Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. /Applied Aspects of Information Technology
2023; Vol.6 No.1: 74-83

DOI: https://doi.org/10.15276/aait.06.2023.6
UDC 004.383

Decompressor for hardware applications

Vitalii O. Romankevych?
ORCID: https://orcid.org/0000-0003-4696-5935; romankev@scs.kpi.ua. Scopus Author ID: 57193263058

Ivan V. MozghovyiV

ORCID: https://orcid.org/0000-0001-5469-486X; mozg.v34@gmail.com.

Pavlo A. Serhiienko?

ORCID: https://orcid.org/0000-0003-3030-0074; paulsrgnk002@gmail.com. Scopus Author ID: 57204497516

Lefteris Zacharioudakis?

ORCID: https://orcid.org/0000-0002-9658-3073; compusci@cytanet.com.cy.

D National Technical University of Ukraine “Igor Sikorsky Kyiv Politechnic Institute”, 37, Peremogy Ave. Kyiv, 03056, Ukraine
2 Neapolis University Pafos, 2, Danais Ave. Paphos, 8042, Cyprus

ANNOTATION

The use of lossless compression in the application specific computers provides such advantages as minimized amount of
memory, increased bandwidth of interfaces, reduced energy consumption, and improved self-testing systems. The article discusses
known algorithms of lossless compression with the aim of choosing the most suitable one for implementation in a hardware-software
decompressor. Among them, the Lempel-Ziv-Welch (LZW) algorithm makes it possible to perform the associative memory of the
decompressor dictionary in the simplest way by using the sequential reading the symbols of the decompressed word. The analysis of
the existing hardware implementations of the decompressors showed that the main goal in their development was to increase the
bandwidth at the expense of increasing hardware costs and limited functionality. It is proposed to implement the LZW decompressor
in a hardware module based on a microprocessor core with a specialized instruction set. For this, a processor core with a stack
architecture was selected, which is developed by the authors for the tasks of the file grammar analyzing. Additional memory block
for the dictionary storing and an input buffer which converts the byte stream of the packed file into a sequence of unpacked codes are
added to it. The processor core instruction set is adjusted to both speed up decompression and reduce hardware costs. The
decompressor is described by the Very high-speed integral circuit Hardware Description Language and is implemented in a field
programable gate array (FPGA). At a clock frequency of up to two hundred megahertz, the average throughput of the decompressor
is more than ten megabytes per second. Because of the hardware and software implementation, an LZW decompressor is developed,
which has approximately the same hardware costs as that of the hardware decompressor and has a lower bandwidth at the costs of
flexibility, multifunctionality, which is provided by the processor core software. In particular, a decompressor of the Graphic
Interchange Format files is implemented on the basis of this device in FPGA for the application of dynamic visualization of patterns
on the embedded system display.

Keywords: lossless compression; field programable gate array; hardware-software co-design; intellectual property core

For citation: Romankevych V. O., Mozghowyi I. V., Serhiienko P. A., Zacharioudakis L. “Decompressor for hardware applications”. Applied
Aspects of Information Technology. 2023; Vol. 6 No.1: 74-83. DOI: https://doi.org/10.15276/aait.06.2023.6

INTRODUCTION

It is necessary to solve such contradictional
problems as hardware minimization, energy
consumption, and performance optimization when
developing the embedded digital systems. The
compression of information makes it possible to re-

the data exchanges between the processor and
memory during the execution of programs can
consume up to 75 % of the energy consumed due to
the wire heating and high-current buffer switching
[2]. Therefore, storing data and programs in a
compressed form and decompressing them in real

duce the volume of storage devices in this situation.
It can also increase the bandwidth of data
transmission channels, but also minimize power
consumption.

For this purpose, the lossless data compression
application specific hardware should be used [3].

Such minimization is achieved by reducing the
intensity of data exchanges, especially between
remote transmitters and receivers [1]. For example,

© Romankevych V., Mozghovyi 1., Serhiienko P.,
Zacharioudakis Lefteris, 2023

time is effective due to reducing the memory
volume, speeding up data loading and reducing
power consumption.Consider the compression of
programs and data which are loaded into the internal
memory of the microcontroller of the Internet of
Things module. This makes it possible to almost
halve the power consumption of this module with
insignificant overhead costs for the decompression
implementation [4]. Likewise, the compression of
the bit stream for the field programable gate array
(FPGA) speeds up its loading [5].

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

74 Computer systems and cybersecurity

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

https://doi.org/#_blank

Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. /Applied Aspects of Information Technology

2023; Vol.6 No.1: 74-83

If the decompressor is performed as an
application specific module, its capabilities are
greatly expanded. For example, a data decompressor
is now an integral part of ultra-high-resolution
displays. Then, it becomes possible to transfer large
volumes of data through the display interface [6, 7].
The decompressor of the test data, if it has low
hardware costs, significantly increases the efficiency
of self-diagnosis systems [8] and diagnostics of
complex systems [9] by reducing the volume of
stored test data.

In the application specific systems for modeling
and management of complex objects, the hardware
generators of graphic elements are used, which are
displayed on the screen in real time [10, 11].
However, implementing real-time rendering of these
elements requires significant computational
overhead using a graphics accelerator and often has
excessive hidden latency. In addition, the
development of programs that generate such images
is time-consuming. Therefore, the use of a
decompressor in the GIF format, in which the LZW
algorithm is implemented, makes it possible to
implement such hardware generators of various
dynamic graphic elements for display on the screen
in real time. These can be, for example, images of
measuring devices, such as arrow indicators or
patterns of the object position in space [12].

The decompressing files in the LZW standard
using hardware-software module is proposed in this
article. At the same time, the proper decompression
speed is ensured by the implementation of the
decompressor in a processor core with a specialized
architecture, which is configured in FPGA.

ALGORITHMS AND TOOLS FOR
DECOMPRESSION

The overall goal of data compression is to
reduce the number of bits needed to represent
information. The lossless compression means that
the original data can be accurately reproduced by the
decompressor. In this way, it is possible to compress
software code, digital input data, medical data, text
and other content that is sensitive to distortion.

During Huffman compression, the unique code
words are assigned to a bit sequence, the length of
which is inversely proportional to the frequency of
such lines [13]. A more complex but slower method
of arithmetic coding gives a slightly higher
compression ratio m, which is the ratio of file lengths
before and after compression. Both methods require
statistical analysis of the processed data [14].

Methods based on a dynamically generated
dictionary are suitable for data compression without

prior analysis. Thus, the LZ77 algorithm uses a
dictionary buffer and a preview buffer [15]. The
longest line in the preview buffer that matches a line
from the dictionary buffer is converted to a code that
is the index of the dictionary buffer. However, it is
not suitable for hardware implementation because
the dictionary buffer and preview buffer sizes are
too large for hardware implementation. The LZRW3
algorithm is a variant of the LZ77 algorithm, in
which the length of lines in the dictionary is
significantly limited, and the search in it is
accelerated using a hash table. Thanks to this, it has
become widespread in FPGAs and its
implementation provides a throughput of up to 180
MB/s at a clock frequency of 220 MHz [16].

The LZ77 algorithm together with Huffman
coding is used in the Deflate method and is widely
used in hardware decompressors of GZIP files [17, 18].

The LZ78 algorithm creates a dictionary table
and finds in it the longest line corresponding to the
input line [19]. If there is no string matching the
input in the dictionary table, the index of the
recognized string, which is one character shorter,
and the last character of this string are outputted.

The LZW algorithm is a variant of the LZ78
algorithm, which outputs only the index of the
corresponding row of the dictionary table in a
compressed file [20]. In addition, the length of the
string replaced by the index reaches several hundred
bytes, due to which the compression of images with
a uniform background is achieved more than ten
times. The work [21] shows that the LZW algorithm
is not inferior to the Deflate method when compres-
sing images with eight-bit pixels into TIFF files.

According to LZ77, LZ78 algorithms, the de-
compression complexity is much lower than the co-
mpression one due to the fact that the reproduction
of the dictionary and the search in it are performed
much easier by the decompression. Because of this,
the LZW algorithm is common in systems where
decompression occurs more often than compression,
for example, when decompressing the GIF files.
Therefore, this algorithm is chosen for
implementation.

There are several implementations of the LZW
decompressor in FPGA, among them the decom-
pressor [22] uses fixed-length words and one
dictionary table and achieves a maximum
decompression speed of 160 MB/s at a clock
frequency of 50 MHz. The decompressor [23] has
the highest bandwidth of 280 MB/s at a clock
frequency of 300 MHz. This speed is achieved due
to the parallelization of the processes of creating the
dictionary, reading a line from it, and forming the

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Computer systems and cybersecurity 75

Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology

2023; Vol.6 No.1: 74-83

output sequence, as well as an increased number of
memory blocks.

Table 1 shows a comparison the decompressor
parameters executing the LZ77, Deflate and LZW
algorithms when they are implemented in FPGA.
Here, hardware costs are expressed in the number of
look-up tables (LUTS) which are the main elements
of FPGA, as well as built-in two-port memory
blocks (BRAMS), which have a volume of 18kB.
Such a comparison makes it possible to conclude
that the decompressors with the LZW algorithm
have a gain in the used hardware volume, and the
ratio of hardware volume per unit of bandwidth is
more than seven times higher. It also requires a
smaller amount of RAM in comparison with
decompressors that other algorithms perform.

Table 1. Parameters of some decompressors given
in the references

Parameter Reference

[24] [17] [18] [23]
Algorithm LZ77 | Deflate | Deflate | LZW
Hardware 56000 3362 15691 307
volume, LUTs
BRAMs 50 16 30 13
Throughput, 7200 5.4 97.4 280
MB/s
Hardware 7.8 623 161 1.1
volume per unit
of bandwidth,
LUTs/MB/s

Source: compiled by the authors

It is worth mentioning that the LZW algorithm
was not widely used among scientists, programmers
and engineers for decades due to the fact that it was
patented and intellectual property rights prevented
its implementation [21]. Moreover, the patent holder
Unisys defended its rights to use the LZW
algorithm, especially in hardware devices. Now the
patent has expired and conditions have appeared to
consider this algorithm in more detail and implement
it more widely.

In many cases, the extreme decompressor
bandwidth is not required, as in the examples in the
introduction. But at the same time, the speed of
software decompression may not be sufficient or the
necessary time resources of the central processor are

At the same time, such a processor core, in addition
to decompression, is capable of performing other
algorithms, for example, decompressing GIF files,
implementing data exchange protocols, and
organizing system testing.

PURPOSE AND OBJECTIVES OF THE
RESEARCH

The purpose of this research is to develop a
hardware-software decompressor that performs the
lossless LZW algorithm, which, comparing to the
hardware decompressor, has the same hardware
volume but is able to perform many other algorithms
and has the property of reconfiguration.

To achieve this goal, the following tasks are
performed in this work:

1. Analysis of the LZW decompression
algorithm in order to determine the operations that
should be performed in hardware and software.

2. Research and modification of the architecture
of the microprocessor core configured in FPGA with
the correction of its instruction set and the addition
of hardware blocks that accelerate decompression.

3. Creating a VHDL model of a hardware-
software decompressor, programming its processor
core, configuring it into FPGA and determining the
parameters of the resulting decompressor module.
Comparison of the new decompressor with existing
samples.

4. Analysis of the possibilities of a new
decompressor implementation.

LZW DECOMPRESSION

The LZW decompression algorithm s
described by the following program text:

i=0;
while (yi = 257){
if (yi = 256) InitT(C);
if(yi € C){
Out(C(yy)); //a
dictionary.
AddT(C(y:-1) + C1(yi)); // astring is
/fadded to dictionary
/Ipointer of yiis stored

string is read from

Yi-1=Yi;

}

else {
Out(C(yi-1) + C1(yi-2));
AddT(C(yi-1) + CL(yi-1));

spent during its execution. Therefore, this article }

considers the idea of implementing LZW i++;

decompression in an application specific compact }

processor core, the architecture of which is }

configured for labor-intensive algorithm operations.

76 Computer systems and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

http://aait.ccs.od.ua/index.php/journal/theme4

Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology

2023; Vol.6 No.1: 74-83

Here, Y =yo, V1, ..., Ym-1is the input sequence of
codes from the compressed file,

X =Xo, X1, ..., Xn-1 IS the uncompressed string
forming the output file, the characters of which are
selected from an alphabet of k characters
Qo, Ol1,..., Ok-1,

C1(yi) is the first character of the string, which
is encoded by the code i,

Out(C(yi)) — the function of adding the word
C(yi) from the dictionary to the output file,

AddT() is the function of adding a new word to
the dictionary,

«+» is the concatenation operation,

InitT(C) — is the initialization function of the
dictionary C, which forms the rows of alphabet
symbols in the table C, the rest of the rows are
empty, and the index field of the previous symbol is
zero.

As arule, k = 256. For example, if the index AB
is 264, then C (264) = AB. Consider the codes
0 — 255 are the character codes of the ASCII table.
The code 256 is the command to clear the
dictionary, and code 257 is the end-of-compressed
code.

Consider an example of a compressed file in the
form of the sequence 256, 66, 65, 95, 258, 258, 95,
65, 261, 257. The step-by-step process of unpacking
this sequence is shown in Table 2.

Table 2. Eexample of decompressing a file using
the LZW algorithm

Vi Vi1 Dictio- | Dictionary Decompressor
nary writing output
reading

256 | - Clearing

66 256 | B B

65 66 A 258->BA BA

95 65 _ 259->A BA

258 | 95 BA 260-> B BA BA

258 | 258 | BA 261->BAB | BA BABA

95 258 | _ 262->BA_ | BA BABA

65 95 A 263-> A BA BABA A

261 | 65 BAB 264->AB BA BABA
ABAB

257 | 261 | (eof) End BA BABA
ABAB(eof)

Source: compiled by the authors

The length of strings in a C dictionary is
variable and can reach hundreds of characters.
Therefore, it is impractical to implement the
dictionary in a hardware decompressor in the form

of a random-access memory (RAM) device, the
word of which has a length of this order. Because of
this, in all known hardware decompressors, this
dictionary is implemented as a list.

The Fig. 1 illustrates the contents of the
dictionary RAM, which has an address-index i, the
field P(i) of the pointer to the previous character of
the line and the field C(i) of the next character of the
string.

According to the example in the Table 1,
consider the code-index 261 is inputted to the
dictionary input. Then the last symbol of line B and
the index of the previous symbol 258 are selected
from RAM, after that the symbol A of the string and
the index of the first symbol B are selected. The first
symbol B is selected last. At the same time, the
formation of the next word AB in the dictionary
consists in writing in the table at index 264 the
symbol B and the index of symbol A, which is the
input code yi-1 that is delayed for one period of the
algorithm execution.

To increase the compression ratio, the y; codes
have different bit widths that change dynamically.
Initially, it is equal to 9, and the next code after code
511 already has the bit width 10. In practice, the bit
width of the code does not exceed 12. Therefore,
after the code 4095, the code of the dictionary
clearing command comes.

-

PO | CO)
65 0 A
66 0 B —» B
95 0 -
258 | 66 A L, A
259 | 65 -
260 | 95 B

261 261 | 258 | B B
262 65 B
263 | 95 A
26- ' B

Fig. 1. Contents of the dictionary and

reading from it the word by the index y;
Source: compiled by the authors

So, when the file Y is unpacked, the codes y; are
extracted from it. According to this code, the word is
read from the dictionary C, which is joined to the
string of the resulting file X. Moreover, the read
word has the reverse order of symbols, which is
corrected either by writing-reading from the stack

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Computer systems and cybersecurity 77

Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology

2023; Vol.6 No.1: 74-83

memory, or by writing to the output buffer with
index addressing [23].

The compression ratio of the LZW algorithm
depends on the quality of the compressor and the
content of the compressed file. In real applications,
it is equal to n = 1.6-38 and meets the practical
needs in many cases [25].

MODULE FOR LZW DECOMPRESSION

The module for LZW decompression is based
on the SM16 processor core, described in [26]. The
structure of the 16-bit processor core SM16 as part
of the decompressor is shown in Fig. 2. This
processor core has a well-known dual-stack archi-
tecture [27]. The processor core contains a program
counter (PC), data RAM DataRAM, program ROM
ProgramROM, instruction register (IR), return
address stack (RStack), data stack (DStack),
arithmetic and logic unit ALU. Registers T, N are
the outermost registers of the DStack. The R register
is the top of the RStack, which also acts as a loop
counter. Registers A and B serve as address pointers
to speed up data transfer.

The input file Y is fed into the FIFO buffer
IBuf. It has a built-in scheme for the selection of
individual codes y; from the sequence of bytes of the
file Y, which is controlled by an automaton. It has
interrupt signal outputs for events of filling the
buffer and detecting the the dictionary cleaning and
end-of-file commands from it.

The DICT dictionary stores up to 4095 P(i)
indices and C(i) symbols and is implemented as
RAM. The DataRAM data memory, in addition to
storing variables, is used to change the order of
characters in a word that is read from the dictionary
before writing it to the OBuf output buffer. That is,
with the help of the pointer register A, a stack is
organized in it. Its depth is determined by the
maximum length of the string encoded in the Y file.

The instructions of the processor core are
executed in one cycle of the clock signal, with the
exception of branching, constant loading, and
memory reading instructions, which are executed in
two cycles. Due to the fact that the processor core
has stack architecture, the routine call is executed in
only two clock cycles. At the same time, the context
switching is performed naturally through the RStack
and DStack. The interruption from the input buffer
filling signals and the arrival of the dictionary
cleaning command is also implemented quickly.
These properties make the architecture friendly to
the bitstream parsing and encoding algorithms that
often use branching.

A 16-bit instruction has one to three opcode
fields, F1, F2, F3, and a variable-length D field that
stores a constant or jump displacements. The
processor core can perform up to three operations
F1, F2, F3 in parallel. Several instructions have been
added to the processor core instruction set to speed
up the dictionary access and data exchanges.

SM16 core Be Program Data
: -»> ROM RAM [T !
i B |
i A i
i R Stack P D Stack i
Input Sttt St 20k Z00inle ettt I
Output
—» IBuf DICT OBuf pl

Fig.2. SM16 processor core included in the LZW decompressor
Source: compiled by the authors

78

Computer systems and cybersecurity

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

http://aait.ccs.od.ua/index.php/journal/theme4

Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology

2023; Vol.6 No.1: 74-83

Due to the following additional instruction
L1 OUTB @ab- L1 DINZ

the symbol from the register T is written into the
output buffer OBuf, and the next symbol from
DataRAM at the address of the index register A is
written in the register T. After that, the register A is
decremented. If the state of the register R is non-
zero, then the control flow is transferred to the label
L1, and the register R is decremented. Otherwise,
the loop is exited. Thus, the decompressed word is
rewritten from the stack organized in DataRAM to
the output buffer using a single instruction executed
in a program cycle.

It should be noted that the syntax of the
assembly language of the SM16 processor core is
largely the same as the syntax of the Forth language.
Just like the Forth programs, the compiled programs
for SM16 processor core take up little memory
compared to programs in other languages [26]. The
user of the SM16 core can add new instructions to
the instruction set and specific hardware if they help
to speed up the execution of the algorithm. The
program written in assembly language is compiled
and simulated in the developed framework
containing the simulator with a graphical interface.

RESULTS

The SM16 processor core is described in
VHDL language. When placed in a Xilinx Spartan-6
FPGA, it occupies only 632 LUTs and has a
maximum clock frequency of 95 MHz. For
comparison, the hardware volume of the 16-bit
OpenMSP430 core [28] is three times higher, and its
clock frequency is lower than in the proposed core.

The selection of y; codes from the input stream,
as well as the fixing the events of dictionary
cleaning, end of the file, or the code length change
are performed in the hardware of the IBuf buffer.
The DICT dictionary RAM has direct access by the
index i. The OBuf output buffer is hardware-
implemented FIFO. The rest of the algorithm is
performed in the program.

Thanks to the implementation of the specified
hardware blocks, it was possible to halve the cycle
of unpacking the yi code by throwing out the
instructions from the program that extract the y; code
from the input stream, monitor the arrival of the
dictionary cleaning command, or the end-of-file
symbol, form the index address of the dictionary.

The obtained parameters of the decompressor
module are given in Table 3. The hardware costs in
it are expressed in the number of configurable logic
block slices (CLBs), each of which includes from 1

to 4 LUTSs, depending on the specific placement in
FPGA. It should be noted that, on average, there are
160 CLBs per memory block BRAM. So these
blocks are a valuable hardware resource. The quality
factor K is also presented there, which is equal to the
product of hardware costs and the amount of
memory. That is, the lower the K factor, the more
effective the project is. The decompressor executing
the LZW algorithm spends, on average, 15 cycles to
decompress one character. At a processor core clock
frequency of 190 MHz, decompression is carried out
at a speed of 12.6 Mbytes/s.

For comparison, a decompressor model was
tested in which the LZW algorithm is executed only
by programming the SM16 processor core in FPGA.
In order to obtain an acceptable decompression
speed during the algorithm software execution, it
was necessary to add the shift left and shift right
instructions to the instruction set. It is necessary for
extracting the variable bit length codes from the
input byte stream. As a rule, such instructions are
included in the instruction set of most known
processor architectures. Such instructions require the
additional barrel shifter circuit, which takes a lot of
hardware. As a result, the hardware costs of the
processor core increased to 239 CLBs, that is, by
24% compared to the hardware and software
implementation. Also, the decompression
throughput is halved. So, this example testifies in
favor of the hardware and software implementation
of the LZW algorithm.

Compared to hardware decompressors, this
decompressor loses in throughput. However, it has
half the amount of BRAM blocks than the device
[23] and is able to decompress files with longer lines
Xi than other analogs, i.e., it has a potentially larger
value of the compression ratio n.

The hardware decompressor cores are listed in
Table 3 for comparison. They are designed
according to the technology of the register transfer
level description which is compiled into a circuit at
the gate level by the proper FPGA compiler-
synthesizer. Therefore, for their modernization, they
need to perform a repeated design cycle, which is
time-consuming and associated with the addition of
equipment volumes that are worth the added
functionality. For example, in [18] a decompressor
with a static Huffman table is proposed, in which the
hardware costs double when adding a dynamic
Huffman table. Unlike the hardware modules, in the
proposed decompressor module it is easy to add
functionality without changing the structure of the
module. So, the advantage of this decompressor is
the possibility of reconfiguration, which consists in

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Computer systems and cybersecurity 79

Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology

2023; Vol.6 No.1: 74-83

Table 3. Decompressors cores parameters

Decompressor core Helion [16] | Source [18] | Source [23] Proposed, Proposed Proposed
no I1Buf, DICT
Algorithm LZRW3 Modified Lzw Lzw Lzw Lzw
LZwW
Xilinx FPGA chip Virtex-5 Virtex-2 Virtex-7 Spartan-6 Spartan-6 Kintex-7
Hardware costs, CLBs 166 247 139 239 193 224
RAM, BRAMs 4 8 13 7 7 7
RAM size, kB 9 18 29.25 15.75 15.75 15.75
Clock frequency, MHz 226 50 300 95 95 190
N, MBytes/s 180 140 280 3.1 6.3 12.6
Qualitative index K 1494 4446 4066 3764 3040 3528
Introduction of | Unavailable | Unavailable | Unavailable Available Available Available
additional functions

Source: compiled by the authors

programming the processor core to perform many
other algorithms, such as unpacking GIF and TIFF
files, data exchange protocols, system testing,
control algorithms. At the same time, a slight
increase in the volume of program memory is
possible, which is already small compared to the
volume of similar programs for RISC processors
[27]. To increase the functionality, a developed
framework is used with a simulator of a
microprocessor core together with added hardware
units, which has a built-in assembler [26].

The multifunctionality of the module is
confirmed by the fact that it is easy to combine this
module with the device described in [26]. Both
devices have the same processor core. Therefore, in
order for this module to be able to perform both file
unpacking and grammatical analysis of its content, it
is only necessary to add three blocks of stack
memory to it, which occupy 45 LUTs each, and
increase the amount of program memory.

To achieve an even higher speed of
decompression, it is possible to create a multi-
processor system based on a set of the configurable
SM16 processor cores, which decompress
independent data blocks in parallel.

CONCLUSIONS

Hardware modules for the lossless data
decompression make it possible to reduce the
amount of data stored or transmitted over

communication channels, as well as to reduce the
power consumption of devices for embedded
applications. Among many lossless compression
algorithms, the LZW algorithm is the most suitable
for hardware implementation due to low hardware
costs for its implementation with an acceptable
compression ratio. A hardware and software module
for LZW decompression has been developed, which
can be configured in FPGAs of various series. The
module is built on the basis of a processor core with
stack architecture.

Thanks to the hardware and software
implementation, a decompressor module is designed,
which, with a hardware cost of 193 CLBs in Xilinx
FPGA, has a decompression speed of 12.6 MB/s
and, unlike hardware decompressors, has the ability
to be reconfigured and increase the number of
algorithms performed with no or small additional
hardware costs. The project quality factor K is low,
and the project tends to be able to its functionality is
proven. So, the goal of the research has been
achieved. Specifically, the module is configured to
decompress the GIF files. The module is intended
for use in embedded systems. The throughput of
decompression increases proportionally to the
number of such modules that work in parallel. Thus,
the proposed decompression module can be useful
when it is implemented in many embedded systems
implemented in FPGAs.

REFERENCES

1. Ritter, D., Dann, J., May, N. & Rinderle-Ma, S. “Hardware accelerated application integration
processing: Industry Paper”. DEBS '17: Proceedings of the 11th ACM International Conference on

Distributed and Event-based

https://doi.org/10.1145/3093742.3093911.

Systems.
https://www.scopus.com/record/display.uri?eid=2-s2.0-85023209536&origin=resultslist&sort=plf-f.

215-226,
DOI:

June 2017. p.

80 Computer systems and cybersecurity

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

http://aait.ccs.od.ua/index.php/journal/theme4

Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology
2023; Vol.6 No.1: 74-83

2. Lafond, S. & Lilius, J. “An energy consumption model for java virtual machine”. TUCS Technical
Report. 2004; No. 597. DOI: https://doi.org/10.1007/11682127_22.

3. Li, X,, Mu, L., Zang, Y. & Qin, Q. “Study on performance degradation and failure analysis of
machine gun barrel”. Defence Technology. 2020; 16. (2): 362-373,
https://www.scopus.com/record/display.uri?eid=2-s2.0-85069836705&origin=resultslist&sort=plf-f. DOI:
https://doi.org/10.1016/j.dt.2019.05.008.

4. Zervas, N. “Firmware compression for lower energy and faster boot in 10T devices”. October 2015. —
Available from: https://www.design-reuse.com/articles/38541/firmware-compression-for-lower-energy-and-
faster-boot-in-iot-devices.html. — [Accessed: Jan., 2022].

5. Beckhoff, C., Koch, D. & Torresen, J. “Portable module relocation and bitstream compression for
Xilinx FPGAs”. 24th International Conference on Field Programmable Logic and Applications (FPL).
Munich: Germany. 2014. p. 1-8. DOI: https://doi.org/10.1109/FPL.2014.6927480,
https://www.scopus.com/record/display.uri?eid=2-s2.0-84911191271&origin=resultslist&sort=plf-f.

6. Walls, F. G. & Maclnnis, A. S., “VESA display stream compression for television and cinema
applications”. IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 2016; 6(4): 460—470,
https://www.scopus.com/record/display.uri?eid=2-s2.0-85027032558&origin=resultslist&sort=plf-f. DOI.:
https://doi.org/10.1109/JETCAS.2016.2602009.

7. “Chips&Media releases CFrame30, its groundbreaking hardware design for loss frame buffer
compression”. Seoul: Korea. 2015. — Available from: https://www.design-reuse.com/news/37671/chips-
media-lossy-frame-buffer-compression.html. — [Accessed: Jan., 2020].

8. Touba, N. A. “Survey of test vector compression techniques”. IEEE Design & Test of Computers.
2006; 23 (4): 294-303, https://www.scopus.com/record/display.uri?eid=2-s2.0-
33748510387 &origin=resultslist&sort=plf-f. DOI: https://doi.org/10.1109/MDT.2006.105.

9. Romankevitch, A., Morozov, K., Mykytenko, S. & Kovalenko O. “On the cascade GL-model and its
properties”. Applied Aspects of Information Technology. 2022; 5 (3): 256-271. DOI:
https://doi.org/10.15276/aait.05.2022.18

10. Ponce-Cruz, C. & Ramirez-Figueroa, F. D. “Intelligent control systems with LabVIEW”. Springer.
2010. DOI: https://doi.org/10.1007/978-1-84882-684-7.

11. Kovacec, D. “FPGA IP cores for displays”. In: Handbook of Visual Display Technology. J. Chen,
W. Cranton, M. Fihn-Eds. Springer. 2012. p. 512-530, https://www.scopus.com/record/display.uri?eid=2-
§2.0-85027007071&origin=resultslist&sort=plf-f. DOI: https://doi.org/10.1007/978-3-540-79567-4_40.

12. Mozghowyi, I., Sergiyenko, A. & Yershov, R. “GIF image hardware compressors”. Information,
Computing and Intelligent systems. 2021; 2: 48-55. DOI: https://doi.org/10.20535/2708-
4930.2.2021.2441809.

13. Gallager, R. “Variations on a theme by Huffman”. IEEE Transactions on Information Theory. 1978;
24. (6): 668-674, https://www.scopus.com/record/display.uri?eid=2-s2.0-0018032133&origin=resultslist&
sort=plf-f. DOI: https://doi.org/10.1109/TIT.1978.1055959.

14. Salomon, D. & Motta, G. “Handbook of data compression”. 5th Ed. Springer, 2010. 1360 p. ISBN:
978-1-84882-903-9, https://www.scopus.com/record/display.uri?eid=2-s2.0-84865192560&origin=resultslist
&sort=plf-f. DOI: https://doi.org/10.1007/978-1-84882-903-9.

15. Ziv, J. & Lempel, A. “A universal algorithm for sequential data compression”. IEEE Transactions
on Information Theory. 1977; 23 (3): 337-343, https://www.scopus.com/record/display.uri?eid=2-s2.0-
0017493286&origin=resultslist&sort=plf-f. DOI: https://doi.org/10.1109/TIT.1977.1055714.

16. “LZRW3 data compression core for Xilinx FPGA. Full Datasheet”. Helion Technology. 2008.
p. 1-3. — Available from: https://www.heliontech.com/downloads/Izrw3_xilinx_datasheet.pdf. — [Accessed:
Jan. 2020].

17. Hwang, G. B., Cho, K. N., Han, C. Y., Oh, H. W., Yoon, Y, H. & Lee S. E. “Lossless
decompression accelerator for embedded processor with GUI”. Micromachines, 2021; 12 (2),
https://www.scopus.com/record/display.uri?eid=2-s2.0-85100608354&origin=resultslist&sort=plf-f. DOI:
https://doi.org/10.3390/mi12020145.

18. Ledwon, M., Cockburn, B. F. & Han, J. “High-Throughput FPGA-Based hardware accelerators for
deflate compression and decompression using high-level synthesis”. IEEE Access. 2020; 8: 62207—62217,
https://www.scopus.com/record/display.uri?eid=2-52.0-85083429723&origin=resultslist& sort=plf-f. DOI:
https://doi.org/10.1109/ACCESS.2020.2984191.

ISSN 2617-4316 (Print) Computer systems and cybersecurity 81
ISSN 2663-7723 (Online)

https://doi.org/10.1007/978-3-540-79567-4_40

Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology
2023; Vol.6 No.1: 74-83

19. Ziv, J. & Lempel, A. “Compression of individual sequences via variable-rate coding”. IEEE
Transactions on Information Theory. 1978; 24 (5): 530-536,
https://www.scopus.com/record/display.uri?eid=2-s2.0-0018019231&origin=resultslist&sort=plf-f. DOl:
https://doi.org/10.1109/TIT.1978.1055934.

20. Welch, T. “A technique for high-performance data compression”. Computer. 1984; 17 (6): 8-19.
https://www.scopus.com/record/display.uri?eid=2-s2.0-0021439618&origin=resultslist&sort=plf-f. DOL:
https://doi.org/10.1109/MC.1984.1659158.

21. May, P. & Davies K. “Practical analysis of tiff file size reductions achievable through compression”.
iPRES 2016: 13th International Conference on Digital Preservation. Bern: Switzerland. 2016. p. 1-10.

22. Navqi, S., Nagvi, R., Riaz, R. A. & Siddiqui F. “Optimized RTL design and implementation of LZW
algorithm for high bandwidth applications”. Przeglad Electrotechniczny (Electrical Review). 2011; 4: 279-285,
https://www.scopus.com/record/display.uri?eid=2-s2.0-79955025506 &origin=resultslist&sort=plf-f.

23. Zhou, X., Ito, Y. & Nakano, K. “An efficient implementation of LZW decompression in the FPGA”.
IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). Chicago: IL,
USA. 2016. p. 599-607, https://www.scopus.com/record/display.uri?eid=2-s2.0-
84991665925&origin=resultslist&sort=plf-f. DOI: https://doi.org/10.1109/IPDPSW.2016.33.

24. Fang, J., Chen, J., Lee, J. et al. “An Efficient High-Throughput LZ77-Based Decompressor in
Reconfigurable Logic”. J. Sign. Process. Syst. 2020; 92: 931-947,
https://www.scopus.com/record/display.uri?eid=2-s2.0-85085762888&origin=resultslist&sort=plf-f. DOI:
https://doi.org/10.1007/s11265-020-01547-w.

25. Funasaka, S., Nakano, K. & Tto, Y. “A Parallel algorithm for LZW decompression, with GPU
Implementation”. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K.
(eds) Parallel Processing and Applied Mathematics. PPAM 2015. LNCS. Springer, Cham. 2016; Vol. 9573:
228-237, https://www.scopus.com/record/display.uri?eid=2-s2.0-84968531501&origin=resultslist&
sort=plf-f. DOI: https://doi.org/10.1007/978-3-319-32149-3 22.

26. Sergiyenko, A., Orlova, M. & Molchanov, O. “Hardware/Software Co-design for XML-Document
Processing®. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for
Engineering and Education I1l. ICCSEEA 2020. Advances in Intelligent Systems and Computing, Springer,
Cham. 2021; Vol 1247: 373-383, https://www.scopus.com/record/display.uri?eid=2-s2.0-
85089717777&origin=resultslist&sort=plf-f. DOI: https://doi.org/10.1007/978-3-030-55506-1_34.

27. Koopman, P. “Stack computers: the new wave”. Ellis Horwood, Mountain View Press, CA. 1989.

28. Oliver, J. P, Acle, J. P. & Boemo, E. “Power estimations vs. power measurements in Spartan-6
devices”. 2014 IX Southern Conference on Programmable Logic (SPL). Buenos Aires: Argentina. 2014.
p. 1-5, https://www.scopus.com/record/display.uri?eid=2-s2.0-84922109257&origin=resultslist&sort=plf-f.
DOI: https://doi.org/10.1109/SPL.2014.7002214.

Conflicts of Interest: the authors declares no conflict of interest

Received 16.01.2023
Received after revision 12.03.2023
Accepted 17.03.2023

DOI: https://doi.org/10.15276/aait.06.2023.6
V]IK 004.383

JlekoMImipecop AJis1 allapaTHUX 3aCTOCYHKIB

PomankeBuy Bitauiii Onexciiiopuy®

ORCID: https://orcid.org/0000-0003-4696-5935; romankev@scs.kpi.ua. Scopus Author ID: 57193263058
Mo3rosuii IBan BaaguciaBopuu?

ORCID: https://orcid.org/0000-0001-5469-486X; mozg.v34@gmail.com

Ceprienko Iasio Anaromiiiopny?

ORCID: https://orcid.org/0000-0003-3030-0074; paulsrgnk002@gmail.com. Scopus Author ID: 57204497516

82 Computer systems and cybersecurity ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

http://aait.ccs.od.ua/index.php/journal/theme4
https://doi.org/10.1109/SPL.2014.7002214
https://doi.org/#_blank

Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology
2023; Vol.6 No.1: 74-83

Lefteris Zacharioudakis?

ORCID: https://orcid.org/0000-0002-9658-3073; compusci@cyt anet.com.cy

D Hauionanbuuit Texuiunnit Yaisepcurer Yipainu “KITI im. Irops Cikopcbkoro”, mip. ITepemoru, 37. Kuis, 03056, Ykpaina
2 Heanosbckuit YuiBepcuter y Iadoci, np. Janaiicekuii, 2. Iagoc, 8042, Kinp

AHOTAIIIS

3acTocyBaHHsI 0€3BTpaTHOI KOMIIpecii B cHeliali3oBaHUX OOYMCIIIOBAJIBHUX 3ac00axX Ja€ Taki MepeBary, SK MiHiMi3alis 00’ eMy
mam’sTi, 30UIBIIEHHS MPOIYCKHOI 34aTHOCTI iHTepQeiiciB, 3MEHIICHHS SHEPrOCIOKUBAHHSI, OKPAILIEHHS! CHCTEM aBTOTECTyBaHHA. B
CTaTTi PO3MJITHYTI BiIOMi alrOpUTMHU OE3BTPATHOI KOMIIPECii 3 METO BHOOpPY TaKoro, IO HAHOUIBII MiAXOAWTH AJNA peaiizauii y
amapaTtHo-TiporpaMHoMy fexomrmpecopi. Cepen Hux anmroputm Lempel-Ziv-Welch (LZW) nae 3sMory HalmmpoCTiliuM 4HHOM BHKOHATH
acoIiaTHBHY I1aM’sITh CJIOBHUKA JIEKOMIIPECOpa 3a paxyHOK ITOCIIJOBHOTO 3YHTYBAaHHS CHMBOJIB CJIOBA. AHAJI3 ICHYIOUHMX arapaTHUX
peaizariiii IekoMIpecopiB MoKa3as, 10 MPH iX po3poOIi OCHOBHA MeTa OyJa 30UTBIINTH MPOITYCKHY 3/IaTHICTh 32 PaXyHOK 30LUIBIICHHS
arapaTHAX BUTPAT Ta 0OMEXEHHS (YHKI[IOHAJIBHOCTI. 3alpoIIOHOBAHO BUKOHATH Jekommpecop LZW amapaTHO-IporpaMHAM YMHOM
Ha OCHOBI sJpa MIKpOIpolecopa 3i CIIeniali3oBaHOI0 CHCTEMOIO0 KoMaHZ. J[si mporo BHOpaHO MpPOIECOpHE SAPO 31 CTEKOBOIO
apXiTeKTypoIo, po3pobiieHe aBTOpaMHt JUIs 3a7ad TpaMaTHyHoro aHanisy. Jlonano 610k mam’sti 11 30epiraHHs CIOBHUKA Ta BXiAHHN
Oydep, skl KOHBEPTY€E MOTIK OalTiB 3amakoBaHOTO (hailly y MOCIHiIOBHICTH PO3MAKOBaHMX KOMIB, L0 JOAaHi 10 Hboro. Cucrema
KOMaHJ{ TIPOILECOPHOTO spa CKOPEKTOBAaHA 3 METOI0 SIK MPHIIBHUILICHHS IEKOMIIpecii, Tak i 3MEHIIEHHS amapaTHUX BHUTpar.
Jlexommpecop omucanuii MoBoto Very high-speed integral circuit Hardware Description Language i peanizoBaHuii y mporpamoBHiit
JIOTiYHIH iHTerpanbHii cxemi. [Ipy TakTOBiM YacTOTi MBICTI Merarepll, CepeHs MPOIMYCKHA 3/IaTHICTh JEKOMIIpEcopa — MOHAJ IECATh
MerabaiTiB Ha CeKyHAy. 3aBIIKH amapaTHO-NIPOTrpaMHii peaiisawii, onepxano LZW-nexoMmpecop, KM Ma€ TpH NPUOIU3HO THX
caMHX amapaTHHX BHUTpaTaXx sK Yy amnapaTHOro JEKOMIIpecopa MEHIIy IPOIyCKHY 3[aTHICTh 3a pPaxyHOK THYYKOCTI,
06araTo(yHKIIIOHATBHOCTI, SKi JIa€ MPOTPaMOBHE MPOIIECOPHE AP0 B HOTO CKiIaidi. 30KpeMa, Ha OCHOBI JAHOTO MPUCTPOIO Peali3yeThCs
nexommpecop Graphic Interchange Format ¢aiinis 11t 3acToCyHKY THHAMIYHOT Bi3yasti3arlii marepHiB Ha AUCIUIET BOYJOBAHOI CHCTEMH.

KurouoBi ciioBa: 6e3BTpaTHa KOMITPECisl; MPOrpaMOBHA JIOTiYHA IHTETpalbHA CXEMa; allapaTHO-IIPOrpaMHa po3pooKa,
BipTyaJIbHUN MOMYJTh

ABOUT THE AUTHORS

Vitalii O. Romankevych - Doctor of Engineering Sciences, Professor, Professor of System Programming and Special
Computer System Department. National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37,
/ Peremogy Av. Kyiv, 03056, Ukraine
ORCID: http://orcid.org/0000-0003-4696-5935; romankev@scs.kpi.ua. Scopus Author I1D: 57193263058
’ Research field: Dependability of Fault-Tolerant Multiprocessor Control Systems. Self-Testing of Multiprocessor Systems

Pomankesu4 BiTaniii OaexciiioBu4 - oktop TexHIYHEX Hayk, podecop, mpodecop kadexpn CrucremHOro
TIpOTpaMyBaHHsI Ta CTIEI[ialbHIX KOMIT I0TepHUX cructeM. Harjionansauit TexHiuHmii yHiBepcnuTeT YKpainn «KuiBcpkuit
noJjitexHiyHui iHCTUTYT iMeHi Iropst Cikopcbkoroy, ip. Ilepemorn, 37. Kuis, 03056, Ykpaina

Ivan V. Mozghovyi - PhD student of Department of Computer Engineering. National Technical University of Ukraine “Igor
Sikorsky Kyiv Polytechnic Institute”, 37, Peremogy Av. Kyiv, 03056, Ukraine

ORCID: https://orcid.org/0000-0001-5469-486X; mozg.v34@gmail.com

Research field: Pattern recognition in images; embedded high-performance manycore systems in FPGA

Mosrosuii IBan BaaguciaaBoBu - acnipant kadenpu O6uncnoBansHol TexHiku. HanionansHui TeXHIYHUIN yHIBEpCUTET
VYxpainn « KuiBcbkuii nonitexHiynuii iHctutyT iMeHi Iropst Cikopeskoroy, nip. [lepemornu, 37.
Kuis, 03056, Ykpaina

Pavlo A. Serhiienko - PhD student, Assistant of Department of System Programming and Specialized Computer Systems.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Peremogy Av. Kyiv, 03056,
Ukraine

ORCID: http://orcid.org/0000-0003-3030-0074; paulsrgnk002@gmail.com. Scopus Author ID: 57204497516

Research field: Pattern recognition in images; embedded high-performance manycore systems in FPGA

Ceprienko I1aBio AnaroniiioBuy — acmipaHr, acucteHT Kadenpu CHCTEMHOTO IPOrpaMyBaHHs Ta CHELiaIbHUX
KOMIT FOTepHHX cucTeM. HanioHansHuil TeXHiYHU yHIBepeuTeT YKpainu « KHIBCbKHMIT MOTiTEXHIYHUI iIHCTUTYT iMeHi Iropst
Cikopcbkoroy, np. Ilepemoru, 37. Kuis, 03056, Ykpaina

Lefteris Zacharioudakis - PhD, Visiting Lecturer of Neapolis University Pafos, 2, Danais Avenue, Paphos, 8042, Cyprus
ORCID: https://orcid.org/0000-0002-9658-3073; compusci@cytanet.com.cy.

Research field: Computer/network security and has a number of publications in cryptography and
authentication/identification methods

Jledrepic 3axapiyaaxic — PhD, Buknangau y Heanonsckomy VHisepeureri y [agoci, np. J{aHaiicknuit, 2.
Tlagoc, 8042, Kinp

ISSN 2617-4316 (Print) Computer systems and cybersecurity 83
ISSN 2663-7723 (Online)

