100, 010100101001,
010110100100. The graph also loses connectivity on
vectors containing 3 zeros at positions
corresponding to consecutive elements within a
single  row: 000111111111, 111110001111,
111111111000. Additionally, it loses connectivity if
the zeros are located at positions corresponding to a
block of elements of size 2x2: 111111001100,
100110011111. At the same time, the graph retains
connectivity on vectors such as 110110011101 and
010101010101.

COMPARISON WITH CONVENTIONAL
METHODS FOR CONSTRUCTING GL-
MODEL

Since no universal method existed for
constructing GL-models for such systems — aside
from the one described above — each model had to
be developed individually, with the approach
varying depending on the system type and parameter
values.

Let us consider the system from the example to
compare the default and proposed methods. Suppose
a given system consecutive-(2, 2)-out-of-(3, 4).
According to the conventional approach we begin by
constructing a basic model. The system consists of
3 -4 =12 elements in total and can fail when at least
2 - 2 =4 elements fail (in other words it is tolerant to
3 arbitrary failures). Therefore, we construct the
basic MLE-model K(3, 12).

According to [35]:

p(m,n) =12 -3+1=10. (19)

Such a model contains 10 edges and 10 edge
functions, respectively.

However, the system does not fail if 4 or more
failed elements do not form a block of size rxs (i.e.
2x2). Thus, the model must be enhanced so that its
graph remains connected for input vectors
containing 4 or more zeros, provided that
corresponding failed processors do not form a
contiguous 2x2 block. The total number of binary
vectors containing from 4 to 10 zeros (vectors with
11 or 12 zeros are not considered, as it is
straightforward to show that the system is
guaranteed to fail in all such configuration) is:

10 (12
8 (1) o

k=4

(20)

Using an exhaustive enumeration script written
in Python, it was determined that 1051 of these
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vectors contain at least one contiguous block of
failed elements of size 2x2.

Therefore, the number of configurations with 4
or more failures that do not lead to system failure is:

3784-1051=2733. (1)

These 2733 configurations represent failure
scenarios in which the system remains operational
due to the spatial distribution of the failed elements,
i.e., no critical 2x2 failure block is formed.

The next step is to strengthen basic model
across all 2733 configurations. This means
modifying the model so that its graph maintains
connectivity under each of these failure scenarios.

It is worth recalling that, in the proposed
method, model consists only 3 edges (i.e., 70%
fewer). Also, the model must be modified by
weakening on just 6 vectors instead of strengthening
on 2733 vectors (representing a 99.78% reduction in
the number of cases to be handled).

In general, the efficiency of the proposed
method compared to the conventional approach may
differ from the results obtained in this example and
depends on the specific configuration of the system
for which the GL-model is being constructed.

CONCLUSIONS

The paper proposes methods for constructing
GL-models  for  consecutive-(r, s)-out-of-(m, n)
systems, as well as for mixed-type systems such as
k-out-of-n, consecutive-k-out-of-n, and consecutive-
(r, s)-out-of-(m, n).  In  consecutive-(r, s)-out-of-
(m, n) systems, processors are arranged in the form
of a rectangular matrix, and the entire system fails if
a rectangular block of elements of size rxs fails,
unlike basic k-out-of-n systems, which fail when any
k components fail. Mixed systems have more than
one failure condition. Three cases of such conditions
are considered: failure of a fixed number of any k
components; failure of k. consecutively connected
components in a single row; and failure of a block of
components of size rxs.

The paper presents a universal method for
calculating the maximum possible number of failed
elements under which the system remains
operational, both for consecutive-(r, s)-out-of-(m, n)
systems and for the mixed k-out-of-n, consecutive-k-
out-of-n, and consecutive-(r, s)-out-of-(m, n)
systems. For the consecutive-(r, s)-out-of-(m, n)
system, the method reduces to determining the
minimal number of functioning processors required

for the system to remain operational. For a mixed
system, the maximum allowable number of failed
components is determined separately for each failure
condition. The smallest of the obtained values
represents the maximum number of component
failures under which the system can still function.

An algorithm for constructing GL-models for
both types of systems is presented. In the general
case, any number of failure conditions can be
considered, and the proposed approach can be
applied to all of them in a similar manner.

The methods of constructing GL-models of
both system types are based on MLE-models
(minimum lost edges). Knowing the maximum
possible number of failures under which the system
remains operational, it is proposed to first build a
basic MLE-model for this failure count. The
resulting MLE-model is then weakened on the
vectors corresponding to failure configurations that
lead to system failure. MLE-models can be
weakened either by modifying the edge functions,
altering the graph structure, or combining both
approaches.

The paper demonstrates examples of GL-model
construction for consecutive-(r, s)-out-of-(m, n) and
mixed systems. Experiments have been conducted to
confirm that the obtained models correspond to the
behavior of the given systems in the failure flows.

The proposed approach can be applied not only
to fault-tolerant systems where the elements are
processors, but also to systems composed of other
types of elements.

The proposed model construction method
broadens the applicability of GL-models to
previously unaddressed classes of systems. GL-
models provide a flexible framework for
representing system behavior under failure flow
involving heterogeneous subsystems with varying
failure criteria. Additional failure conditions can be
seamlessly integrated into the GL-model. In
contrast, accommodating such conditions within
traditional analytical approaches to system reliability
assessment often necessitates substantial
recalculations or methodological modifications.

Future research may focus on alternative ways
of modifying basic MLE-models, particularly by
changing the graph structure, as well as on
constructing GL-models for other types of non-basic
systems.
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AHOTALSA

Crarts mpucBsiueHa merogam mobymoBu GL-momeneit BigMoBocTiiikux GararompouecopHux cucteMm. GL-momeni MoxyTsh
BUKOPHCTOBYBATHCS SIK MOJCJI MOBEHIHKMA TaKUX CHUCTEM Yy IOTOL[ BiJIMOB [UIsl OLIHKH IXHIX IMOKA3HHMKIB HAMiHHOCTI HUISXOM
MPOBEICHHS CTATUCTUYHUX CKCIIEPUMEHTIB. Y poOOTi pO3MISHYTO [BA TUIIM CUCTEM: MOCITIJOBHI JBOBHMIpPHI CHCTEMH Ta CHCTEMH
3Mmimanoro Tumy. [locifoBHa ABOBHUMipHA CHCTEMa — L€ CHCTE€Ma, y SIKiii KOMIIOHGHTH PO3TAIIOBAaHI y BHUIVISAI MPSIMOKYTHOI
MAaTpHIL, 1 5SKa BUXOAUTDH 3 Jady IPH MOSBI MPSIMOKYTHOrO OJOKY TEBHOTO PO3MIpY, IO MICTHUTP JIMIIIE HECTPaBHI KOMIIOHEHTH.
Cucrema 3MIIIAHOTO THUITy BHXOIWTH 3 JiaJy, SIKIIO BHKOHYEThCS XO4a O OIHA 3 HACTYIHHX YMOB: BiJIMOBMJIA 33/IaHa KiJIBKICTH
JIOBIIbHUX KOMIOHEHTIB; BiJIMOBHJIA 3a/laHa KiJbKICTh MOCIiJOBHHX KOMIIOHEHTiB; ab0 y MPSIMOKYTHId MaTpHIli KOMIIOHEHTIB
3’SIBUBCSl MPSIMOKYTHHUI OJIOK MEBHOTO PO3MIpY, SKHU CKIANA€ThCsl JHIIEe 3 HEeCHpaBHUX KOMIOHEeHTiB. Ha chorommi BiacyTHi
¢dopmanizoBani Meroau modynoBu GL-moneneit st 3a3Ha4eHUX TUMIB cucTeM. MeToro JaHoi poOOTH € CTBOPEHHS YHiBEpCaIbHOIO
Merony nodynosu GL-mozneneii sk it MOCIiJOBHUX ABOBUMIPHHMX CHCTEM, TakK i JUIs CHCTEM 3MilllaHOro TUIly. [lokazaHo, 1o s
nobynoBu GL-Mozeni Takoi CHCTEMM JOCTaTHHO BU3HAYMTH MAaKCUMAlIbHY KiBKICTh HECIIPABHMX KOMIIOHEHTIB, 3a SIKOi CHCTeMa
36epirae poboro3marHicTe. Ha OCHOBI 11b0r0 3Ha4YeHHs (opMyeThcs 6a3oBa MOIENIb CHCTeMHU 0e3 ypaxXyBaHHS JOJATKOBHX YMOB
BimmoBu. [lami BHW3HauaroTbes Bci KoMmOiHamii BiMOB KOMIIOHEHTIB, IIO MPH3BOIATH 1O BiAMOBH cHCTeMH. ba3oBa Moxmeib
MocnalNIoeThC Ha BEKTOPAaxX, fAKi BIANOBINAIOTH MM KPUTHYHHUM KOMOiHamisM. Y poOOTi BIepIIe MpeICTaBICHO alrOpHTM
nobynosu GL-monenelt s NOCTiOBHUX JBOBHMIPHUX CHCTEM Ta CHCTEM 3MimaHoro tumy. OKpiM TOro, 3aIpONOHOBAHO METOIH
PO3paxyHKy MaKCHMaJIbHO JOMYCTHMOI KiJBKOCTI BiJIMOB KOMIIOHEHTIB, 32 SIKOi CHCTEMa 3alHIIA€ThC POOOTO3MATHOIO, a TaKOXK
OILIHKM 3arajibHOi KiNBKOCTI KOMOiHAIiii BiIMOB KOMIOHEHTIB, IO MpPU3BOMATH OO ii BiAMOBH. Pe3ynpraTm eKCIiepUMEHTIB
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MiATBEPDKYIOTH, IO 3alPOIOHOBAHI MOZAENI aJeKBAaTHO BiJOOpaXkaloTh peasibHy IOBEMIHKY CHCTeM y mortoui BimmoB. Hasenmeno
TIPUKJIA/N, IO LTIOCTPYIOTH Iporiec nobynosn GL-Moneneit ayst ciucreM 000X BUIE3a3HAYEHUX THIIIB.

Knrouoei cnoea: GL-moneni; HeOa30Bi BiAMOBOCTIHKI 6araronporecopHi CHCTEMH; ITOCTIOBHI ABOBUMIPHI CHCTEMH; CHCTEMHU
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