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ABSTRACT 

The article is devoted to methods for constructing GL-models of fault-tolerant multiprocessor systems. GL-models can be used 
as behavioral models of such systems under failure flows to evaluate their reliability metrics through statistical experiments. The 
study considers two types of systems: consecutive two-dimensional systems and mixed-type systems. A consecutive two-dimensional 
system is defined as one in which components are arranged in the form of a rectangular matrix, and the system fails when a 

rectangular block of a certain size appears, consisting entirely of failed components. A mixed-type system fails if at least one of the 
following conditions is met: a specified number of arbitrary components have failed; a specified number of consecutive components 
have failed; or a rectangular block of a certain size, consisting entirely of failed components, appears within the component matrix. 
Currently, there are no formalized methods for constructing GL-models for the aforementioned types of systems. The objective of 
this work is to develop a universal method for constructing GL-models for both consecutive two-dimensional systems and mixed-
type systems. It is shown that, to construct a GL-model for such a system, it is sufficient to determine the maximum number of failed 
components under which the system remains operational. Based on this threshold, a basic system model is constructed without 
considering additional failure conditions. Then, all combinations of component failures that lead to system failure are identified. The 
basic model is subsequently weakened at the vectors corresponding to these critical failure combinations. This paper presents, for the 

first time, an algorithm for constructing GL-models for consecutive two-dimensional systems and mixed-type systems. In addition, it 
introduces methods for calculating the maximum allowable number of component failures under which the system remains 
functional, as well as estimating the total number of failure combinations that result in system failure. Experimental results confirm 
that the proposed models adequately represent the real behavior of such systems under failure flows. Examples are provided to 
illustrate the GL-model construction process for both of the aforementioned system types. 

Keywords: GL-models; non-basic fault-tolerant multiprocessor systems; consecutive two-dimensional system; mixed-type 
systems; reliability assessment 
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INTRODUCTION 

Human involvement in the control of complex 
systems has significantly reduced by modern 

automated control systems (CS) [1], [2]. The reduced 

influence of the human factor has improved the 
stability of such systems, and the operator has been 

freed from monotonous routine tasks. Moreover, the 

performance of such systems has significantly 

increased, allowing them to solve problems with high  
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computational complexity.  Such CS are based on 

microprocessor systems capable of receiving signals 
from control devices, sensors, or monitoring systems, 

processing them, and generating appropriate control 

signals depending on the received information. 
Failures of control systems in fields such as 

aviation, space industry, energy, and critical 

infrastructure objects can cause significant material 

damage and financial losses. Equally critical are 
failures in CS for vehicles and aircraft using 

autopilots. Since these systems operate autonomously 

and make decisions based solely on information 
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from the environment, the failure of a component can 

lead to the loss of the vehicle or even fatal 

consequences. 

Therefore, it is essential for the above-mentioned 
systems to be capable of continuously performing 

their specified functions for a certain period under 

defined conditions. In other words, a certain level of 
reliability must be ensured for such systems. 

However, failures can occur even in the most 

reliable systems. Thus, fault tolerance plays a vital 
role – namely, the system’s ability to maintain 

operability or quickly recover in the event of partial 

failures. 

Given the critical importance of maintaining the 
required level of reliability in such systems, fault-

tolerant multiprocessor systems (FTMS) are used to 

build their CS. Such systems consist of many 
processors and can continue operating even when 

some of them fail. In the design of FTMS, significant 

attention is paid to reliability and safety calculations.  

LITERATURE REVIEW AND PROBLEM 

STATEMENT 

A fault-tolerant multiprocessor systems is 

referred to as basic if it continues to operate when 

the number of failures does not exceed m, or, in 

other words, when the number of functioning 

processors is at least n − m, where n is the total 

number of processors in the system. Non-basic 

systems, in contrast, can demonstrate different 

behavior under the same number of failures, 

depending on their combination: the system may fail 

for one failure combination and remain operable for 

another combination of failures of the same 

multiplicity. In several studies, basic systems are 

referred to as k-out-of-n: F or k-out-of-n:G systems – 

such systems fail when k components fail, or, 

conversely, remain operational when k components 

continue to function. In this paper, the notation k-

out-of-n will refer to k-out-of-n:F systems. It is 

important to note that many real-world systems are 

not basic. 

There exists a wide range of analytical methods 

for evaluating the reliability of both basic and non-

basic systems. Depending on the specific 

configuration – and, accordingly, the conditions 

under which the system fails – the following types of 

systems can be distinguished: k-out-of-n systems [3], 

[4], [5]; consecutive-k-out-of-n [6], [7], [8]; 

consecutive-k-within-m-out-of-n [9], [10], [11]; 

consecutive-k-out-of-r-from-n [12], [13], [14]; m-

consecutive-k-out-of-n [15], [16], [17], [18]; (n, f, k) 

systems [19], [20], [21]; ⟨n, f, k⟩ systems [20], [21]; 

m-consecutive-k, l-out-of-n [22], [23], [24]; kc-out-

of-n [17], [18]; consecutive-(r, s)-out-of-(m, n) [25], 

[26], [27]; consecutive-kr-out-of-nr [28]; and others. 

However, the main drawback of analytical 

approaches is the need to develop new methods each 

time the failure condition changes, or new 

conditions are introduced. 

In addition to analytical methods for evaluating 

the reliability of FTMS, there are also methods 

based on statistical experiments with models of 

system behavior in the failure flow. Despite the 

drawback of such methods – namely, the accuracy of 

the reliability parameter estimate depends on the 

number of experiments – this approach is considered 

universal. GL-models [29], [30] can be used as 

models of FTMS behavior in the failure flow. A GL-

model is a undirected graph in which each edge is 

assigned a predefined Boolean function. The 

Boolean function takes arguments xi (elements of the 

system state vector), each of which represents the 

state of a corresponding processor in the system. The 

value of xi is 1 if the processor is operational, and 0 

if the processor has failed. If the Boolean function 

assigned to an edge evaluates to 0, the edge is 

removed from the graph. The loss of graph 

connectivity corresponds to the failure of the entire 

system. 

Like FTMS, GL-models can be classified as 

basic or non-basic. A basic GL-model corresponds to 

the behavior of a system in the failure flow that 

consists of n components and remains operational if 

no more than m failures occur (n > m). Accordingly, 

the graph of a basic GL-model loses connectivity 

when the system state vector contains m + 1 or more 

zeros. 

A non-basic GL-model can be obtained by 

modifying a basic model. As a result, the model's 

behavior changes compared to the basic model on 

certain system state vectors, and the model 

accurately reflects the system’s behavior in the 

failure flow. A change in model behavior on a 

specific state vector is referred to as the blocking of 

that vector. According to [31], we consider that a 

model K(m, n) can be modified either by weakening 

– so that its graph loses connectivity on some 

vectors containing m or fewer zeros – or by 

strengthening, meaning the graph retains 
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connectivity on some vectors containing more than 

m zeros. A system can be modified in several ways: 

by changing the expressions of the edge functions, 

by altering the graph structure, or by combining both 

approaches. 

When additional system failure conditions are 

introduced – such as the failure of a specific group 

of processors or the failure of any sequence of k 

consecutively connected processors – it is relatively 

easy to represent these conditions in a GL-model, 

whereas analytical methods may require significant 

recalculations. It is also fairly straightforward to 

construct a GL-model for a system composed of 

subsystems, each of which fails under different 

conditions, while developing an analytical method 

for such a system can prove to be a rather complex 

task. 

Despite the universality of GL-models and the 

ubiquity of non-basic k-out-of-n systems, there is no 

universal method for constructing GL-models for 

these types of systems. Thus, the aim of this work is 

to develop methods for constructing GL-models for 

certain types of non-basic k-out-of-n systems. 

PURPOSE AND OBJECTIVES OF THE 

RESEARCH 

In [32], methods for constructing GL-models 

were proposed for consecutive-k-out-of-n and 

(n, f, k) systems. However, systems of the 

consecutive-(r, s)-out-of-(m, n) type [25], [26], [27] 

were not considered in that study, leaving open the 

question of whether GL-models can be constructed 

for this type of system. The consecutive-(r, s)-out-

of-(m, n) system reflects a two-dimensional 

arrangement of processors, as, for example, in 

multiprocessor matrix structures. This type of 

system allows for more complex failure conditions 

compared to classical configurations such as 

consecutive-k-out-of-n or k-out-of-n. 

Mixed systems that combine the properties of 

several types of systems deserve special attention. 

An example of such a system is a combined system 

of the k-out-of-n, consecutive-k-out-of-n, and 
consecutive-(r, s)-out-of-(m, n) types [33]. Since the 

failure of such a system can be caused by the 

fulfillment of one of three different conditions, the 
calculation of its reliability indicators is more 

complicated compared to systems that have only one 

type of failure condition. Real-world systems [33] 
may be of a mixed type, which makes the analysis of 

such systems relevant from both theoretical and 

practical perspectives. 

Therefore, the purpose of the study is to create 

universal methods for constructing GL-models for 
such type of systems as consecutive-(r, s)-out-of-

(m, n) systems and for mixed of the k-out-of-n, 

consecutive-k-out-of-n, and consecutive-(r, s)-out-
of-(m, n) systems. To this end, formulae for 

calculating the model parameters will be derived, 

algorithms for constructing GL-models for the 
aforementioned types of systems will be developed, 

and the adequacy of these models in representing 

system behavior under failure flow will be 

experimentally assessed. 

MLE-MODELS 

A GL-model of a basic system consisting of N 

processors that remain operational under no more 
than m failures will be denoted as K(m, N). The 

method for constructing GL-models for consecutive-

(r, s)-out-of-(m, n) systems are based on the use of 

MLE-models (minimum lost edges) [34]. In [32], a 
method for constructing a GL-model for a 

consecutive-k-out-of-n system is described, which 

also uses on MLE-models as its basis. Therefore, the 
method for constructing a GL-model for a mixed 

system of the k-out-of-n, consecutive-k-out-of-n, and 

consecutive-(r, s)-out-of-(m, n) types will also be 
based on MLE-models.   

One of the features of MLE-models is that the 

model's graph loses exactly one edge when m 

failures occur, and exactly two edges when m + 1 
failures occur. Since the graph of a basic model is 

cyclic, the graph loses connectivity when m + 1 

failure occur. In turn, the graph does not lose any 
edges if the number of failures is less than m. The 

number of lost edges can be calculated using the 

formula:  

0,
( , ) .

1,

if l m
m l

l m if l m



 

  
            (1) 

The total number of edges in the graph – and, 
accordingly, the number of edge functions – can be 

calculated using formula [35]:  

), 1.(m n n m                        (2) 

COMMON APPROACH 

Let's consider a common approach for 

constructing GL-models of consecutive-(r, s)-out-of-
(m, n) systems and mixed systems. We begin by 

determining the maximum number of failures under 

which the system remains operational. It is easy to 
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observe that for a consecutive-(r, s)-out-of-(m, n) 

system, the maximum number of failures under 

which the system remains operational can be 

achieved when the system is conditionally divided 
into blocks of size r×s, assuming that only one 

functioning element remains in each such block. For 

a mixed system, it is sufficient to calculate the 
maximum allowable number of failures for each 

condition separately (M₁, M₂, M₃) and determine 

Mmin: 

min 1 2 3min( , , )M M M M .             (3) 

Next, we construct the MLE-model K(Mmin, N).  

The resulting MLE-model is modified to take 
into account additional system failure conditions: 

failure of a block of elements of size r×s, failure of k 

consecutive elements, etc. To do this, we identify the 

vectors on which the graph must lose connectivity 
and block them by weakening the model. This can 

be done by modifying the expressions of the model's 

edge functions, altering the structure of its graph, or 
by combining both approaches. The resulting GL-

model will correspond the behavior of the given 

system in the failure flow. 

CONSECUTIVE-(R, S)-OUT-OF-(M, N) 

SYSTEMS 

Consecutive-(r, s)-out-of-(m, n) systems are a 

generalization of k-out-of-n systems. In fact, such a 
system can be viewed as a two-dimensional 

modification of a consecutive-k-out-of-n:F system, 
i.e., a system consisting of n elements that fails 
when k consecutive elements fail. In the case of a 

consecutive-(r, s)-out-of-(m, n):F system, the system 

consists of m rows and n columns. The failure 

condition for such a system is the failure of a block 
of elements of size r×s (where 1 ≤ r ≤ m, 1 ≤ s ≤ n). 

A consecutive-(r, s)-out-of-(m, n):G system, in 

contrast, continues to function only if there exists at 
least one block of size r×s in which all elements 

remain operational. In this paper, we consider 

consecutive-(r, s)-out-of-(m, n):F systems, and we 
will refer to them simply as consecutive-(r, s)-out-

of-(m, n). 

To construct an auxiliary MLE-model K(M, N), 

it is necessary to determine the maximum allowable 
number of failures M under which the system 

remains operational. The value of the maximum 

number of failures is not directly derived from the 
parameters of the consecutive-(r, s)-out-of-(m, n) 

model, so it must be calculated before building the 

model.  

Theorem 1. The maximum allowable number 

of failures for a consecutive-(r, s)-out-of-(m, n) 

system is equal to: 

.
n

M m n
m

r s

   
      

   
                   (4) 

Proving. We will conditionally divide the entire 

system into r×s blocks. For the system to remain 

operational, each r×s block must contain at least one 
functioning element. To achieve this, the functioning 

elements can be placed at intervals of r vertically 

and s horizontally. As a result, we obtain
m

r s

n   
   

   

functioning elements. The total number of elements 
in the system is m×n. Subtract the number of 

functioning elements from the total to determine the 

number of failed elements: 

,
n

m n
m

r s

   
     

   
                    (5) 

and this gives us M – the maximum number of failed 

elements under which the system remains 

operational.■ 
Let's look at an example. Suppose we are given 

a consecutive-(3, 4)-out-of-(7, 7) system, i.e., m = n 

= 7, r = 3, s = 4. We will now determine the value of 

M: 

7 7

3
7 7 49 2 1 47.

4
M

   
          

   
    (6) 

The system can be schematically represented as 

a 7×7 table, where each cell represents the state of a 
corresponding processor. Table 1 shows such a 

system under the condition that all its processors are 

functioning. 

As shown, M = 47, meaning that the system 
under consideration can function even if 47 out of 49 

elements fail. Table 2 provides an example of such a 

situation. As can be seen, the system indeed contains 
no 3×4 blocks composed entirely of failed elements.  

After determining the maximum number of 

failures under which the system remains operational, 

we can construct the MLE-model K(M, m×n), i.e. 
K(47, 49). The resulting MLE-model is then 

weakened on all failure blocks of size r×s (i.e., 3×4) 

The number of such blocks can be determined 
using the formula: 

( 1) ( 1).с m r n s                      (7)  

Theorem 2. To weaken the basic MLE-model 
on vectors that contain zeros at positions 

corresponding to a block of r×s elements, it is 

sufficient to multiply any two edge functions of the 
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GL-model by the expression f′(X) – the conjunction 

of all possible disjunctions of elements forming r×s 

blocks. 

Proving. For each block of processors of size 
r×s, we construct a disjunction: 

, , 1 , 1,

1, 1 ,

,

1 ,

...

... ...

i j i j i j s i j

i j i r i r j s

i jD x x x x

x x x

  

    

 

 

  

 


;   (8) 

1 1
, , .i r i s

i j i j i jD x      

It is clear that Di,j will take the value 0 if and 
only if all variables representing the states of the 

corresponding processors take the value 0 — which 

corresponds to the situation where all these 

processors have failed. 
We combine the disjunctions of all r×s blocks 

into a conjunction: 

1,1 1,2 1, 1 2,1

2,2 2, 1 1,1

1,2 1, 1

...

... ...

.... .

m r

m r n s

n s n s m r

f D D D D

D D D

D D

 

   

     

    

     











   (9) 

In other words, 

 

1 1
1 1

1 1 1 1
,

,

1 1 .

m r n s
p q

m r n s i r i s
p q i p j

i j

q i j

f D

x

   
 

       
   

    

   
 (10) 

As can be seen, if all processors in at least one 

block fail, the conjunction f′ will take the value 0, 
and if there are no such blocks, f′ will take the 

value 1.  

Multiply any two edge functions of the model 
by the expression f′. Thus, if all processors in at least 

one block fail, f′ will take the value 0, and 

consequently, both modified edge functions will also 

take the value 0, resulting in the exclusion of these 
two edges from the graph. The loss of at least two 

edges in a cyclic graph leads to a loss of 

connectivity in the model’s graph, which accurately 
corresponds to the system’s failure.  

If the system contains no block composed 

entirely of failed processors, then f′ = 1, and the 
modified functions will take the same values as they 

did before the modification. In this case, the 

behavior of the model will remain unchanged. ■ 

It is worth noting that weakening the model by 
modifying any two of its edge functions, although it 

changes the model so that it corresponds to a given 

system, this approach is not always optimal and 
requires further research.  

 

COMBINED K-OUT-OF-N, 

CONSECUTIVE-Kc-OUT-OF-N AND 

CONSECUTIVE-(R, S)-OUT-OF-(M, N) 

SYSTEMS 

The system considered above, although not a 

basic system – since it can operate with varying 

numbers of functioning components – still fails 
when a single condition is met: the failure of a 

cluster of elements of size r×s. However, real-world 

systems are often more complex and may fail under 
multiple conditions.  

For example, in [33], the system consists of 

elements arranged in multiple rows. The system has 

m rows, each containing n elements.  
The described system fails when any of the 

following three conditions is met:  

1) k-out-of-n – failure of a fixed number of any 
elements. Essentially, this condition describes the 

behavior of a basic system. In [33], an example is 

given of a system that fails when 10 percent or more 

of the elements fail; 
2) Consecutive-kc-out-of-n – failure of k 

consecutive elements in a single row. That is, the 

entire system fails if k consecutively connected 
elements fail in any one row; 

3) Consecutive-(r, s)-out-of-(m, n) – failure of 

a cluster of elements of size r×s. 
It should be noted that in [33] k-out-of-n:F, 

consecutive-kc-out-of-n:F, and consecutive-(r, s)-

out-of-(m, n):F systems type are considered. 

However, for the sake of brevity, we will refer to 
these system types simply as k-out-of-n, 

consecutive-kc-out-of-n, and consecutive-(r, s)-out-

of-(m, n), respectively, keeping in mind that all these 
types describe conditions under which the system 

fails: failure of any k components, failure of kc 

consecutive components, or failure of a block of 
components of size r×s.  

Table 1. A schematic representation of a 

consecutive-(r, s)-out-of-(m, n) system with 

m = n = 7; r = 3; s = 4 

1 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 1 1 1 1 1 

Source: compiled by the authors 
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Table 2. An example of a maximum failure 

configuration under which the system remains 

operational 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 1 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 1 0 0 0 

0 0 0 0 0 0 0 
Source: compiled by the authors 

Let's start building a GL-model by analyzing 

the given conditions. First, determine whether the 
conditions are mutually consistent. It is known that 

the system fails when k components fail.  

Clearly, under this condition, the maximum 
allowable number of failures is: 

1.M n k                          (11) 

It is also possible to determine the maximum 

allowable number of failures MRS under which the 

system remains operational for the consecutive-

(r, s)-out-of-(m, n) condition using formula (4). In 
addition, [32] describes a method for determining 

the maximum allowable number of failures for the 

consecutive-k-out-of-n condition. According to this 
condition, failures in each row are considered 

separately, since the system fails when kc 

consecutive components fail, and components in 
different rows cannot be consecutive. Therefore, we 

calculate the maximum allowable number of failures 

per row and multiply the resulting number by m – 

the number of rows in the system. The resulting 
number, MC, will be the maximum allowable number 

of failures under the consecutive-k-out-of-n 

condition. Thus, the minimum of M, MC, and MRS 
will represent the overall maximum allowable 

number of failures. 

It is important to note that the value of kc must 
be greater than s from the consecutive-(r, s)-out-of-

(m, n) condition, i.e., greater than the number of 

consecutive failed elements in each row of the block. 

Otherwise, the consecutive-(r, s)-out-of-(m, n) 
condition may be completely ignored, since 

regardless of how many rows of a block contain s 

failures, the system will fail anyway due to the 
failure of kc ≤ s consecutively connected elements. 

After analyzing all system failure conditions 

and determining the maximum allowable number of 

failures, we construct the MLE-model. For the 
consecutive-kc-out-of-n and consecutive-(r, s)-out-

of-(m, n) conditions, we determine the vectors that 

cause system failure. The MLE-model is then 

weakened on all identified vectors. The resulting 

GL-model will correspond to the mixed system. 

ALGORITHM 

Thus, to summarize the above, the general 

algorithm for constructing GL-models for systems of 
the consecutive-(r, s)-out-of-(m, n) type, as well as 

for mixed systems of the k-out-of-n, consecutive-k-

out-of-n, and consecutive-(r, s)-out-of-(m, n) types, 
is as follows: 

1) determine the maximum allowable number 

of failures M under which the system remains 

operational. If there is more than one failure 
condition, M is taken as the minimum among the 

corresponding values calculated for each condition 

individually; 
2) construct an auxiliary MLE-model of the 

basic system, using M as the allowable number of 

failures; 

3) identify all failure combinations that cause 
the system to fail but which are not reflected on 

MLE-model; 

4) weaken the model on the system state 
vectors corresponding to the failure combinations 

identified in the previous step. 

EXAMPLES 

Example 1. Consider a linear consecutive-

(r, s)-out-of-(m, n) system. An example of such a 

system may be a system composed of sensors and 

processors. The processors are arranged in a matrix 
with m rows and n columns. Each sensor is 

connected to a block of processors of size r×s. Each 

processor is connected to an external node as well as 
to all neighboring processors. A processor may be 

connected to multiple sensors. In the reliability 

analysis of the system, external nodes will not be 
taken into account (as they introduce additional 

failure conditions). Thus, the system fails when all 

elements in a block of size r×s fail. 

Suppose a consecutive-(r, s)-out-of-(m, n) is 
given, where m = 3, n = 4, r = 2, s = 2 (Fig. 1).  

Let's find the maximum allowable number of 

failures using formula (4): 

3 4

2
3 4 12 1 2 10.

2
M

   
          

   
  (12) 

For example, the system will remain 

operational under the failure configuration shown in 

Table 3. Let's construct MLE-model K(10, 12). 
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Define the edge functions and the graph 

structure (Fig. 2):  

5 6 7

8 9 10 11 12 7 8 7 8

1 1 2
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Table 3. An example of a maximum failure 

configuration under which the system remains 

operational 

x1 x2 x3 x4 

x5 x6 x7 x8 

x9 x10 x11 x12 

Source: compiled by the authors 

As the next step, we modify the GL-model to 

take into account the system failure condition due to 

the failure of a block of elements of size r×s. To do 
this, we weaken the obtained model on the vectors 

corresponding to all possible combinations of failure 

blocks of size r×s. According to (7), the number of 
such combinations is: 

(3 2 1) (4 2 1) 6.с                (13) 

The above mentioned vectors are shown in Table 4. 

 

Fig. 2. The graph of the GL-model K(10, 12) 
Source: compiled by the authors 

In this example, the model will be weakened by 

modifying the expressions of the edge functions. The 
function f′ represents all possible combinations of 

r×s blocks that cause the system to fail: 

Fig. 1. An example of a consecutive-(r, s)-out-of-(m, n) system with  

m = 3; n = 4; r = 2; s = 2 
Source: compiled by the authors 
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Table 4. All vectors corresponding to a failed 

block of elements of size r×s 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 

0 0 1 1 0 0 1 1 1 1 1 1 

1 0 0 1 1 0 0 1 1 1 1 1 

1 1 0 0 1 1 0 0 1 1 1 1 

1 1 1 1 0 0 1 1 0 0 1 1 

1 1 1 1 1 0 0 1 1 0 0 1 

1 1 1 1 1 1 0 0 1 1 0 0 

Source: compiled by the authors 

Modify the functions f1 and f2 by multiplying their 

expressions by f′: 

5 6 7

8 9 10 11 12 7 8 7 8

9 10 11 10 11 12 7 8 9

10 11 12 5 6 2
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Let's make sure that the resulting model 

corresponds to the given system. For example, the 
graph loses connectivity on vectors 001100111111, 

111111001100, 111100110011, 110011001111. At 

the same time, connectivity is preserved on such 
vectors as 000001010000, 000011110000, and 

010101010101. 

Example 2. Consider a mixed system that 

simultaneously satisfies three conditions: k-out-of-n, 
consecutive-kс-out-of-n and consecutive-(r, s)-out-

of-(m, n) (Fig. 3). 

Let's take the FTMS from the previous example 
as a basis and modify it so that it also satisfies the 

other two conditions. To meet the consecutive-kc-

out-of-n condition, we connect each row of 

processors to additional nodes in such a way that 
connectivity between the nodes is lost when three 

consecutively connected processors fail, i.e., kc = 3. 

From the previous example, we recall that m = 3,  

Fig. 3. An example of a mixed k-out-of-n, consecutive-kc-out-of-n, and  

consecutive-(r, s)-out-of-(m, n) system with k = 7; kc=3; m = 3; n = 4; r = 2; s = 2 
Source: compiled by the authors 
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n = 4, r = 2, s = 2. Thus, since s < kc, both conditions 

must be taken into account.  
For the k-out-of-n condition, the structure does 

not need to be changed. We only specify that the 
system fails, for example, when any 7 processors fail. 

In other words, k = 7. Let us determine the minimum 

allowable number of failures.  
Recall that k = 7, therefore: 

1 12 7 1 6.M n k              (14) 

For the consecutive-(r, s)-out-of-(m, n) 

condition, MRS was determined in the previous 

example and is equal to 10. 

Using the method proposed in [32], we 
determine the Using the method proposed in [32], 

we determine the maximum allowable number of 

failures in a single row under which the system 
remains operational: 

4
4 3.

3

r
r r

c

n
M n

k

   
       

  
       (15) 

Let's compare the maximum allowable number 

of failures for the different conditions: 

.C RSM M M                    (16) 

Thus, the system fails when any M + 1 elements 

fail, so we construct the MLE-model K(M, n), or 

K(6, 12).  
Accordingly, MC and MRS are not considered in 

further calculations. For K(6, 12), we obtain the 

following edge functions: 
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7 7 8 9 10 11 12.f x x x x x x       

According to [32], let's determine the number 

of vectors with three consecutive failures in a single 

row that lead to system failure: 

.1 4 3 1 2r r cc n k                 (17) 

The total number of such vectors is:  

2 3 6.rc c m                     (18) 

Table 5 lists all vectors containing kc 

consecutive failures. 

We weaken the MLE-model on these vectors by 
modifying the edge functions f1 and f7: 
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The modified model K′(6, 12) is obtained. 

 
Table 5. All vectors with three consecutive failures 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 

0 0 0 1 1 1 1 1 1 1 1 1 

1 0 0 0 1 1 1 1 1 1 1 1 

1 1 1 1 0 0 0 1 1 1 1 1 

1 1 1 1 1 0 0 0 1 1 1 1 

1 1 1 1 1 1 1 1 0 0 0 1 

1 1 1 1 1 1 1 1 1 0 0 0 

Source: compiled by the authors 

To satisfy the consecutive-(r, s)-out-of-(m, n) 

condition, we will weaken K′(6, 12) on the vectors 
defined in the previous example (Table 4). To do 
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this, we modify the functions f2 and f6. 

The resulting model, K″(6, 12), will have the 

following edge functions: 
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Let us verify that the resulting model satisfies 

the specified conditions. For instance, its graph loses 

connectivity on vectors containing 7 or more zeros: 

001001101001, 010001010100, 010100101001, 

010110100100. The graph also loses connectivity on 

vectors containing 3 zeros at positions 
corresponding to consecutive elements within a 

single row: 000111111111, 111110001111, 

111111111000. Additionally, it loses connectivity if 
the zeros are located at positions corresponding to a 

block of elements of size 2×2: 111111001100, 

100110011111. At the same time, the graph retains 
connectivity on vectors such as 110110011101 and 

010101010101. 

COMPARISON WITH CONVENTIONAL 

METHODS FOR CONSTRUCTING GL-

MODEL 

Since no universal method existed for 

constructing GL-models for such systems – aside 
from the one described above – each model had to 

be developed individually, with the approach 

varying depending on the system type and parameter 

values. 
Let us consider the system from the example to 

compare the default and proposed methods. Suppose 

a given system consecutive-(2, 2)-out-of-(3, 4). 
According to the conventional approach we begin by 

constructing a basic model. The system consists of 

3 ∙ 4 = 12 elements in total and can fail when at least 
2 ∙ 2 = 4 elements fail (in other words it is tolerant to 

3 arbitrary failures). Therefore, we construct the 

basic MLE-model K(3, 12).  

According to [35]:  

, 12 3 1 10.( )m n                   (19) 

Such a model contains 10 edges and 10 edge 

functions, respectively. 
However, the system does not fail if 4 or more 

failed elements do not form a block of size r×s (i.e. 

2×2). Thus, the model must be enhanced so that its 
graph remains connected for input vectors 

containing 4 or more zeros, provided that 

corresponding failed processors do not form a 

contiguous 2×2 block. The total number of binary 
vectors containing from 4 to 10 zeros (vectors with 

11 or 12 zeros are not considered, as it is 

straightforward to show that the system is 
guaranteed to fail in all such configuration) is: 

10

4

12
3784.

k k

 
 

 
                     (20) 

Using an exhaustive enumeration script written 
in Python, it was determined that 1051 of these 
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vectors contain at least one contiguous block of 

failed elements of size 2×2.  

Therefore, the number of configurations with 4 

or more failures that do not lead to system failure is: 

3784 1051 2733.                  (21) 

These 2733 configurations represent failure 
scenarios in which the system remains operational 

due to the spatial distribution of the failed elements, 

i.e., no critical 2×2 failure block is formed. 
The next step is to strengthen basic model 

across all 2733 configurations. This means 

modifying the model so that its graph maintains 
connectivity under each of these failure scenarios. 

It is worth recalling that, in the proposed 

method, model consists only 3 edges (i.e., 70% 

fewer). Also, the model must be modified by 
weakening on just 6 vectors instead of strengthening 

on 2733 vectors (representing a 99.78% reduction in 

the number of cases to be handled). 
In general, the efficiency of the proposed 

method compared to the conventional approach may 

differ from the results obtained in this example and 

depends on the specific configuration of the system 
for which the GL-model is being constructed. 

CONCLUSIONS 

The paper proposes methods for constructing 
GL-models for consecutive-(r, s)-out-of-(m, n) 

systems, as well as for mixed-type systems such as 

k-out-of-n, consecutive-k-out-of-n, and consecutive-
(r, s)-out-of-(m, n). In consecutive-(r, s)-out-of-

(m, n) systems, processors are arranged in the form 

of a rectangular matrix, and the entire system fails if 

a rectangular block of elements of size r×s fails, 
unlike basic k-out-of-n systems, which fail when any 

k components fail. Mixed systems have more than 

one failure condition. Three cases of such conditions 
are considered: failure of a fixed number of any k 

components; failure of kc consecutively connected 

components in a single row; and failure of a block of 
components of size r×s. 

The paper presents a universal method for 

calculating the maximum possible number of failed 

elements under which the system remains 
operational, both for consecutive-(r, s)-out-of-(m, n) 

systems and for the mixed k-out-of-n, consecutive-k-

out-of-n, and consecutive-(r, s)-out-of-(m, n) 
systems. For the consecutive-(r, s)-out-of-(m, n) 

system, the method reduces to determining the 

minimal number of functioning processors required 

for the system to remain operational. For a mixed 

system, the maximum allowable number of failed 

components is determined separately for each failure 

condition. The smallest of the obtained values 
represents the maximum number of component 

failures under which the system can still function. 

An algorithm for constructing GL-models for 
both types of systems is presented. In the general 

case, any number of failure conditions can be 

considered, and the proposed approach can be 
applied to all of them in a similar manner. 

The methods of constructing GL-models of 

both system types are based on MLE-models 

(minimum lost edges). Knowing the maximum 
possible number of failures under which the system 

remains operational, it is proposed to first build a 

basic MLE-model for this failure count. The 
resulting MLE-model is then weakened on the 

vectors corresponding to failure configurations that 

lead to system failure. MLE-models can be 

weakened either by modifying the edge functions, 
altering the graph structure, or combining both 

approaches. 

The paper demonstrates examples of GL-model 
construction for consecutive-(r, s)-out-of-(m, n) and 

mixed systems. Experiments have been conducted to 

confirm that the obtained models correspond to the 
behavior of the given systems in the failure flows. 

The proposed approach can be applied not only 

to fault-tolerant systems where the elements are 

processors, but also to systems composed of other 
types of elements. 

The proposed model construction method 

broadens the applicability of GL-models to 
previously unaddressed classes of systems. GL-

models provide a flexible framework for 

representing system behavior under failure flow 
involving heterogeneous subsystems with varying 

failure criteria. Additional failure conditions can be 

seamlessly integrated into the GL-model. In 

contrast, accommodating such conditions within 
traditional analytical approaches to system reliability 

assessment often necessitates substantial 

recalculations or methodological modifications. 
Future research may focus on alternative ways 

of modifying basic MLE-models, particularly by 

changing the graph structure, as well as on 

constructing GL-models for other types of non-basic 
systems.
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АНОТАЦІЯ 

Стаття присвячена методам побудови GL-моделей відмовостійких багатопроцесорних систем. GL-моделі можуть 
використовуватися як моделі поведінки таких систем у потоці відмов для оцінки їхніх показників надійності шляхом 
проведення статистичних експериментів. У роботі розглянуто два типи систем: послідовні двовимірні системи та системи 
змішаного типу. Послідовна двовимірна система – це система, у якій компоненти розташовані у вигляді прямокутної 
матриці, і яка виходить з ладу при появі прямокутного блоку певного розміру, що містить лише несправні компоненти. 
Система змішаного типу виходить з ладу, якщо виконується хоча б одна з наступних умов: відмовила задана кількість 

довільних компонентів; відмовила задана кількість послідовних компонентів; або у прямокутній матриці компонентів 
з’явився прямокутний блок певного розміру, який складається лише з несправних компонентів. На сьогодні відсутні 
формалізовані методи побудови GL-моделей для зазначених типів систем. Метою даної роботи є створення універсального 
методу побудови GL-моделей як для послідовних двовимірних систем, так і для систем змішаного типу. Показано, що для 
побудови GL-моделі такої системи достатньо визначити максимальну кількість несправних компонентів, за якої система 
зберігає роботоздатність. На основі цього значення формується базова модель системи без урахування додаткових умов 
відмови. Далі визначаються всі комбінації відмов компонентів, що призводять до відмови системи. Базова модель 
послаблюється на векторах, які відповідають цим критичним комбінаціям. У роботі вперше представлено алгоритм 

побудови GL-моделей для послідовних двовимірних систем та систем змішаного типу. Окрім того, запропоновано методи 
розрахунку максимально допустимої кількості відмов компонентів, за якої система залишається роботоздатною, а також 
оцінки загальної кількості комбінацій відмов компонентів, що призводять до її відмови. Результати експериментів 
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підтверджують, що запропоновані моделі адекватно відображають реальну поведінку систем у потоці відмов. Наведено 
приклади, що ілюструють процес побудови GL-моделей для систем обох вищезазначених типів. 

Ключові слова: GL-моделі; небазові відмовостійкі багатопроцесорні системи; послідовні двовимірні системи; системи 
змішаного типу; оцінка надійності 
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