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ABSTRACT

Ecological and economic production of electrical energy through the use of alternative energy sources is an urgent direction
due to the trend of increasing prices of energy carriers used in the electrical energy production and as a result of significant damage
of the energy system of Ukraine in consequence of the war on the country territory. It is worth noting that in some areas it is possible
to use only autonomous power generation systems, since the laying of electrical networks in these districts is impractical and
unprofitable. Usually, the mentioned systems are based on a combination of a wind or hydro turbine - drive motor, and an electric
generator. Such systems are characterized by high resource, reliability, low cost, and complexity of maintenance. Sometimes people's
lives and the possibility of communication with the outside world depend on the operation of an autonomous electric power
generation system, which is especially important in the conditions of martial law. At the same time, the lack of stabilization of the
hydraulic network pressure of the water supply system can lead to the household conditions aggravation, the emergency situations
occurrence, and the technological process disruption. In view of the mentioned factors, there is a need to measure the pressure of the
hydraulic network, which is possible by using technological coordinates observers built on the basis of the artificial networks theory.
In the paper a modern turbomechanism electromechanical control system powered by an alternative electrical energy source under
the conditions of pressure stabilization of the hydraulic network when using a technological coordinates observer, namely a pressure
estimator, is proposed. A mathematical description of the main elements of the investigated system is given. A hydraulic network
pressure observer based on the artificial neural networks theory is built and studied. Features of design and training of technological
coordinate estimators based on neural networks with feedback are described. The operation of the sensorless system during the
pressure stabilization at a given level when the resistance of the hydraulic network changes within the typical daily cycle of water
consumption is considered on a specific example. The results and analysis of the investigation of the developed observer in standard
and sensorless control systems are shown.
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methods of pumping water into agricultural arable

INTRODUCTION land and to satisfy the needs of livestock on farms

Today, taking into account the state of war in
Ukraine and significant damage or destruction of the
power system, which leads to long-term fan outages,
the relevant task is to use autonomous power
generation systems, such as wind turbines or solar
panels, as an alternative way of powering the most
important and necessary nodes of the power system
or consumers. The use of alternative energy sources
provides not only stable power supply for individual
power consumers, but also provides an opportunity
to release excess generated electrical energy and
reduces the load on the main power system.

Now wind turbines are also used to pump water
[1]. Wind generators, mechanically connected to
water supply systems, are one of the most common
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[2]. Since the connection in this case is only
electrical, the wind turbine can be located at the
optimal distance and in the area where the maximum
amount of wind energy can be generated, while the
pump is located nearby with water or a water tank
[31, [4]

Devices for measuring coordinates and
technological objects parameters are an integral part
of the structure of electromechanical systems of
turbomechanisms automatic control. In turn, sensors
that provide information about the technological
coordinates of pump units are quite expensive and in
many cases, they cannot be installed or replaced
without interfering with the hydraulic network. The
theory of estimators is widely used to reduce sensors
in the system. One of the ways of technical
implementation of the latter is the use of artificial
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neural networks, which, on the basis of already
known measured coordinates, allow to observe the
values of other coordinates, for example, pressure,
pump performance, its mechanical power, efficiency
and others [5].

LITERATURE REVIEW

Controlling of water supply systems powered
by alternative energy sources, such as wind turbines,
is carried out using both systems with synchronous
and induction wind generators [6].

Among water supply systems with a wind
generator with variable speed, two main
configurations can be distinguished. The first
configuration is a direct connection between the
generator and the motor stator, which allows
maintaining a constant speed of both machines. The
main disadvantage is that the components must be
selected with such parameters that they are
satisfactory for each individual case. This is due to
the fact that to increase the efficiency of the system,
it is necessary that the characteristic load curves
formed by the pump at different speeds coincide
with the optimal wind generator torque curve. The
second configuration is two converters, which
allows the pump and the turbine to be physically
separated. In this case, there is no need to precisely
match the parameters of the pump and the turbine,
but the converters must have sufficient capabilities
to control the pump at nominal power, which
significantly increases the cost of the system [7].

Recently, systems using induction generators,
especially double-feed machines, have been of great
interest. Double-feed machines are an alternative to
permanent magnet rotary machines in wind energy
conversion systems. Due to the possibility of
reducing or even removing the gearbox, its use in
systems with autonomous wind generators increases
the reliability and level of technical and economic
indicators of the electromechanical system as a
whole and reduces operating costs, which is of great
importance [8]. In such systems, it is also possible to
implement the auxiliary power supply of the double-
feed through the stator of the generator, changing the
frequency and voltage of its excitation using DC/AC
and AC/DC frequency converters. The presence of
two converters in the system allows to include in the
system an additional source of energy from other
types of alternative sources, such as solar batteries
[9], the use of micro-organisms to obtain energy
[10], which do not require additional management
[11]. The DC bus connects the main and auxiliary
stators through two converters so that the pump can
be powered from both sources.

Wind turbines based on induction generators
with self-excitation (IG) are becoming more and
more common among modern alternative power
generation systems. Voltage stabilization prevents
the generator from tipping over when under heavy
load. The problem of voltage stabilization is relevant
and can be solved in many ways. Systems with
voltage controlling using an electronic load regulator
(ERN) and using a static compensator (STATCOM)
have become the most widespread [12], [13].

Particular attention should be paid to the issues
of measuring and estimation the main pump unit
parameters, since the installation of sensors in the
hydraulic network leads to an increase in the cost of
the system and is difficult to maintain [14]. The use
of sensorless control algorithms based on the theory
of artificial neural networks allows to avoid the
above-mentioned problems, as well as to increase
the energy efficiency of the automatic control
system of turbomechanisms [15]. It is worth noting
that observation systems using the artificial neural
networks theory are also widely used in other
technological processes and systems [16].

THE PURPOSE OF THE ARTICLE

The purpose of this work is the development
and research of a technological coordinates observer,
such as pressure, of a turbomechanism elec-
tromechanical control system powered by an
alternative energy source, which built on the basis of
the artificial neural networks theory.

MAIN PART.
RESEARCH RESULTS

The research was carried out using an elec-
tromechanical system, the functional diagram of
which is shown in Fig. 1.
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Fig. 1. Functional diagram
Source: compiled by the authors

The following designations are given in the
diagram:
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IG — induction generator; STATCOM - static
compensator; FC - frequency converter; IM —
induction motor; P — pump unit; NN — pump pressure
observer based on a neural network; u;,u, — tasks for

voltage and pressure, respectively; VC — voltage
regulator configured for the proportional-integral (PI)
control law; PC — pressure regulator configured for
the PI control law; K, Km — feedback coefficients
for voltage and head, respectively; @ - angular

velocity of the IG rotor; C — capacity of excitation
capacitors; @ — pump velocity; T, — load torque on

the pump motor shaft; P — power of the pump drive
motor; I — stator current module of the pump drive
motor; Q — pump productivity; H — pump pressure;
H — observed value of the pump pressure; w* —
given speed; Ua, Up, U¢ — stator phase voltage; Uanc —
given stator phase voltage.

The use of two frequency converters in the
system provides an opportunity to place them
optimally relative to each other and to ensure the
maximum generation of electrical energy by the
wind generator. The induction generator rotates by a
turbine, the speed of rotation of which is assumed to
be constant during the research.

The signals for controlling the keys of the
STATCOM inverter come from the pulse width
modulation (PWM) controller, which, depending on
the value of the voltage received from the voltage
regulator, gives a signal to close the keys. The
voltage controller maintains a constant voltage of the
IG, which leads to maintaining a constant value of
the generated voltage. The output of the voltage
controller is a vector containing three modulating
signals used by the PWM generator to generate 6
IGBT pulses to control the inverter when the load on
the generator output changes, which for the study is
determined by a typical daily cycle of water
consumption.

The mathematical model of an induction
generator in an arbitrary coordinate system is
described by the following system of nonlinear
differential equations [17]:

d(‘j{;S =Ug - RSiS -w,J¥,
dw _ (1)
dtR =—Rgi; +(p,@ — ®,)I ¥,

where Y Z[\PSF S ]T '

0 -
J= .
Ve =[Wee ‘I’RG]T — vectors of stator and rotor flux

linkages; i =[iss iss] s ix =[ine Ine] — Vectors of

stator and rotor currents; U =[Uy. Ug] - stator
voltage vector; R, andR, — active resistances of the
stator and rotor; p, — number of pole pairs; o, —

angular velocity of the arbitrary coordinate system
F-G rotation.

A parallel battery of capacitors connected in a
triangle is used for self-excitation of the 1G. The
capacitor battery, which is part of the static
compensator, in such systems, is calculated in such a
way that the IG is self-excited at the nominal load.

Excitation capacitors with capacity C are
connected parallel to the stator windings, and
parallel to them — the load caused by the change in

the hydraulic resistance of the network in
accordance with the daily cycle of water
consumption by residential and communal

enterprises.

Then, the equation for the voltage on the stator
windings (on the excitation capacitors) is obtained
on the basis of Kirchhoff's first law in the form,

du, . .
-C dts =ig +i, , )

where i, =[i,, i,] - load current vector.

To describe the drive induction motor of the
pump, the classical model in the stator coordinates a-
b is used [16]. The frequency converter of the pump
unit is configured to work out the standard quadratic
law of frequency control U/f?=const [18]. To

implement the system of pressure stabilizing of the
hydraulic network at a given level, a pressure
controller configured for the Pl control law was used
the mathematical description of which is presented
in the paper [19].

Transient processes in the pump unit are
described by the system of equations (3) and are
presented in the structural diagram that is shown in
Fig. 2.

(O] :& HOn
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X
Fig. 2. Structural diagram of the investigated
pump unit

Source: compiled by the authors
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where: H,, — nominal pressure at zero supply at the
nominal speed; », — nominal speed of the pump; »
— pump integration time constant; H, — geodetic
height of the water level; a, — nominal hydraulic

resistance of the pump; a — hydraulic resistance of
the network; p - density of water; g — free fall
acceleration; n — pump efficiency; t —time.

The work of consumers in this model is
approximated by the specified hydraulic resistance
in accordance with the typical water consumption
graph, which is selected depending on the operating
conditions and scope of application of the
electromechanical system.

To work with neural networks, special attention
should be paid to their mathematical description.

In the general case, the equation of neurons is
described by the following expression:

Yi :ki(ixjwij +bi)1 (4)

where: X1, Xz,... Xm — NEUron inputs; Wip,Wi, ..., Wim
— weight coefficients of synaptic connections; b; —
displacement of the neuron; XAi(.) — activation
function of the neuron.

The equations describing each neuron in the
case of a two-layer neural network with 10 neurons
with three inputs and feedback are written as
follows:

Yy =th((Pwy, + 0wy, + Iwyy +b, + 3,) 1 ay)
Y, = th((Pwy, + @wy, + Iwy, +b, +3,) 1 a,)

()

Yio = th((Pwigy + ©wyg, + gy + by + 1)  ay)

where: P, o, I — neuron inputs; wii,Wiz, Wi, ..., Wim —
weight coefficients of synaptic connections; bi —
displacement of the neuron; a; — coefficient of
inclination of the hyperbolic tangent function tansig.

Thus, the general equation describing the
operation of the neural network for observing the
pump unit pressure is written as follows:

H = c(th(Pwy, + 0wy, + Iwy, + b+ H) | a))w, +
+th((Pw,, + 0wy, + Iy, + by + H) [ a,)w, +
+th((Pw,, + Ow,, + Iw,, +b, + H) [ a)w, +
+th((Pw,, + 0w, + Iw,, +b, + H) [ a,)w, +

+h((Pwy, + Owy, + Iwg + b, + H) [ a)w, +

(6)

+Hh((Pwg, + Owg, + Iwg, + b, + I:I) lag)ws +
+Hh((HPw;, + ow,, + Iw,, + b, + H)/ a)w, +
+th((Pwy, + Wy, + Iwg +by + H) | ag)w, +
+Hh((Pwy, + Owy, + Iwy, + by + H)/ ag)w, +

+Hh((Pwyg, + OWyg, + Iy, + by, + H ) a)wy, +b),

where ¢ — coefficient of inclination of the linear
activation function.

Based on the above mathematical description of
the electromechanical system main elements, models
were  implemented  within the MATLAB
SimPowerSystems and  Simulink  application
package for the investigation of the pressure
observer of the water supply system under
conditions of pressure stabilization in the hydraulic
system when powered by a wind turbine.

In general, the procedure for designing an
artificial neural network is quite simple, using the
Matlab2014b application package with the Neural
Network editor (nntool) and Simulink. This toolbox
allows to create more common neural networks.

In general, the procedure for artificial neural
networks designing consists of the following steps [20]:

1. Selection of the number of hidden layers of
the artificial neural network, that is, those layers
located between the input of the neural network and
the output layer of neurons.

2. Selection of the number of neurons in each
layer.

3. Selection of the neuron activation function.

4. Network training (learning).

However, the Neural network time series tool
(ntstool) is in Matlab2018b that allows to create
two-layer feed-forward networks. The interface for
choosing the type of the necessary neural network is
presented in Fig. 3.

A feature of this toolbox is that it is possible to
create a neural network with feedback in it. This
form of observation is called nonlinear
autoregressive with exogenous (external) input, or
NARX. It can be used to identify or estimate the
parameters of systems, in which models are
developed to represent dynamic systems, such as
chemical processes, manufacturing  systems,
robotics, etc.
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Select a Problem
© MNonlinear Autoregressive with External (Exogenous) Input (NARX)

Predict series y(t) given d past values of y(t) and another series x(t).

() |_¢/" cé it = F(x(t-1),..x(t-d),
a Yt yit-d))

(O Nonlinear Autoregressive (NAR)

Predict series y(t) given d past values of y(t).

O Nonlinear Input-Output

Predict series y(t) given d past values of series x(t).

Important Note: NARX solutions are more accurate than this solution. Only
use this solution If past values of y(t) will not be available when deployed.

x(t) L#H U_ué y() = flx(t-1),...x(t-d))

Fig. 3. Neural network time series app
Source: compiled by the authors

The training of the neural network was based on
the drive motor coordinates, such as power, current
and velocity. The input and output (reference) data
for neural network training were formed during the
research of a closed electromechanical system by
pressure. The simulation was performed with a clock
frequency of 2 kHz and a basic sampling time of
1-10° s. Increasing the parameters of the system
simulation will increase the accuracy of the training
arrays, but will lead to an increase in the training
time and, as a result, the subsequent possible
overflow of the computer's random access memory.
After selecting the input and output arrays for
training the system, it is necessary to configure the
distribution of data for training, validation and
testing. Settings are presented in Fig. 4.

Select Percentages

% Randomly divide up the 3100039 target timesteps:

W Training: 0% 2170027 target timesteps
W@ Validation: 15% ~ 465006 target timesteps
[ ] Testing: 15% ~ 465006 target timesteps

Fig. 4. Validation and test data

Source: compiled by the authors

The validation and test data sets are each set to
15 % of the original data.

With these settings, the input vectors and target
vectors will be randomly divided into three sets as
follows:

* 70 % will be used for training;

* 15 % will be used to validate that the network
is generalizing and to stop training before
overfitting;

« the last 15 % will be used as a completely
independent test of network generalization.

The next step is the formation of the neural
network structure. As practice shows, the more
neurons are selected per layer, the higher the
accuracy of the neural network. However, the
system becomes much more complex as the level
required for layer description increases. An
important step is to determine the optimal number of
neurons and delays for creating a specific neural
network.

The standard NARX network is a two-layer
feedforward network with a sigmoid transfer
function in the hidden layer and a linear transfer
function in the output layer. This network also uses
tapped delay lines to store previous values of the x(t)
and y(t) sequences. However, for efficient training
this feedback loop can be opened.

Because the true output is available during the
training of the network, it is possible to use the
open-loop architecture shown in Fig. 5, in which the
true output is used instead of feedback to the
estimated output. This has two advantages. The first
is that the inputs to the feedforward network are
more accurate. The second is that the resulting
network has a purely feedforward architecture, and
therefore a more efficient algorithm can be used for
training.

The default number of hidden neurons is set to
10. The default number of delays is 2. It is possible
to adjust these numbers if the network training
performance is poor.

The network of 2 layers of 10 neurons in the
first layer and 1 in the output layer was formed for
investigation. The architecture of the neural network
is presented in Fig. 5.

Fig. 5. Neural network architecture
Source: compiled by the authors

The next step is choosing a neural network
training method. The Levenberg-Marquardt training
method (trainlm) was chosen to implement the
pressure observer. This algorithm typically requires
more memory but less time. Training automatically
stops when generalization stops improving, as
indicated by an increase in the mean square error of
the validation samples. The training progress is
shown in Fig. 6.
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Progress

Epoch: o [ 73 iterations 1000
Time: 0:07:36

Performance: 1.78e+03 743e-06 0.00
Gradient: 3.78e+03 0.0154 || 1.00e-07
Mu: 0.00100 1.00e-06 1.00e+10
Validation Checks: 0 b 6

Fig. 6. Training progress
Source: compiled by the authors

The maximum training errors and regression
coefficients, which indicate the performance of the
neural network and the possibility of using it as a
pressure observer for the selected pump, are
presented in Fig. 7. Additional training outcomes
that can be generated using the selected tools are
shown in Fig. 8, Fig. 9 and Fig. 10.

Results

& Target Values = mSE @R
@ Training: 2170027 7.44800e-6 9.99999e-1
W Validation: 465006 3.49159%¢-6 9.9999%e-1
W Testing: 465006 8.84016e-6 9.99999%e-1

Fig. 7. Results of neural network formation
Source: compiled by the authors

B Best Validation Performance is 3.4916e-06 at epoch 67
otk
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Fig. 8. Neural network training performance
Source: compiled by the authors

Fig. 10 displays the error autocorrelation
function. The graph describes how the prediction
errors are related in time. For a perfect prediction
model, there should only be one nonzero value of
the autocorrelation function, and it should occur at
zero lag (mean squared error). If there is significant
correlation in the prediction errors, then it should be
possible to improve the prediction — perhaps by
increasing the number of delays in the tapped delay
lines being reproduced. If more accurate results are
desired, the network can be retrained.

Response of Output Element 1 for Time-Series 1

@
S

+ Training Targets
[ i +  Training Outputs | |
ey WS - Validation Targets
+  Validation Outputs
+  TestTargets 7
+  TestOutputs
Errors
Response

@
S

I
=)

@
S

Output and Target
)
S

o

o

N .
1 18 s T

0.5 1 15 2 25 3
N 6
Time <10

Fig. 9. Neural network training

time-series response
Source: compiled by the authors

%108 Autocorrelation of Error 1

I Correlations
Zero Correlation
Confidence Limit

Correlation

I I I I I I
20 -15 -10 5 0 5 10 15 20
Lag

Fig. 10. Neural network training error

autocorrelation
Source: compiled by the authors

One of the typical schedules of water
consumption within the daily water supply cycle of
residential buildings was adopted for research [19],
[20]. The schedule of changes of the network
hydraulic resistance is shown in Fig. 11. The daily
cycle begins with 5 s, since it is necessary to
accelerate the generator and the motor first. The
daily cycle is conventionally divided into 4 main
periods: morning (6-12) hours, daytime (12-17)
hours, evening (17-21) hours and night (21-6) hours.
The morning and evening periods are the busiest, so
the value of the network hydraulic resistance is the
lowest. The gradual nature of the network hydraulic
resistance change is due to the fact that the processes
in fluid transportation systems have minor
fluctuations, which leads to an increase in the
accuracy of training arrays for the neural network of
the pressure estimator, but does not have a
significant effect on other system parameters. The
increase in training arrays, in turn, leads to an
increase in the complexity of modelling such
processes, both in terms of time and the use of
memory of the computing device [22].
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5 %10’

0

0 5 10 15 20 25 s
Fig. 11. Graph of hydraulic resistance of

the system
Source: compiled by the authors

The investigations were conducted for a
specific unit, in which the power of the induction
generator is 5.5 kW, the induction drive motor is 4
kW, and the pump is 3.7 kW. The given pressure
stabilization level is 48 m, which is the nominal
pressure for the pump selected for the research.

Simulation were carried out for the following
algorithm of operation of an induction generator
with self-excitation and a pump unit motor:

—from 0 sto 0.1 s, the IG accelerates to a speed
of 157 rad/s, with a full nominal load of 5.5 kW
connected to the system outputs;

—from 0.1 s to 5 s, the drive motor of the pump
accelerates to the nominal speed of 157 rad/s at the
nominal load value of the hydraulic network;

— from 4.5 s to 5 s, the water, which rising to
the given pressure level, overcomes the amount of
load caused by the static pressure H_ , which presses

from top to bottom;

— from 5 s to 30 s, the load changes
corresponding to the daily cycle of water
consumption, according to the hydraulic resistance
change schedule (Fig. 11).

The investigation results of the pump unit and
drive motor are shown in Fig. 12 and Fig. 13.

From the graphs of the transient processes of
the pump unit (Fig. 12) it is seen that the pressure
controller works out the set value with a dynamic
error of no more than 1 % while the hydraulic
resistance changes. This value of the dynamic error
satisfies the requirements of technological and
residential and communal consumers. However, the
character of the error of working out the given
pressure is due to the discrete hydraulic resistance
change. The pump unit and the drive motor operate
in nominal modes in the morning and evening
periods, when the pump productivity reaches its
maximum value.

st 1

Q, m>/h

10 |

S i a—

40 1
30t

20

10|

0 5 10 15 20 25 t,s
b
Fig. 12. Transient processes of the pump unit
without the pressure observer:

a— productivity; b — pressure
Source: compiled by the authors

]

w, rad/s

100 |

50

0

0 5 10 15 20 25 t,s
Fig. 13. Transient processes of the drive

motor: angular velocity of the motor
Source: compiled by the authors

With the help of a voltage controller, the output
linear load voltage is stabilized at 510 V. This
justifies the fact that the implementation of the
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proposed system allows maintaining the value of the
output voltage at a constant nominal level, despite
the change of the network hydraulic resistance.

The results of the work of the pump installation
pressure observer, built on the basis of an artificial
neural network with feedback, are presented in Fig.

14, where H — value of the observed pump pressure;
eH (%) =H—H — pressure observation error.

H,m

40

30 -

20 -

eH, %

10

0 5 10 15 20 25 ts
b
Fig. 14. Transient processes of the pressure
observer:
a — value of the observed pressure of the

pump; b — pressure observation error
Source: compiled by the authors

Fig. 14 shows that the pressure estimator works
with quite high accuracy.

At the time when the self-excitation of the wind
generator occurs and during periods of low loading
of the hydraulic network, the observer works with
insufficient accuracy. However, at the moment of
time from 7 s to 30 s, when the load changes
corresponding to the daily cycle of water
consumption, the error of the head estimation
reaches a value of up to 10 %, which is acceptable in

such systems. Dynamic observation errors are
caused by a sudden change in load. This estimator of
pump parameters can be used in the future to
implement  sensorless  control  systems  for
turbomechanisms powered by an alternative source
of electricity.

To investigate the possibility of implementing
sensorless control through the use of a pressure
observer, a system was used, the functional diagram
of which is shown in Fig. 15. The results of the

research are shown in Fig. 16, where H - value of

the observed pressure of the pump; |5|(%) =H-H -
pressure observation error.

Uﬁ Ua TL
C%:%{E Uy STATCOM|| _
U, .
(O]}

Y

Ky

Fig. 15. Functional diagram for the investigation

of the sensorless control
Source: compiled by the authors

From Fig. 16, it is seen that when investigating
the head stabilization system using the pressure
estimator signal as feedback, the error of working
out the set pressure does not exceed 5 %, which may
be acceptable for some technological process
requirements. Comparing the sensorless control
system and when using a pressure estimation, the
pressure observation error ranges from 0% to 8%.
Dynamic errors are caused by a discrete change on
the network hydraulic resistance. When the
generator is self-excited, the estimator does not
work, so the observation error exceeds the
permissible 10 %. It is recommended not to use this
data. Therefore, the conducted research showed that
the developed pressure observer can be used in
pressure stabilization systems of hydraulic networks
of an electromechanical turbomechanism control
system powered by an alternative energy source, to
implement sensorless control systems. To increase
the accuracy of the estimation of technological
coordinates, additional retraining of the neural
network or search for the optimal number of neurons
and delays during network formation is possible,
while the pressure stabilization system will work
more accurately and reliably.
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Fig. 16. Transient processes of the sensorless
control system:
a — value of the observed pressure of the

pump; b — pressure observation error
Source: compiled by the authors

CONCLUSIONS

Based on the results of the research, the
following conclusions can be drawn:

1. The developed system allows to stabilize the
hydraulic network pressure and the value of the
input voltage at the given levels when the hydro
resistance changes within the daily cycle of water
consumption. At the same time, the dynamic error of

working out the system pressure does not exceed
1 %.

2. The design and training of the pump unit
pressure observer was carried out on the basis of the
theory of artificial neural networks, which makes it
possible to implement the principles of sensorless
control of turbomechanisms. The use of such an
estimator will reduce the cost of the system because
of removing pressure sensors from the system. The
chosen method of forming a neural network using
feedback allows investigating dynamic processes
with high accuracy. The observation error of
technological coordinates does not exceed 10 %.
The dynamic error of estimation is caused by a step-
like change of the hydraulic resistance of the
network.

3. The use of a pressure observer for the
implementation of a sensorless water supply system
in conditions of head stabilization is possible for
technological processes that allow an error of
working out the pressure at a given level of up to
5 %. The pressure observation error in the sensorless
control system ranges from 0% to 8 %, which is
admissible both for satisfying technological
requirements and for measuring network parameters
when using control measuring devices.

4. In view of the analysis of the conducted
researches, it is possible to recommend using the
obtained results both in the design of new and in the
reconstruction of existing control systems of pump
units powered by a wind turbine with an induction
generator with self-excitation, provided that the
wind turbine velocity is unchanged.

5. The developed neural network can be
implemented programmatically on the basis of a
field-programmable gate array, such as the FPGA
Cyclone V, which has an extremely high speed
compared to other controllers, which in turn will
allow evaluating technological coordinates in real
time, even in dynamic processes, without significant
time delays. Such a solution will increase the speed
and accuracy of working out the given pressure
level.
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AHOTALIS

ExornoriuHe Ta eKOHOMIUHE OTPUMAHHS €JEKTPUIHOI €Heprii 3a paxyHOK BHKOPHCTAHHS aJbTEPHATUBHUX IDKEpET eHepril €
aKTyaJbHHM HANpsSMOM y 3B’SI3Ky 3 TEHACHIIEIO ITOJOPOXKYAHHS EHEProHOCiiB, SKi BHUKOPUCTOBYIOTHCS MHpPH BUPOOHHUITBI
€JIEKTPUYHOI €HepTii, Ta y HACHIJOK 3HAYHUX IOIIKOKEHb EHEPTOCHCTEMH Y KpaiHu y pe3ybTaTi BiifHU Ha TepuTopii kpainu. Bapto
3a3HAYNTH, MO0 B JEIKHX palfoHaX MOXIIMBHUM € BUKOPHUCTaHHS JIMIIE aBTOHOMHHX CHCTEM T€HEepyBaHHsS eJIeKTPHYHOI eHepril,
OCKITBKH TPOKJIAIAaHHS EIeKTPUIHUX MEPEX B IIMX MICIEBOCTSAX € HEIOLUUIFHUM Ta HepeHTaOeIbHUM. 3a3BHUAil 3rajlaHi CHCTEMH
0a3yloThCsl Ha MOENHAHHI BiTPO-, abo Tifipo- TypOiHM — NPHUBIAHOTO JABUTYHA, Ta EJIEKTPUYHOTO TeHepaTopa. Taki CHCTeMH
Bi/I3HAYAIOThCS BHCOKHMM PECypcoM i HaIiMHICTIO, HU3BKOI COOIBapTiCTIO 1 CKIAAHICTIO 00ciyroByBaHHs. [Hoxmi Bim poboTtu
aBTOHOMHOI CHCTEMH T€HepyBaHHS eJCKTPUYHOI €HEePTil 3aJIeKUTh KHUTTS JII0JICH Ta MOXKIIMBICTh 3B 53Ky i3 30BHIIIHIM CBITOM, IO €
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0COOJIMBO BaXKJIMBHM B YMOBaxX BOEHHOTO CTaHy. Pa3oM 3 THM BiACYTHiCTh CTalijii3awil Hamopy TiApaBiIidHOI Mepexi CHCTEeMH
BOJIONIOCTAYaHHA MOXE IPU3BECTH 1O MOTipIICHHS MOOYTOBUX YMOB, BUHUKHCHHS aBapifiHUX CHTYyallil, 3pUBY TEXHOJOTiYHOIO
mporecy. 3 orjsiIy Ha 3a3Ha4yeHi (aKTopu, BUHHKAE HEOOXiAHICTh BUMIPIOBAaHHSA THCKY TiIpOMEpEKi, 0 MOXKIHUBE 3a JOIOMOTOI0
BUKOPUCTAHHS OI[IHIOBAUYiB TEXHOJIOTIYHUX KOOPAMHAT, NMOOYNOBAaHMX Ha 0a3i Teopil ITyYHHX Mepex. Y pobOTi 3alporoHOBaHO
CyJacHy eJISKTPOMEXaHIYHy CHCTeMy KepyBaHHS TypOOMEXaHI3MOM, IO >KUBHTHCS BiJl aJbTEpPHATHBHOTO JDKepelia eNeKTPUYHOT
eHeprii, B yMoBax cTabimi3amiii Hamopy TiApaBIidyHOI Mepexi IpH BHKOPHCTAHHI OIiHIOBaYa TEXHOJIOTIYHHX KOOpJAMHAT, a came
oliHIOBa4Ya THCKy. HaBeneHO MaTeMaTHYHHMII OIMIC OCHOBHHX EJIEMEHTIB IOCIIKyBaHOI cucTeMH. [loOymoBaHO i IOCIHiZKEHO
OIIIHIOBAaY THCKY TiApaBiiuHOI Mepeki Ha OCHOBI Teopil WITYYHHMX HEHPOHHUX Mepex. OmucaHo OCOOIMBOCTI MPOEKTYBAaHHS Ta
HABUAHHSA OLIHIOBAYiB TEXHOJOTIYHMX KOOPAMHAT Ha 0a3i HEWpPOHHHX MeEpeX 13 3BOPOTHHUMH 3B’s3KaMu. Po3risHyTo Ha
KOHKPETHOMY IpUKJIaLi poboTy Oe3raBaueBOi CUCTEMH IMpU cTabimi3allii Hamopy Ha 3aaHOMY piBHI IIPU 3MiHI ONOPY TiIpaBIiyHOT
MepeXi B MeXax THUIIOBOTO J00OBOTO IMKIY CIOXHBaHHA BoAW. Iloka3zaHO pe3ynbTaTH Ta aHaNi3 JOCTIHKEHHS pO3pOOJICHOTO
OLIIHIOBaYa B CHCTEMax CTaHJapTHOTO Ta 0e3/1aBaueBOro KepBYBaHHIX.

KmiouoBi cnoBa: HacocHmit arperar; cTabimi3amlist THUCKy; PEryJIOBaHHS HANpyrH; aCHHXPOHHHH TeHepaTop; OIiHIOBad;
HEeWpOHHa Mepexa
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