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ABSTRACT

The paper considers a problem of provision of the programmable component integrity of computer systems. First the basic
stages of the programmable components life cycle are presented. The authors note that the program code modification gives the op-
portunity to maliciously violate its (program code) integrity. The traditional methods of integrity modification are based on the usage
of monitoring hash sums. However the main disadvantage of the traditional methods is that they are not able to hide the fact of integ-
rity monitoring execution itself. This fact cannot be hidden and becomes obvious. Even under the conditions of extra encrypting of
monitoring hash sum the very existence of it demonstrates that the integrity monitoring is carried out. The paper presents a class of
methods which offer the hash sum embedding into program code in the form of digital watermark. This class of methods is consid-
ered with reference to monitoring the chip FPGA (Field Programmable Gate Array) program code integrity. For embedding the fea-
tures of LUT-oriented FPGA architecture are used. The monitoring digital watermark embedding is performed due to the usage of
equivalent program codes conversions in a set of LUT-units included in FPGA. The peculiarities of the digital watermark embedding
are as follows — such kind of embedding does not change the program code size and does not modify the chip FPGA operation. As a
result of embedding it is impossible to distinguish the monitoring hash sum in the program code in an evident way. The extraction of
digital watermark including hash sum can be carried out only in the presence of special steganographic key, which sets the rules of
watermark location in the FPGA program code space. In the given paper a compositional method of embedding the monitoring digi-
tal watermark into the FPGA program code is offered. The method combines the features of ones providing the recovery of initial
program code state and the ones (methods), which implement the embedding on the basis of syndrome decoding. The proposed
method incorporates the useful features of two classes of methods mentioned above and serves to reduce the amount of equivalent
conversions applied to the program code in the course of the digital watermark embedding. This demonstrates the advantage of the
proposed method as compared to the base ones of the digital watermark embedding in the FPGA program code. The description and
results of experimental research of the proposed method are also presented.
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INTRODUCTION

Among the hardware components used to build
digital computer systems, two large classes can be
separate: a) integrated circuits with hard logic of
functioning; b) program-controlled (programmable)
integrated circuits.

The first of these classes is formed by so-called
ASIC (Application Specific Integrated Circuit) chips
[1]. These integrated circuits are focused on solving
one specific computational or control task. Their
functioning does not change during the life cycle of
the system in which they are included.
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Integrated circuits belonging to the class of
program-controlled [2], on the contrary, allow to
customize (program) them to solve an arbitrary
range of tasks. The operation of the integral circuits
of this class can potentially be changed at any stage
of their life cycle.

Programmable hardware components are not in-
itially configured to solve any particular task. In the
process of designing a computer system, a program
(program code) is created for such components,
which custom them to solve the required task. This
program is placed in the memory of the programma-
ble component, thereby setting it up for a given
functioning.

The functioning of programmable components
can be modified at all stages of their life cycle. This
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modification is carried out by changing the program
code of the components.

A typical (but not exhaustive) set of reasons
leading to the need to change the functioning of pro-
grammable components is:

a) detection of errors in the initial version of the
program code;

b) the need to optimize the system at a certain
stage of its operation;

c) planned upgrade of the program code;

d) the need to adapt the system to changes in con-
ditions determined by the environment external to it.

The ability to modify the program code of pro-
grammable components creates vulnerability in en-
suring the integrity of the system. For components
with hard logic (ASIC), potential integrity violations
are possible mainly through physical intervention in
their structure. For programmable components, the
possibility of integrity violations at the level of pro-
gram code arises. Integrity is further understood as
the ability of the system to exclude unforeseen chang-
es to the system and the services it provides [3].

The prerequisites for the occurrence of this vul-
nerability are that:

a) there is (can be used each of legitimately and
not illegitimate) the technical possibility of modify-
ing the program code, which leads to a change in the
operation of the components;

b) provided for legitimate (made by the devel-
oper or the person operating the system) changes in
the program code.

Integrity violation of the program code, caused
by both the action of natural forces and malicious
acts of humans is an extremely dangerous phenome-
non that can lead to technological disasters and fi-
nancial losses [4].

So programmable components are part of the
systems for managing high-risk technical objects [5]
(in safety-critical systems) [6]: energy facilities, chem-
ical industry, aviation objects and high-speed ground
transportation. Disruption of the functioning of these
objects can lead to unacceptable consequences.

An important area of application of program-
mable components, for which functional safety re-
quirements are one of the main development factors,
is medical equipment (including wearable and im-
plantable in the human body) [7]. Violation of the
integrity of the software code for components of
such equipment at the very least degrades the quality
of life of its users, and, at most, can affect the vital
functions of the body of users.

Also, programmable components are part of
systems that are not characterized by a critical area
of application, but are used massively [8]. The im-
proper functioning of such systems can lead to fi-

nancial and reputational losses, both for companies
producing systems and for end users.

The presence these factors makes ensuring the
integrity of the program code for programmable
components of one the priorities in the process of
creating safe systems.

One of the types of programmable components
of modern computer systems is FPGA (Field Pro-
grammable Gate Array) chips [9], [10]. These inte-
grated circuits differ from microprocessors and mi-
crocontrollers in the way they change functioning.
FPGA chips have a variable (programmable) struc-
ture that can be modified by a program code to solve
a specific task.

FPGAs are a matrix of programmable elemen-
tary units of both universal and specialized purposes.
Each of these units is configured by the FPGA pro-
gram code to implement a specific function. The
connections of the units between themselves and
with the external outputs of the chip are also deter-
mined by the program code. Thus, unlike micropro-
cessors and microcontrollers, FPGAs can change
their functioning by changing the internal structure
and functions of the elements of this structure. This
makes it possible to ensure the distribution (parallel-
ing) of the problem solving process in the FPGA
chip space.

Due to the above features, FPGA chips have
greater performance, as compared to the other, fre-
quently used the type of programmable components
— microprocessors and microcontrollers.

Typically, FPGA chips are used in cases:

a) the specificity of the computing tasks that
need to be solved is that microprocessors cannot be
used for performance reasons;

b) this requires the implementation of the solu-
tion of the problem on programmable components (it
is assumed that at further stages of the life cycle of
the system, modification of its functioning will be
required).

The problem of ensuring and monitoring the in-
tegrity of the software code for such programmable
components of computer systems as microprocessors
and microcontrollers is worked out much deeper
than for FPGAs. This is due to the earlier occurrence
of microprocessors and microcontrollers and, ac-
cordingly, a longer stage of studying the problem of
the integrity of their program code. Significant dif-
ferences in the principles of operation and program-
ming of these two classes of programmable compo-
nents (microprocessors and FPGA) do not allow ex-
tending the methods used to monitoring integrity in
one class to another class. Therefore, the problem of
ensuring the integrity of the FPGA software code is
currently significant.
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ANALYSIS OF RECENT RESEARCH
AND PUBLICATIONS

Currently, the most effective and frequently
used mechanism underlying integrity monitoring is
the use of hash sums [11]. In contrast to the check-
sums used in online-testing of computer systems [12],
hash sums have a number of additional properties.

So, the hash functions that help to calculate
monitoring hash sums provide the properties used in
the integrity monitoring process, among which we
can highlight:

a) non-invertibility — the extreme computational
complexity of obtaining an argument of a hash func-
tion by its value;

b) a significant change in the hash sum with a
slight change in the data block for which this hash
sum was calculated;

c) the impossibility, knowing the argument and
the corresponding hash sum, to find another argu-
ment that gives the same hash sum.

The main approach to the monitoring of pro-
gram code is to double calculation of the hash sum

Preparing an information object
for integrity monitoring

in the framework of following base procedure [13]
(Fig. 1).

1) At the stage of preparing the program code
for integrity monitoring, the hash sum H of the pro-
gram code is calculated. This hash sum is further
considered to be a standard. The standard hash sum
H should be available at the time of integrity moni-
toring of the program code. To ensure the availabil-
ity of the hash sum, H is attached to the information
object of the program code or is in some way associ-
ated with it.

2) Immediately at the moment of performing
the integrity check, the hash sum H* is again calcu-
lated for the information object of the program code.
The calculated hash sum H* is compared with the
standard hash sum H. Based on the comparison of
the specified hash sums, it is decided whether the
integrity of the program code is violation. Any
change to the information object of the program
code or / and the standard hash sum leads to a mis-
match between the hash sums H* and H.

The calculated hash sum
is declared as standard
for object A

The initial Hash sum

information .
object A calculation

Integrity monitoring
( o>— o

Monitored Hash sum S

information . Hash sum ——— | Comparison
object A* calculation i

Result i

Fig. 1. Basic integrity monitoring procedure

Source: compiled by the authors

Possible options in the case of the mismatch of
H* and H hash sums (not an exhaustive list): stop-
ping the system; overwriting the initial program
code from a reliable source; switch to backup system.

Depending on the cause of the integrity viola-
tion, the specificity of individual details for the in-
tegrity ensuring process arises.

So for integrity monitoring, aimed at countering
the expected violation caused by malicious interfer-
ence in the program code, the essential aspects are:

a) the storage location of the standard hash sum;

b) the method of storing the standard hash sum
and the technique for accessing it;

c) the extent of openness for fact of the integrity
monitoring.

A known approach to integrity monitoring,
which involves storing the monitoring hash sum in
open form in a separate information object from the
program code [14]. This approach is acceptable
when processing the expected integrity violation as a
result of natural phenomena. However, for the case
of malicious interference in program code, the
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appropriateness of using this approach is questiona-
ble. The reason for this is the openness of the storage
of the standard hash sum, which creates a potential
for falsification.

The traditional integrity monitoring approach
described above (based on the double calculation of
the hash sum and its storage in open form) is used to
monitoring the integrity of the program code, both
microprocessors and FPGA chips. However, this
approach has a significant disadvantage. This disad-
vantage is due to two interrelated factors:

Factor 1: the standard hash sum is stored in
such a way that it is available for reading, analysis,
and possible falsification.

Factor 2: the fact of performing integrity moni-
toring is open to an outside observer.

Despite the fact that hash functions have the
property of non-invertibility, access to the value of
the standard hash sum creates the possibility of ma-
nipulating the integrity monitoring process. A whole
range of methods has been developed to accelerate
the search for the preimage for the hash sum: search
by rainbow tables [15]; dictionary methods [16];
methods focused on frequency analysis [17] and var-
ious compositions of these methods. However, the
main problem generated by the availability of a hash
sum is the ability to use insider manipulation meth-
ods [18]. Within these methods, the capabilities of
persons who have access to the processes of moni-
toring the integrity or legal modification of program
code are used. These persons can potentially per-
form falsification of the standard hash sum: replace
it with the hash sum calculated for the object of the
program code that has been illegitimate changes.

There are known approaches to minimizing the
influence of the first factor mentioned above. In par-
ticular, it is proposed to store the standard hash sum
not in the clear, but to pre-encrypt it using the agreed
cryptographic method [19], [20]. In this case, to ac-
cess the value of this hash sum, it is necessary to
decrypt it (Fig. 2). This requires information on the
encryption method used and the encryption key.
When using this approach, hash sum falsification
requires an additional procedure — obtaining the ini-
tial hash sum value. In the absence of a encryption
key, this procedure is extremely computationally
complex. However, this approach inherits the disad-
vantages of the basic approach. In the case of using
such an approach, the fact that integrity monitoring
is performed remains open, which makes it possible
to apply cipher-hacking techniques to falsify the
standard hash sum. Also, this approach does not
eliminate the possibility of insider manipulation of
monitoring information. It only narrows the circle of
persons capable of performing such a manipulation.

Another approach [21] is known to eliminate
the influence of the first of the above factors. The
standard hash sums for the information objects of

the program code are not distributed together with
the information objects themselves (they are not at-
tached to them), but are stored in a certain central-
ized database of the subject of control. The main
disadvantage of this approach is the difficulty of
protecting this database from information leaks.
Mass information leaks from such databases are very
frequent [22]. Such leaks put at threat all integrity
monitoring systems that store standard hash sums in
compromised databases. Similar to the previous ap-
proach, this approach does not eliminate the possi-
bility of insider manipulation of standard hash sums.

The approach based on the application of the
theory of digital steganography [23] eliminates the
indicated disadvantages of traditional approaches.
Steganography is a field in the theory of information
security, based on information hiding. The main
mechanism of steganography is the hidden embed-
ding of information objects of one type into infor-
mation objects of another type. Digital steganogra-
phy has various practical applications, the main of
which are: hidden data transmission, hidden data
marking, and hidden tracking of data distribution
paths. To solve the problem of integrity monitoring,
one of the steganographic-oriented technologies is
used — the technology of digital watermarks [24].

Digital watermark is used as information medi-
um [25] of the standard hash sum within the frame-
work of a steganographic approach to integrity mon-
itoring. In such a case a digital watermark is a data
block that contains monitoring hash sum and option-
ally additional utility information fields. This digital
watermark is embedded in the information object of
the program code in such a way that the fact of this
embedding becomes hidden from an outside observ-
er. The fact that integrity monitoring is performed is
also hidden. In this case, the standard hash sum is
distributed over the information object of the pro-
gram code in such a way that it (hash sum) can be
accessed only with a special steganographic key
(stego-key) [26].

Thus, when using the steganographic approach,
the control hash sum is not attached to the infor-
mation object of the program code, but is embedded
in it in the form of a digital watermark.

The advantages of this approach are that:

1) a digital watermark does not increase the
volume of an information object by the size of the
hash sum;

2) there is no possibility for an external observ-
er to identify the fact that the program code is moni-
tored, as well as to identify parts of the information
object that contain program code and parts that con-
tain the hash sum;

3) the embedding of a digital watermark in the pro-
gram code is performed in such a way that the op-
eration of the FPGA chip does not change.
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Fig. 2. Integrity monitoring procedure with encryption of standard hash sum
Source: compiled by the authors

Methods [27], [28] that implement the concept
of using digital watermarks to integrity monitoring
the program code of FPGA-based components use the
program codes of the LUT (Look Up Table) units
[29], [30] as the information medium in which the
digital watermark is embedding. LUT units (Fig. 3)
are the most mass elementary calculating units of
FPGA. Their number in modern FPGA chips can vary
from tens of thousands to several millions.

The LUT unit is a programmable module for
calculating an n-arguments (usually from 4 to 8) log-
ical function. Each LUT unit is configured to im-
plement a specific logic function using 2n-bit pro-
gram code. In accordance with the provisions of the
methods [27], [28], the set of program codes of the
LUT units is used as the information medium for
embedding a monitoring digital watermark.

Adr. Data
0000| Dg
0001| D
0010| D,
0011| Ds

Ad I'o

Adry Out

Ad Iy
T2,

D14
Dis

1110
1111

Ad I
RALLEEY

Fig. 3. Structure of the 4-input LUT unit of
FPGA chip

Source: compiled by the authors

Embedding within the framework of these
methods is performed using equivalent conversions
[31], [32], which do not change the logic functions
implemented by the LUT units and do not affect the
operation of the FPGA chip. Methods [27], [28] de-
termine that for embedding a digital watermark from
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general set of LUT units an ordered set of units is
formed, each element of which uniquely corresponds
to a bit of a digital watermark and is used to store
this bit. The specified ordered set is called the ste-
ganographic path (stego-path) in the space of a
LUT-oriented information object. In this case, the
stego-path formation rule is a part of the stego-key —
a set of secret information that defines the formal
rules for extracting a digital watermark from the
program codes of the LUT units.

In Fig. 4 shows a diagram of the steganographic
procedure for preparing an information object of the
FPGA program code for integrity monitoring. In
accordance with this scheme, the considered meth-

_1l2
W\L’ Forming of the
tag for legitimacy
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C > |
S—— i 1l
coﬁgnt 1| Forming of the
—— | tagforusage
| monitoring
—— |
Tag |
|
|
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: Hash sum
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: Program code || |
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| | 2.1

Creating the
information model

The rest part

v

ods [27], [28] are functioning. This diagram de-
scribes the formation and use of a digital watermark
(denoted as a DWM in the diagram). A digital wa-
termark includes a mandatory component — a stand-
ard hash sum H of the code and two optional com-
ponents: the usage monitoring tag (marker) and the
legitimacy monitoring tag of the program code in-
formation object. Optional components of a digital
watermark provide a solution to specific problems for
the protection of FPGA software code. These solu-
tions can be implemented along with integrity moni-
toring by storing special tags in a digital watermark.
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Fig. 4. Steganographic procedure for preparing an information object for integrity monitoring
Source: compiled by the authors

The use monitoring tag is designed to track the
distribution of the program code. This procedure is
necessary to identify the point of leakage and the
illegal distribution of FPGA code. The legitimacy
monitoring tag can be used to confirm the legality or
authenticity of the program code.

Programmable LUT units are the most mass in
the FPGA structure. Because of this, the program

code of these units makes up the largest part of the
entire program code FPGA. It is for the program
code of LUT units that the equivalent conversions
[31], [32] are proposed, which are used in the meth-
ods [27], [28] as the basis for the embedding of a
digital watermark. In addition to LUT units, FPGA
contains specialized programmable units: lumped
memory units, multiplication units, 1/O units, etc.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Computer engineering and cybersecurity

143



Applied Aspects of Information Technology 2019; Vol.2 No.2:138-152

The program code of these units is not used in the
process of embedding a digital watermark. In ac-
cordance with the considered diagram (Fig. 4), the
standard hash sum is calculated for the entire FPGA
program code, and the destination place of the moni-
toring digital watermark is the program code of the
LUT units.

However, the use of the steganographic ap-
proach imposes an additional requirement on the
integrity monitoring method. This requirement is the
need to restore the initial state of the information
object of the program code. Indeed, if a standard
hash sum is calculated for the program code, then
any change in the program code will be manifested
at the time the integrity monitoring is performed.
When embedding (even performed by equivalent
conversions) monitoring watermark in the program
code, its (code) integrity is violated. Thus, there is a
contradiction between the method of storing the
standard hash sum and the main method of integrity
monitoring.

To resolve this contradiction, the following
procedure is usually used:

1) the standard hash sum for the information
object of the program code is calculated:;

2) the digital watermark is formed, which in-
cludes the standard hash sum;

3) the state that the information object had at
the time of calculating the standard hash sum (the
initial state of the information object) is in some way
stored. Moreover, the storing is done in such a way
that only an information object and a stego-key are
required for monitoring. Based on this, the initial
state can be stored as part of the same digital water-
mark in which the standard hash sum is placed;

4) the monitoring digital watermark is embed-
ded in the information object of the program code;

5) at the time of performing the integrity moni-
toring, the digital watermark is extracted and at the
same time the initial state of the information object
is recovered (the state for which the standard hash
sum was calculated).

It is a pair of actions “storing - recovering” of
the initial state of the information object that elimi-
nates this contradiction.

There is a method [33] that provides this recov-
ery procedure in order to monitoring the integrity of
the FPGA program code. This method is based on
the Friedrich method [34], [35] proposed for embed-
ding digital watermarks in multimedia information
objects. The disadvantage of the Friedrich method is
that it requires a relatively large number of changes
made in the program codes. These changes are per-
formed using equivalent conversions; do not change
the size of the program code and the operation of the
device. However, any massive code changes (even

equivalent ones) could potentially be used in the fu-
ture to compromise the method and search for vul-
nerabilities in it. Therefore, the task of minimizing
the changes in the program code resulting from the
embedding is very important and significant.

The steganographic method F5 [36], [37] is
known, which is characterized by a small value of
the ratio of information object bits number changed
during the embedding to the total number of bits.
The F5 method is based on the joint use of the theo-
ry of steganography and the theory of error check
coding [38]. This method is intended only for use in
relation to multimedia information objects: raster
images, digital video and sound. There is an adapta-
tion of this method to the environment of LUT-
oriented information objects (to embedding digital
watermarks in the FPGA program code) [39]. How-
ever, neither the basic nor the FPGA-oriented meth-
ods have the ability to ensure the recovery of the
initial state of an information object in the process of
extracting a digital watermark.

Thus, the method [33] and the methods derived
from it have a property that is useful for the task of
monitoring integrity — they provide the ability to
recovery the initial state of an information object in
the process of extracting a digital watermark. How-
ever, the method [33] in its practical applications
shows a relatively large value of the ratio of the
number of modified bits of the program code to their
total number.

On the other hand, the method [39] and meth-
ods derived from it, on average, gives fewer modi-
fied code bits, but does not support the ability to re-
covery the initial state of an information object.

Under these conditions, we consider significant
the task of obtaining a method that combines the
useful properties of the methods [33] and [39] in
solving the problem of monitoring the integrity for
the FPGA program code.

THE GOAL AND OBJECTIVES OF THE
WORK

The goal of this work is to reduce the number of
modifiable bits of the FPGA program code in the
process of monitoring integrity by combining digital
watermark embedding methods that:

a) have the property of recovering the initial
state for the program code of information object;

b) generate a small (relative to other similar
methods) number of changes for bits of the program
code.

To achieve this goal in the work the following
objectives are set:

—to formalize the method that allows to per-
form the recovering of the initial state for the infor-
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mation object and at the same time provides the
number of changes for program code bits at the
method [39] level,

—develop a procedure for applying the pro-
posed method in the process of the FPGA program
code integrity monitoring;

— perform an experimental comparison of the
proposed method with known methods and draw
conclusions about the appropriateness of its use.

MAIN PART OF THE WORK

A compositional integrity monitoring method is
proposed that combines the property of ensuring the
recovering of the initial state for an information ob-
ject with the property (characteristic for methods
based on the use of syndrome decoding) of the min-
imal change for bits of the FPGA program code. The
proposed method is based on the following six key
principles.

The first principle of the method. The infor-
mation medium of a digital watermark is the stego-
key-specified bits of the LUT units, which are along
the stego-path (target bits for embedding). In the
following, the ordered sequence of such bits will be
denoted by Mspath = <mi, my, ..., mp>. Each of the
mi € Mspan bits can be inverted by equivalent con-
versions [31], [32] used in the methods [27], [28].

The second principle of the method. To embed
the bits of a digital watermark, a change is made to
the syndromes that are associated with n-bit frag-
ments (parameter n is set by the description of the
error-correcting code used in the embedding pro-
cess) of the Mspan Sequence, using the error-
correcting coding method specified by the ste-
ganographic key.

The third principle of the method. Storing of
the initial state of the information object of the pro-
gram code is achieved by lossless compression and
embedding the compression results as part of a digi-
tal watermark (similarly to how this is implemented
in the Friedrich method [34], [35] and the FPGA-
oriented method [33]).

The procedure for embedding a digital water-
mark involves changing the values of the bits in the
Mspath S€Quence. Because of this, within the frame-
work of this provision, it is ensured that the initial
state of this part of the FPGA program code is main-
tained.

The fourth principle of the method is that the
digital watermark being embedded into the program
code is formed as a set:

a) compressed initial state of the Mspan binary
sequence;

b) the monitoring part containing the standard
hash sum;
c) optional additional information fields.

The fifth principle is that the initial state of the
Mspath bit sequence is stored by changing the Mspan
bits, which (changing) leads to the replacement of
the original n-bit Mspan fragment syndromes by the
n-bit fragments obtained after compression.

The sixth principle of the method is that the
modification of the syndromes is performed by
equivalent conversions [31], [32], used in the meth-
ods [27], [28].

Based on the presented basic theoretical princi-
ples, the following sequence of actions is proposed,
which leads to the embedding of the monitoring dig-
ital watermark in the FPGA program code.

Stage 1. Stego-path is formed in the space of
the program code of LUT units. To perform this
stage, we use the stego-path formation procedure
proposed in [40]. The result of this stage is an or-
dered sequence Mspath = <my, My, ..., My> bits of the
program codes of LUT units located on the stego-
path. The Mspain Sequence bits are information medi-
ums of the monitoring digital watermark being im-
plemented in the program code.

Stage 2. The Mspath Sequence is divided into n-
bit fragments.

Let the stego-key Skey as one of the compo-
nents contain the description of the error-correcting
code ECode € Skey given by three parameters: n, k,
H, where n, k are the parameters of the (n, k)-code, n
is the length of the code word, k is the number in-
formation bits in the code word; H — some rule for
performing syndrome decoding. Further, for simplic-
ity, the rule H will be specified by the check matrix
of the block code. However, in the general case, this
rule can be specified in any other way of describe
the procedure for obtaining the error syndrome for
error-correcting coding.

The sequence of Mspan binary bits is represent-
ed as a sequence of concatenated fragments:

Mspath = M1 | M2 | ... | Mg, 1)

where: M; is a fragment of the Mspan Sequence, with
a length of n bits (the n parameter is specified by the
description of the used error-correcting code
Ecode € Skey);

«|» — designation for the operation of concate-
nation of the binary sequences.

If the length of the binary sequence Mspam IS not
a multiple of the parameter n, then the sequence is
supplemented to the nearest multiple of the length of
the Mspan by the specified placeholder.
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Stage 3. Each fragment M; with the help of the
check matrix H € Ecode is assigned the n - k bit S;
syndrome.

Stage 4. From the resulting syndromes, a binary
sequence is formed by concatenation:

SSpath =S | S2 | | Sq. (2)

Stage 5. Sseath binary sequence compression is
performed. In this case, the loss base compression
method specified by the stego-key is used. In the
process of compression, the syndromes that make up
the Sspah Sequence are considered as symbols of the
primary alphabet, and the sequence itself, as a mes-
sage consisting of these symbols. As a result, a com-
pressed sequence of syndromes Sspathcom IS formed.

Stage 6. A digital watermark is formed:
DWM = SSpathCom | HaShsum | EXtraFIeIdS, (3)

where,

HashSum — monitoring hash sum;

ExtraFields — optional additional information
fields;

«|» — designation for the operation of concate-
nation of the binary sequences.

The length of a digital watermark DWM must
not exceed the length of the Sspan Sequence. Since
Sspathcom 1S @ compressed version of the Sspain Se-
quence, the valid size of the control hash sum and
additional fields cannot exceed the difference be-
tween the lengths of the Sspath and Sspatcom SEQUENCES.

Stage 7. The resulting digital watermark DWM
is divided into fragments of Si* by n — k bits, i.e. the
same length as the length of the Si syndromes in ex-
pression (2):

DWM = S1* | So* | ... | Sg*. (4)

Stage 8. The bit values of the Mspan Sequence
are modified in such a way as to ensure that for M;
fragments replace S; syndromes with Si* syndromes.
To perform such a replacement, the current S; and
the required S;* syndromes are summed modulo two:
bi = Si®Si*. The obtained value b; sets the position
of the bit that needs to be inverted in the M; fragment
to replace S; syndrome with S;* syndrome. Frag-
ments of My*, resulting from changes in syndromes
concatenate in form a binary sequence M*span, Which
coincides in length with the initial Mspan Sequence.

Thus, the resulting sequence M*spar contains:

a) information about the original state of the se-
quence Mspath;

b) monitoring hash sum;

c) optional additional information fields.

Stage 9. The target bit values are modified in the
program codes of the LUT units. Modifications are
made in such a way as to change the source sequence
of the target Mspan bits to the M*span Sequence ob-
tained in the previous step. Modification is performed
by applying equivalent conversions [31], [32].

In Fig. 5 shows an example of the implementa-
tion of the proposed stages of the integrity control
method in part of embedding a digital watermark.
The figure shows an Msparn Sequence consisting of
42 target bits. This sequence is obtained at the first
stage of the method from the program codes of the
LUT units that are on the stego-path.

Let for this example, an error-correcting code
with the parameters (n, k) = (7, 4) and the check ma-
trix of the following form is used:

I
[l
o o R
o r O
O R R
P OO
R O R
R R O
PR R

At the second stage of the method execution,
the Mspan Sequence is divided into six fragments of
n = 7 bits each.

At the third stage of the method, for each of the
obtained fragments, n — k = 3 bit S; error syndrome is
calculated using the check matrix H.

In the fourth stage, the resulting syndromes
concatenate, forming a binary sequence.

At the fifth stage, the resulting sequence is
compressed. In this example, the Huffman method
[41] is used for compression. This method is used in
the example for clarity. In real applications, it is ad-
visable to use more efficient lossless compression
methods. A compressible sequence is considered as
a set of symbols of the primary alphabet, which is
formed by the values of S; syndromes. As a result of
the compression, a code table is formed that assigns
a code combination to each syndrome. The length of
code combination is proportional to the frequency of
occurrence of the syndrome in binary sequence.
Codes resulting from replacing the primary alphabet
symbols form the binary sequence Sspaihcom.

At the sixth stage, a digital watermark is formed
to be embedded. Let, for the considered example, the
monitoring hash sum is a binary sequence
“0000011”. At this stage, hash sum (in the figure,
the bits of the hash sum are shown by accentuation)
is concatenated with the sequence

Sspathcom. The result is an 18-bit binary sequence
of digital watermark DWM.
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Fig. 5. Example of the proposed method: the steps of embedding a digital

watermark in the FPGA program code
Source: compiled by the authors

At the seventh stage of the method, the result-
ing digital watermark DWM is divided into frag-
ments of n - k = 3 bits each: 6 fragments Si* are
formed.

At the eighth stage, the current Si syndromes for
Mi fragments are replaced with newly calculated Si*
syndromes. If the syndromes Si and Si* coincide,
then there is no need to replace them and no addi-
tional actions are taken with respect to the Mi frag-
ment. In this example, the equality holds for
Sa = S4* = 010.

In the case of differences between Si and Si*,
one bit of the fragment Mi is modified, which leads
to a change in the syndrome. The position of this bit
is equal to the sum modulo-two syndromes Si and Si*.

At the ninth stage, the bits are inverted for each
of the fragments Mi. As a result, the binary sequence
M*spath is obtained from the Msrath binary sequence.
Further, in the target bits of the program code of the
LUT units, equivalent conversions are performed,
resulting in values corresponding to the sequence
M*spath. As a result of these actions, the digital wa-

termark is embedded in the program code of the
LUT units.

In the considered example, to save the initial
42-bit state of the target bits and the 7-bit monitoring
hash sum, we needed an equivalent inversion of the
five target bits (one bit each in the program code of
five LUT units).

The following procedure is proposed for ex-
tracting a digital watermark from the FPGA program
code in the integrity monitoring process.

Stage 1. Similar to the first stage of a method of
embedding the set of the LUT units which are on the
stego-path is formed. From the program codes of
this units set, an ordered sequence Mspath Of target
bits is selected.

Stage 2. The sequence M*spath is divided into n-
bit fragments M*i.

Stage 3. For each of the fragments M*i, the n —
k bit syndrome S*i is calculated using the check ma-
trix H € Ecode.
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Stage 4. By concatenating syndromes S*;, a bi-
nary sequence is formed.

Stage 5. The monitoring hash sum is separated
from the sequence obtained in the previous step. The
rest of the sequence is subjected to a decompression
procedure. To do this, use the decompression meth-
od, the inverse of the compression method used in
the process of embedding a digital watermark. As a
result of decompression, a set of S; syndromes is ob-
tained, the number of which coincides with the
number of M*; fragments.

Stage 6. The procedure is similar to the one that
was performed in step 8 in the process of embedding
a digital watermark. The values of S*; syndromes are
converted to S; values by modifying one of the bits
in each of the M*; fragments. In the case of equality
of the syndromes S*; and S;, the modification of the
bits of the corresponding M*; fragments is not per-
formed.

Stage 7. The initial state for the target bits of
the program code is restored from the modified val-
ues of the fragments M*; by equivalent conversions.

To test the effectiveness of the proposed meth-
od, an experiment was performed. An experimental
comparison of the proposed method with a well-
known integrity monitoring method [33] (which per-
forms the recovering of an information object, but
does not use syndrome decoding during embedding)
was performed.

The experiment involved five FPGA projects of
various volumes and design mission. Synthesis of
projects was carried out with the help of the CAD
system Intel (Altera) Quartus Prime [42]. FPGA In-
tel Cyclone IV was used as target synthesis chips
[43]. The aim of the experiment was to determine
the number of bits modified in the process of em-
bedding a digital watermark.

The experiment procedure consisted in the fact
that a digital watermark was embedded in each of
the five experimental projects. This watermark con-
tained a monitoring hash sum and a compressed ini-
tial state for the target bits of program code of the
LUT units. Embedding was performed twice: using
the known and proposed methods. After each em-
bedding, the number of target bits of the LUT units
that were modified during the embedding process
was counted.

The results of the experiment are shown in the
table. FPGA-projects (which were used in the exper-
iment) in the table are ordered by increasing their
volume (total number of LUT units). For each of the
projects, it is shown by how much, due to the appli-
cation of the proposed method, the number of LUT
units whose program code has been modified has
decreased.

Table. Experimental results

Project | Total number of | Reducing the number of
No LUT units modified LUT units
1 3280 6,1 %
2 3837 7,6 %
3 4589 12,9 %
4 7403 15,1 %
5 8265 19,4 %

Source: compiled by the authors

From the results of the experiment it can be
seen that the proposed method allows reducing the
number of modified bits of program codes in LUT
units. It can also be seen that a greater decrease in
this number is achieved on projects that have a larg-
er volume. This reduction in the number of modifi-
cations to the program code confirms the validity
and effectiveness of the proposed method.

CONCLUSIONS AND DIRECTIONS FOR
FUTURE RESEARCH

The proposed method is an integrated part of
the technology for the integrity monitoring of FPGA
chips program code. The method is based on em-
bedding a standard hash sum in a program code in
the form of a digital watermark. Integrity monitoring
in the framework of the proposed method is possible
due to the property of recovering the initial state for
an information object of a program code in the pro-
cess of extracting a digital watermark from it.

The proposed method of integrity monitoring
for each n-bit fragment of the target bits sequence,
where n is the parameter used by the (n, k)-code
(specified by the stego-key):

a) requires changing the code for only one of
the n LUT units in the fragment in case of a mis-
match between the syndromes S; and Si*;

b) does not require changes to the codes of the
LUT units in the fragment in case these syndromes
coincide.

The visible problem (which causes the need for
future research) of the proposed method is the need
to include a table of prefix codes in the stego-key.
This need is caused by the fact that the table is cal-
culated at the stage of embedding a digital water-
mark and cannot be calculated in advance. The re-
maining parameters of the key can be specified in
advance by the embedding side and the digital wa-
termark extraction side. This requirement increases
the size of the stego-key. In the case of the inclusion
of a code table in the composition of a digital water-
mark, the potential effective volume of a digital wa-
termark is reduced. In this regard, there is a need for
future research on the possibility of using (within the
framework of the proposed approach) compression
methods that do not require the preservation of a code
table as part of a stego-key or digital watermark.
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AHOTANIA

B poboti posrisiHyTa mpobiiema 3a0e3nedeHHs IiTiCHOCTI NMpOorpaMOBaHUX KOMITOHEHTIB KOMITIOTEpHHX cHcTeM. [lokazaHi
OCHOBHI €TalM JKUTTEBOTO IMKIY MPOrpaMOBaHMX KOMIIOHEHTIB. Big3HaueHo, 10 MOXIHBICTH MOAMQIKallii MPOrpaMHOro KOAY
BiZIKpUBAa€ IUISXH 10 3JIOBMHCHOMY HOpYIIEHHs Horo imicHocTi. TpaauuiiiHi MeTOau KOHTPOIIO LTICHOCTI 0a3yloTbcs Ha
BHUKOPHCTaHHI KOHTPOJIBHUX Xell-cyM. OfHAK HEJOMIK TPaIuI[iiHUX METO/IB MOJISrae B TOMY, II0 BOHH HE J03BOJISIOTH NPHXOBATH
(axT BUKOHaHHsI KOHTpOIO IimicHocti. Lel ¢axr € Bigkpurum. HaBiTh B yMOBax A04aTKOBOrO IMM(PYBaHHS KOHTPOJIBHOI Xelll-
CcyMH 11 HasBHICTh CBIAYHMTH PO TE, IO HPOBOAUTHCS KOHTPOJb LTICHOCTI. B po0OTI BUIIAETBCS KJIaC METOMIB, B paMKaxX SKUX
KOHTpOJIbHA XEllI-CyMa BOYIOBYETHCS B IIPOrPaMHUMA KO y BUIIIAAI LH(BPOBOro BOASHOro 3HaKy. Llei kiac MeToiB po3risgaeTses
CTOCOBHO KOHTPOJIO IiTlicHOCTI mporpamHoro koxy MikpocxeM FPGA (Field Programmable Gate Array). [list BOymoByBaHHs
BHUKOPUCTOBYIOThCsl ocobnuBocti LUT-opientoBanoi apxitektypu FPGA. BOynoByBaHHS KOHTPOJNBHOTO IM(GPOBOrO BOASHOTO
3HAKy BUKOHYEThCS 3a PaxXyHOK 3aCTOCYBaHHsS €KBIBaJEGHTHHMX IEPETBOPEHb NPOrpaMHMX KOAiB Ha MHOXxHHI Onokis LUT, mo
BXoIATh 10 cknany FPGA. OcoGnuBicTio BOYIOBYBaHHS LM(POBOrO BOISIHOIO 3HAKy € T€, IO Take BOYIOBYBaHHA HE 3MiHIOE
po3mip mporpaMHoro koxy i He momudikye QynkiionyBanus Mmikpocxemu FPGA. B pesynbrari BOyZOBYBaHHs SIBHO BHIUTUTH
KOHTPOJIbHY X€II-CyMy B IPOrPaMHOMY KOZIi CTa€ HEMOMJIMBUM. BUTATaHHS 1IM(POBOro BOASHOIO 3HAKY, KM BKJIIOYAE 10 CBOTO
CKJIQy XeUI-CyMy MOMJIUBO TUIBKHM IPU HAsBHOCTI CIIELiaJbHOro cTeraHorpadivHoro kiroua (IO 3a1a€ NpaBuiia PO3MIILCHHS
BOJSIHOIO 3Haka B mpocrtopi mporpamuoro kony FPGA). B npaniii po6oTi NmpONOHYEThCS KOMIIO3MIIHHUI MeTo] BOYIOBYBaHHS
KOHTPOJIBHOTO 1M(POBOro BOISIHOrO 3HaKy B mporpamuuii kog FPGA. Meton noeaHye BIIaCTHBOCTI METOMIB, IO 3a0€3Me4y0Th
BiJJHOBJICHHsI TIEPBICHOrO CTaHy IIPOrPaMHOrO KOOy, 1 METOHIB, sIKi 3[iHCHIOIOTH BOYIOBYBaHHS Ha OCHOBI CHHIPOMHOIO
nekonyBaHHs. [IpONOHOBaHMIA METOJ IOEIHYE KOPHCHI BJIACTHBOCTI 3a3HAUEHMX JBOX KIACIB METOMAIB 1 CIpPSMOBAaHUHA Ha
3MEHIICHHS KUTBKOCTI €KBiBAJICHTHHX HEPETBOPEHB, L0 3aCTOCOBYIOTHCS 10 MPOTrPaMHOr0 KOAY B XOAi BOYZOBYBaHHS LH(POBOro
BOASHOrO 3HaKy. [IpeicTaBieHO OHMC i pe3ylbTaTH EKCHEePUMEHTAIbHOIO JIOCHIPKEHHS 3alporoHoBaHoro Mmeroay. ITokaszano
MepeBary 3arporoOHOBAHOIO METOY B MOPIBHSHHI 3 0a30BUMH METOZaMH, BOYJOBYBaHHS LU(PPOBUX BOASHHUX 3HAKIB B IPOrPaMHUIL
xon FPGA.

Ki1o4oBi cioBa: KOHTPOIB LiTiCHOCTI MPOrpaMHOro KoAy; mporpamoBaHi amaparHi komnoneHtd; FPGA; LUT-opienroBana
apxiTeKTypa; KOHTPOJIbHA XelI-CyMa; U(pPOBUil BOIASHUI 3HAK; cTeraHorpadiuyHuil maxia 10 KOHTPOIIO IiTiCHOCTI
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AHHOTALIUS

B pabore paccmorpena mnpoOiiemMa oOecreueHus LEIOCTHOCTH MPOrPaMMUPYEMbIX KOMIOHEHTOB KOMIIBIOTEPHBIX CHCTEM.
[Toka3aHbl OCHOBHBIE 3TAIlbl XM3HEHHOTO LHUKJIA IPOrPaMMHPYEMbIX KOMIIOHEHTOB. OTMEYeHO, YTO BO3MOXKHOCTH MOH(UKAIIUH
MPOrpaMMHOI0 KOJ@ OTKPBIBAaCT IIyTH K 3JI0HAMEPEHHOMY HApYLIEHHIO €ro LEIOCTHOCTH. TpajHIOHHBIE METOIBbI KOHTPOJISL
LIEJIOCTHOCTH, OCHOBAHBI HA MCIIOJIb30BAHUU KOHTPOJIBHBIX X3II-CyMM. OIHaKO HEJIOCTATOK TPaJULHOHHBIX METOJOB COCTOHUT B TOM,
YTO OHM HE JAIOT BO3MOXKHOCTb CKPBITh (DAaKT BBIIOIHEHHS KOHTPOJS LEJIOCTHOCTH. OJTOT (aKT sABIAETCA OTKPBHITHIM. [laxke B
YCIIOBUSIX JIONOJHHUTEIBHOrO MU(POBaHUS KOHTPOJIBHOH XdII-CyMMBbI €€ HallMuhe CBUIETEIBCTBYET O TOM, YTO IPOU3BOIUTCS
KOHTPOJIb LEIOCTHOCTH. B paGore Bbliensercs Kiacc METOIOB, B paMKaX KOTOPBIX KOHTPOJIBHAs XdII-CyMMa BHeEIpSETCS B
MPOrpaMMHBIA KO B BHIE LU(POBOro BOASHOrO 3HaKa. DTOT KIACC METONOB PAacCMAaTPUBACTCS NPUMEHUTEIBHO K KOHTPOIIO
LEJIOCTHOCTH TporpaMMHoro koma Mukpocxem FPGA (Field Programmable Gate Array). [lnst BCTpamBaHHs HCIONb3YHOTCS
ocobennoctu LUT-opuentrupoBannoii apxutekTypsl FPGA. BerpanBanne KOHTPOIBHOTO IU(GPOBOTO BOISHOIO 3HAKA BBIOIHIETCS
3a cueT NPHMEHEHMs JKBHBAJICHTHBIX HPeoOpa30oBaHMI NPOrpaMMHBIX KOIOB Ha MHOxecTse OiokoB LUT, Bxomsmmx B cocraB
FPGA. OcobeHHOCTBIO BCTpanBaHUs IU(POBOro BOISHOTO 3HAKa SIBIAETCA TO, YTO TAKOE BCTpaMBAHHE HE W3MEHSCT pa3Mep
MIPOrpaMMHOT0 KoJia ¥ He MoAnGHIUpyeT (QYHKINOHHpoBaHHE MHKpocxeMbl FPGA. B pesynbraTe BCTpanBaHUs SBHBIM 00pa3oM
BBIJICJIUTH KOHTPOJIBHYIO X3II-CyMMY B IIPOrPaMMHOM KOJIE CTAHOBHTCS HEBO3MOXKHBIM. M3BieueHue nudpoBoro BOASHOrO 3HaKa,
KOTOPBII BKJIFOYAaeT B CBOH COCTaB XAUI-CyMMY BO3MOXKHO TOJBKO IIPU HAIMYUM CICHHAIBHOIO CTEraHOrpaMuyeckoro KIroda
(xoTOpBIil 3amaeT TpaBWia pa3MEIICHUS BOIJHOTO 3HaKa B TPOCTpaHCTBe mporpamMHoro komga FPGA). B nanHoit pabGore
TpeIaraeTcsi KOMITO3UIIMOHHBI METOJl BCTPAaMBaHUS KOHTPOJBHOTO IM(POBOr0 BOASHOTO 3HAaKa B NporpamMMmHbiid kony FPGA.
MeTton coBMeNIaeT CBOMCTBA METOJOB, OOECHEUMBAIOIIMX BOCCTAHOBJICHHE HHHIMAIBHOTO COCTOSHUS IPOrPaMMHOrO KoJa, W
METOZIOB, OCYIIECTBIISIONINX BCTPAMBAaHHE Ha OCHOBE CHHJIPOMHOTO JAEKOIMpoBaHMs. IIpeinaraeMblii METOJ COYETaeT IOJIE3HbIE
CBOWCTBA YKa3aHHBIX JIByX KJIacCOB METOJOB M HAlPaBJICH HAa YMEHBIIEHHE KOJIMYECTBA SKBUBAICHTHBIX IpeoOpa3oBaHMI,
MPUMEHSEMbIX K MPOrpaMMHOMY KOy B XOJ€ BCTpPaHBaHUs LU(POBOro BOIASIHOro 3Haka. [IpencTaBieHO onmmcaHue U pe3ynbTaThl
9KCIEPUMEHTAIIBHOTO HCCIIEIOBaHus MpeaiaraeMoro Meroaa. Iloka3aHsl NpeMMyIIECTBA NPEIIaraeMoro MeToia B CPaBHEHUH C
6a30BBIMH METOIaMH, BCTpanBaHUs LU(POBBIX BOJSAHBIX 3HAKOB B IIporpaMMHbIii kox FPGA.

KiroueBbie c€j10Ba: KOHTPONIb LEIOCTHOCTH NPOrPAMMHOIO KOZA; NMPOrpaMMHUpYeMble amnapaTHble KOMHOHEHTbI;, FPGA,;
LUT-opueHTHpOBaHHAsE apXWTEKTypa; KOHTPOJIbHAs XdII-CyMMa; LU(PPOBOH BOASHOW 3HAK; cTeraHorpaduyeckuii Momxox K
KOHTPOJTIO 11€JIOCTHOCTH
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