
Applied Aspects of Information Technology 2019; Vol.2 No.2:138–152

138 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

DOI: https://doi.org/10.15276/aait.02.2019.5
UDC 004.056.53

COMPOSITIONAL METHOD OF FPGA PROGRAM CODE INTEGRITY MONITORING
BASED ON THE USAGE OF DIGITAL WATERMARKS

Kostiantyn V. Zashcholkin1)
ORCID ID: https://orcid.org/0000-0003-0427-9005, const-z@te.net.ua

Oleksandr V. Drozd1}
ORCID ID: https://orcid.org/0000-0003-2191-6758, drozd@ukr.net

Olena M. Ivanova1)
ORCID ID: https://orcid.org/0000-0002-4743-6931, en.ivanova.ua@gmail.com

Yulian Y. Sulima2)
ORCID ID: https://orcid.org/0000-0003-3986-7296, mr_lemur@ukr.net

1) Odessa National Polytechnic University, 1, Shevchenko Avenue. Odesa, Ukraine
2) Odessa Technical College of the Odessa National Academy of Food Technologies. 54, Balkovska st. Odesa, Ukraine

ABSTRACT

The paper considers a problem of provision of the programmable component integrity of computer systems. First the basic
stages of the programmable components life cycle are presented. The authors note that the program code modification gives the op-
portunity to maliciously violate its (program code) integrity. The traditional methods of integrity modification are based on the usage
of monitoring hash sums. However the main disadvantage of the traditional methods is that they are not able to hide the fact of integ-
rity monitoring execution itself. This fact cannot be hidden and becomes obvious. Even under the conditions of extra encrypting of

monitoring hash sum the very existence of it demonstrates that the integrity monitoring is carried out. The paper presents a class of
methods which offer the hash sum embedding into program code in the form of digital watermark. This class of methods is consid-
ered with reference to monitoring the chip FPGA (Field Programmable Gate Array) program code integrity. For embedding the fea-
tures of LUT-oriented FPGA architecture are used. The monitoring digital watermark embedding is performed due to the usage of
equivalent program codes conversions in a set of LUT-units included in FPGA. The peculiarities of the digital watermark embedding
are as follows – such kind of embedding does not change the program code size and does not modify the chip FPGA operation. As a
result of embedding it is impossible to distinguish the monitoring hash sum in the program code in an evident way. The extraction of
digital watermark including hash sum can be carried out only in the presence of special steganographic key, which sets the rules of

watermark location in the FPGA program code space. In the given paper a compositional method of embedding the monitoring digi-
tal watermark into the FPGA program code is offered. The method combines the features of ones providing the recovery of initial
program code state and the ones (methods), which implement the embedding on the basis of syndrome decoding. The proposed
method incorporates the useful features of two classes of methods mentioned above and serves to reduce the amount of equivalent
conversions applied to the program code in the course of the digital watermark embedding. This demonstrates the advantage of the
proposed method as compared to the base ones of the digital watermark embedding in the FPGA program code. The description and
results of experimental research of the proposed method are also presented.

Keywords: Integrity Monitoring of the Program Code; Programmable Hardware Components; FPGA; LUT-Oriented Architec-

ture; Monitoring Hash Sum; Digital Watermark, Steganographic Approach to Integrity Monitoring

For citation: Kostiantyn V. Zashcholkin, Oleksandr V. Drozd, Olena M. Ivanova, Yulian Y. Sulima Compositional Method of FPGA Pro-

gram Code Integrity Monitoring Based on the Usage of Digital Watermarks. Applied Aspects of Information Technology. 2019; Vol.2 No.2:

138–152. DOI: https://doi.org/10.15276/aait.02.2019.5

INTRODUCTION

Among the hardware components used to build
digital computer systems, two large classes can be

separate: a) integrated circuits with hard logic of

functioning; b) program-controlled (programmable)

integrated circuits.
The first of these classes is formed by so-called

ASIC (Application Specific Integrated Circuit) chips

[1]. These integrated circuits are focused on solving
one specific computational or control task. Their

functioning does not change during the life cycle of

the system in which they are included.

© Zashcholkin K., Drozd O., Ivanova O.,
Sulima Y., 2019

Integrated circuits belonging to the class of

program-controlled [2], on the contrary, allow to

customize (program) them to solve an arbitrary
range of tasks. The operation of the integral circuits

of this class can potentially be changed at any stage

of their life cycle.
Programmable hardware components are not in-

itially configured to solve any particular task. In the

process of designing a computer system, a program

(program code) is created for such components,
which custom them to solve the required task. This

program is placed in the memory of the programma-

ble component, thereby setting it up for a given

functioning.
The functioning of programmable components

can be modified at all stages of their life cycle. This

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)

Computer engineering and cybersecurity

https://doi.org/
https://doi.org/

Applied Aspects of Information Technology 2019; Vol.2 No.2:138–152

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 139

modification is carried out by changing the program
code of the components.

A typical (but not exhaustive) set of reasons

leading to the need to change the functioning of pro-

grammable components is:
a) detection of errors in the initial version of the

program code;
b) the need to optimize the system at a certain

stage of its operation;
c) planned upgrade of the program code;
d) the need to adapt the system to changes in con-

ditions determined by the environment external to it.
The ability to modify the program code of pro-

grammable components creates vulnerability in en-

suring the integrity of the system. For components
with hard logic (ASIC), potential integrity violations

are possible mainly through physical intervention in

their structure. For programmable components, the
possibility of integrity violations at the level of pro-

gram code arises. Integrity is further understood as

the ability of the system to exclude unforeseen chang-

es to the system and the services it provides [3].
The prerequisites for the occurrence of this vul-

nerability are that:
a) there is (can be used each of legitimately and

not illegitimate) the technical possibility of modify-

ing the program code, which leads to a change in the

operation of the components;
b) provided for legitimate (made by the devel-

oper or the person operating the system) changes in

the program code.
Integrity violation of the program code, caused

by both the action of natural forces and malicious

acts of humans is an extremely dangerous phenome-

non that can lead to technological disasters and fi-
nancial losses [4].

So programmable components are part of the

systems for managing high-risk technical objects [5]
(in safety-critical systems) [6]: energy facilities, chem-

ical industry, aviation objects and high-speed ground

transportation. Disruption of the functioning of these

objects can lead to unacceptable consequences.
An important area of application of program-

mable components, for which functional safety re-

quirements are one of the main development factors,
is medical equipment (including wearable and im-

plantable in the human body) [7]. Violation of the

integrity of the software code for components of

such equipment at the very least degrades the quality
of life of its users, and, at most, can affect the vital

functions of the body of users.
Also, programmable components are part of

systems that are not characterized by a critical area

of application, but are used massively [8]. The im-

proper functioning of such systems can lead to fi-

nancial and reputational losses, both for companies
producing systems and for end users.

The presence these factors makes ensuring the

integrity of the program code for programmable

components of one the priorities in the process of
creating safe systems.

One of the types of programmable components

of modern computer systems is FPGA (Field Pro-
grammable Gate Array) chips [9], [10]. These inte-

grated circuits differ from microprocessors and mi-

crocontrollers in the way they change functioning.
FPGA chips have a variable (programmable) struc-

ture that can be modified by a program code to solve

a specific task.
FPGAs are a matrix of programmable elemen-

tary units of both universal and specialized purposes.

Each of these units is configured by the FPGA pro-

gram code to implement a specific function. The
connections of the units between themselves and

with the external outputs of the chip are also deter-

mined by the program code. Thus, unlike micropro-

cessors and microcontrollers, FPGAs can change
their functioning by changing the internal structure

and functions of the elements of this structure. This

makes it possible to ensure the distribution (parallel-
ing) of the problem solving process in the FPGA

chip space.
Due to the above features, FPGA chips have

greater performance, as compared to the other, fre-

quently used the type of programmable components

– microprocessors and microcontrollers.
Typically, FPGA chips are used in cases:
a) the specificity of the computing tasks that

need to be solved is that microprocessors cannot be

used for performance reasons;
b) this requires the implementation of the solu-

tion of the problem on programmable components (it

is assumed that at further stages of the life cycle of
the system, modification of its functioning will be

required).
The problem of ensuring and monitoring the in-

tegrity of the software code for such programmable
components of computer systems as microprocessors

and microcontrollers is worked out much deeper

than for FPGAs. This is due to the earlier occurrence
of microprocessors and microcontrollers and, ac-

cordingly, a longer stage of studying the problem of

the integrity of their program code. Significant dif-

ferences in the principles of operation and program-
ming of these two classes of programmable compo-

nents (microprocessors and FPGA) do not allow ex-

tending the methods used to monitoring integrity in
one class to another class. Therefore, the problem of

ensuring the integrity of the FPGA software code is

currently significant.

Computer engineering and cybersecurity

Applied Aspects of Information Technology 2019; Vol.2 No.2:138–152

140 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

ANALYSIS OF RECENT RESEARCH

AND PUBLICATIONS

Currently, the most effective and frequently

used mechanism underlying integrity monitoring is
the use of hash sums [11]. In contrast to the check-

sums used in online-testing of computer systems [12],

hash sums have a number of additional properties.
So, the hash functions that help to calculate

monitoring hash sums provide the properties used in

the integrity monitoring process, among which we

can highlight:
a) non-invertibility – the extreme computational

complexity of obtaining an argument of a hash func-

tion by its value;
b) a significant change in the hash sum with a

slight change in the data block for which this hash

sum was calculated;
c) the impossibility, knowing the argument and

the corresponding hash sum, to find another argu-

ment that gives the same hash sum.
The main approach to the monitoring of pro-

gram code is to double calculation of the hash sum

in the framework of following base procedure [13]

(Fig. 1).
1) At the stage of preparing the program code

for integrity monitoring, the hash sum H of the pro-

gram code is calculated. This hash sum is further

considered to be a standard. The standard hash sum

H should be available at the time of integrity moni-

toring of the program code. To ensure the availabil-

ity of the hash sum, H is attached to the information

object of the program code or is in some way associ-

ated with it.
2) Immediately at the moment of performing

the integrity check, the hash sum H* is again calcu-

lated for the information object of the program code.

The calculated hash sum H* is compared with the

standard hash sum H. Based on the comparison of

the specified hash sums, it is decided whether the

integrity of the program code is violation. Any

change to the information object of the program

code or / and the standard hash sum leads to a mis-

match between the hash sums H* and H.

Standard

hash sumThe initial
information

object A

Hash sum
calculation Hash sum

H

The calculated hash sum
is declared as standard

for object A

Monitored
information
object A*

Hash sum
calculation Comparison

Result

Preparing an information object

for integrity monitoring

Integrity monitoring

Hash sum

H*

Hash sum

H

Fig. 1. Basic integrity monitoring procedure

Source: compiled by the authors

Possible options in the case of the mismatch of

H* and H hash sums (not an exhaustive list): stop-

ping the system; overwriting the initial program

code from a reliable source; switch to backup system.
Depending on the cause of the integrity viola-

tion, the specificity of individual details for the in-

tegrity ensuring process arises.
So for integrity monitoring, aimed at countering

the expected violation caused by malicious interfer-

ence in the program code, the essential aspects are:
a) the storage location of the standard hash sum;

b) the method of storing the standard hash sum

and the technique for accessing it;
c) the extent of openness for fact of the integrity

monitoring.
A known approach to integrity monitoring,

which involves storing the monitoring hash sum in

open form in a separate information object from the

program code [14]. This approach is acceptable

when processing the expected integrity violation as a

result of natural phenomena. However, for the case

of malicious interference in program code, the

Computer engineering and cybersecurity

Applied Aspects of Information Technology 2019; Vol.2 No.2:138–152

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 141

appropriateness of using this approach is questiona-

ble. The reason for this is the openness of the storage

of the standard hash sum, which creates a potential

for falsification.
The traditional integrity monitoring approach

described above (based on the double calculation of

the hash sum and its storage in open form) is used to

monitoring the integrity of the program code, both
microprocessors and FPGA chips. However, this

approach has a significant disadvantage. This disad-

vantage is due to two interrelated factors:
 Factor 1: the standard hash sum is stored in

such a way that it is available for reading, analysis,

and possible falsification.
Factor 2: the fact of performing integrity moni-

toring is open to an outside observer.
Despite the fact that hash functions have the

property of non-invertibility, access to the value of
the standard hash sum creates the possibility of ma-
nipulating the integrity monitoring process. A whole
range of methods has been developed to accelerate
the search for the preimage for the hash sum: search
by rainbow tables [15]; dictionary methods [16];
methods focused on frequency analysis [17] and var-
ious compositions of these methods. However, the
main problem generated by the availability of a hash
sum is the ability to use insider manipulation meth-
ods [18]. Within these methods, the capabilities of
persons who have access to the processes of moni-
toring the integrity or legal modification of program
code are used. These persons can potentially per-
form falsification of the standard hash sum: replace
it with the hash sum calculated for the object of the
program code that has been illegitimate changes.

There are known approaches to minimizing the
influence of the first factor mentioned above. In par-
ticular, it is proposed to store the standard hash sum
not in the clear, but to pre-encrypt it using the agreed
cryptographic method [19], [20]. In this case, to ac-
cess the value of this hash sum, it is necessary to
decrypt it (Fig. 2). This requires information on the
encryption method used and the encryption key.
When using this approach, hash sum falsification
requires an additional procedure – obtaining the ini-
tial hash sum value. In the absence of a encryption
key, this procedure is extremely computationally
complex. However, this approach inherits the disad-
vantages of the basic approach. In the case of using
such an approach, the fact that integrity monitoring
is performed remains open, which makes it possible
to apply cipher-hacking techniques to falsify the
standard hash sum. Also, this approach does not
eliminate the possibility of insider manipulation of
monitoring information. It only narrows the circle of
persons capable of performing such a manipulation.

Another approach [21] is known to eliminate
the influence of the first of the above factors. The
standard hash sums for the information objects of

the program code are not distributed together with
the information objects themselves (they are not at-
tached to them), but are stored in a certain central-
ized database of the subject of control. The main
disadvantage of this approach is the difficulty of
protecting this database from information leaks.
Mass information leaks from such databases are very
frequent [22]. Such leaks put at threat all integrity
monitoring systems that store standard hash sums in
compromised databases. Similar to the previous ap-
proach, this approach does not eliminate the possi-
bility of insider manipulation of standard hash sums.

The approach based on the application of the
theory of digital steganography [23] eliminates the
indicated disadvantages of traditional approaches.
Steganography is a field in the theory of information
security, based on information hiding. The main
mechanism of steganography is the hidden embed-
ding of information objects of one type into infor-
mation objects of another type. Digital steganogra-
phy has various practical applications, the main of
which are: hidden data transmission, hidden data
marking, and hidden tracking of data distribution
paths. To solve the problem of integrity monitoring,
one of the steganographic-oriented technologies is
used – the technology of digital watermarks [24].

Digital watermark is used as information medi-
um [25] of the standard hash sum within the frame-
work of a steganographic approach to integrity mon-
itoring. In such a case a digital watermark is a data
block that contains monitoring hash sum and option-
ally additional utility information fields. This digital
watermark is embedded in the information object of
the program code in such a way that the fact of this
embedding becomes hidden from an outside observ-
er. The fact that integrity monitoring is performed is
also hidden. In this case, the standard hash sum is
distributed over the information object of the pro-
gram code in such a way that it (hash sum) can be
accessed only with a special steganographic key
(stego-key) [26].

Thus, when using the steganographic approach,
the control hash sum is not attached to the infor-
mation object of the program code, but is embedded
in it in the form of a digital watermark.

The advantages of this approach are that:
1) a digital watermark does not increase the

volume of an information object by the size of the
hash sum;

2) there is no possibility for an external observ-
er to identify the fact that the program code is moni-
tored, as well as to identify parts of the information
object that contain program code and parts that con-
tain the hash sum;
3) the embedding of a digital watermark in the pro-
gram code is performed in such a way that the op-
eration of the FPGA chip does not change.

Computer engineering and cybersecurity

Applied Aspects of Information Technology 2019; Vol.2 No.2:138–152

142 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

The initial
information

object A

Hash sum
calculation Hash sum

H

Encryption Encryption
key

Encrypted

hash sum EH

Attaching the hash sum EH

to information object A

Information
object SA

The object with
monitoring

information
attached to it.

Monitored
information
object A*

Separation of monitoring

information from the

information object

Encrypted

hash sum EH*

DecryptionInformation
object A0*

Hash sum
calculation

Hash sum
H0*

Hash sum
H*

Comparison

The monitored object preparation

Result

Integrity monitoring

Decryption
key

Fig. 2. Integrity monitoring procedure with encryption of standard hash sum
Source: compiled by the authors

Methods [27], [28] that implement the concept

of using digital watermarks to integrity monitoring

the program code of FPGA-based components use the

program codes of the LUT (Look Up Table) units

[29], [30] as the information medium in which the

digital watermark is embedding. LUT units (Fig. 3)

are the most mass elementary calculating units of

FPGA. Their number in modern FPGA chips can vary

from tens of thousands to several millions.
The LUT unit is a programmable module for

calculating an n-arguments (usually from 4 to 8) log-

ical function. Each LUT unit is configured to im-

plement a specific logic function using 2n-bit pro-

gram code. In accordance with the provisions of the

methods [27], [28], the set of program codes of the

LUT units is used as the information medium for

embedding a monitoring digital watermark.

Adr. Data

0000 D0

0001 D1

0010 D2

0011 D3

… …

1110 D14

1111 D15

Adr0

Adr1

Adr2

Adr3

Out

Fig. 3. Structure of the 4-input LUT unit of

FPGA chip
Source: compiled by the authors

Embedding within the framework of these
methods is performed using equivalent conversions

[31], [32], which do not change the logic functions

implemented by the LUT units and do not affect the

operation of the FPGA chip. Methods [27], [28] de-
termine that for embedding a digital watermark from

Computer engineering and cybersecurity

Applied Aspects of Information Technology 2019; Vol.2 No.2:138–152

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 143

general set of LUT units an ordered set of units is
formed, each element of which uniquely corresponds

to a bit of a digital watermark and is used to store

this bit. The specified ordered set is called the ste-

ganographic path (stego-path) in the space of a
LUT-oriented information object. In this case, the

stego-path formation rule is a part of the stego-key –

a set of secret information that defines the formal
rules for extracting a digital watermark from the

program codes of the LUT units.
In Fig. 4 shows a diagram of the steganographic

procedure for preparing an information object of the

FPGA program code for integrity monitoring. In

accordance with this scheme, the considered meth-

ods [27], [28] are functioning. This diagram de-
scribes the formation and use of a digital watermark
(denoted as a DWM in the diagram). A digital wa-

termark includes a mandatory component – a stand-

ard hash sum H of the code and two optional com-

ponents: the usage monitoring tag (marker) and the

legitimacy monitoring tag of the program code in-

formation object. Optional components of a digital

watermark provide a solution to specific problems for

the protection of FPGA software code. These solu-

tions can be implemented along with integrity moni-

toring by storing special tags in a digital watermark.

DWM content

forming

Preparing the target code for DWM embedding

Program code
of LUT units

Program code
of FPGA

The rest part
of the program

code

DWM embedding

Modified code
for units on the

stego-path

Tag
content

Hash sum
calculation Hash sum

H

Creating the
information model

Information
model

Forming of the
stego-path for

DWM embedding

The set of units on
the stego-path

Modified code
of units located

on the
stego-path

Forming of the
tag for usage
monitoring

Forming of the
tag for legitimacy

monitoring

Tag
content

DWM forming
DWM

1.1

1.2

1.3

1.4

2.1 2.2

3

4

1

2

The key for
embedding

and extraction

Fig. 4. Steganographic procedure for preparing an information object for integrity monitoring

Source: compiled by the authors

The use monitoring tag is designed to track the

distribution of the program code. This procedure is
necessary to identify the point of leakage and the

illegal distribution of FPGA code. The legitimacy

monitoring tag can be used to confirm the legality or

authenticity of the program code.
Programmable LUT units are the most mass in

the FPGA structure. Because of this, the program

code of these units makes up the largest part of the

entire program code FPGA. It is for the program
code of LUT units that the equivalent conversions

[31], [32] are proposed, which are used in the meth-

ods [27], [28] as the basis for the embedding of a

digital watermark. In addition to LUT units, FPGA
contains specialized programmable units: lumped

memory units, multiplication units, I/O units, etc.

Computer engineering and cybersecurity

Applied Aspects of Information Technology 2019; Vol.2 No.2:138–152

144 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

The program code of these units is not used in the

process of embedding a digital watermark. In ac-
cordance with the considered diagram (Fig. 4), the

standard hash sum is calculated for the entire FPGA

program code, and the destination place of the moni-
toring digital watermark is the program code of the

LUT units.
However, the use of the steganographic ap-

proach imposes an additional requirement on the
integrity monitoring method. This requirement is the

need to restore the initial state of the information

object of the program code. Indeed, if a standard
hash sum is calculated for the program code, then

any change in the program code will be manifested

at the time the integrity monitoring is performed.

When embedding (even performed by equivalent
conversions) monitoring watermark in the program

code, its (code) integrity is violated. Thus, there is a

contradiction between the method of storing the
standard hash sum and the main method of integrity

monitoring.
To resolve this contradiction, the following

procedure is usually used:
1) the standard hash sum for the information

object of the program code is calculated;
2) the digital watermark is formed, which in-

cludes the standard hash sum;
3) the state that the information object had at

the time of calculating the standard hash sum (the
initial state of the information object) is in some way

stored. Moreover, the storing is done in such a way

that only an information object and a stego-key are
required for monitoring. Based on this, the initial

state can be stored as part of the same digital water-

mark in which the standard hash sum is placed;
4) the monitoring digital watermark is embed-

ded in the information object of the program code;
5) at the time of performing the integrity moni-

toring, the digital watermark is extracted and at the
same time the initial state of the information object

is recovered (the state for which the standard hash

sum was calculated).
It is a pair of actions “storing - recovering” of

the initial state of the information object that elimi-

nates this contradiction.
There is a method [33] that provides this recov-

ery procedure in order to monitoring the integrity of

the FPGA program code. This method is based on

the Friedrich method [34], [35] proposed for embed-
ding digital watermarks in multimedia information

objects. The disadvantage of the Friedrich method is

that it requires a relatively large number of changes

made in the program codes. These changes are per-
formed using equivalent conversions; do not change

the size of the program code and the operation of the

device. However, any massive code changes (even

equivalent ones) could potentially be used in the fu-

ture to compromise the method and search for vul-
nerabilities in it. Therefore, the task of minimizing

the changes in the program code resulting from the

embedding is very important and significant.
The steganographic method F5 [36], [37] is

known, which is characterized by a small value of

the ratio of information object bits number changed

during the embedding to the total number of bits.
The F5 method is based on the joint use of the theo-

ry of steganography and the theory of error check

coding [38]. This method is intended only for use in
relation to multimedia information objects: raster

images, digital video and sound. There is an adapta-

tion of this method to the environment of LUT-

oriented information objects (to embedding digital
watermarks in the FPGA program code) [39]. How-

ever, neither the basic nor the FPGA-oriented meth-

ods have the ability to ensure the recovery of the
initial state of an information object in the process of

extracting a digital watermark.
Thus, the method [33] and the methods derived

from it have a property that is useful for the task of

monitoring integrity – they provide the ability to

recovery the initial state of an information object in

the process of extracting a digital watermark. How-
ever, the method [33] in its practical applications

shows a relatively large value of the ratio of the

number of modified bits of the program code to their
total number.

On the other hand, the method [39] and meth-

ods derived from it, on average, gives fewer modi-
fied code bits, but does not support the ability to re-

covery the initial state of an information object.
Under these conditions, we consider significant

the task of obtaining a method that combines the
useful properties of the methods [33] and [39] in

solving the problem of monitoring the integrity for

the FPGA program code.

THE GOAL AND OBJECTIVES OF THE
WORK

The goal of this work is to reduce the number of
modifiable bits of the FPGA program code in the

process of monitoring integrity by combining digital

watermark embedding methods that:
a) have the property of recovering the initial

state for the program code of information object;
b) generate a small (relative to other similar

methods) number of changes for bits of the program

code.
To achieve this goal in the work the following

objectives are set:
– to formalize the method that allows to per-

form the recovering of the initial state for the infor-

Computer engineering and cybersecurity

Applied Aspects of Information Technology 2019; Vol.2 No.2:138–152

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 145

mation object and at the same time provides the
number of changes for program code bits at the

method [39] level;
– develop a procedure for applying the pro-

posed method in the process of the FPGA program
code integrity monitoring;

– perform an experimental comparison of the

proposed method with known methods and draw
conclusions about the appropriateness of its use.

MAIN PART OF THE WORK

A compositional integrity monitoring method is

proposed that combines the property of ensuring the

recovering of the initial state for an information ob-
ject with the property (characteristic for methods

based on the use of syndrome decoding) of the min-

imal change for bits of the FPGA program code. The
proposed method is based on the following six key

principles.

The first principle of the method. The infor-

mation medium of a digital watermark is the stego-
key-specified bits of the LUT units, which are along

the stego-path (target bits for embedding). In the

following, the ordered sequence of such bits will be
denoted by MSPath = <m1, m2, … , mp>. Each of the

mi  MSPath bits can be inverted by equivalent con-

versions [31], [32] used in the methods [27], [28].

The second principle of the method. To embed

the bits of a digital watermark, a change is made to
the syndromes that are associated with n-bit frag-

ments (parameter n is set by the description of the

error-correcting code used in the embedding pro-
cess) of the MSPath sequence, using the error-

correcting coding method specified by the ste-

ganographic key.

The third principle of the method. Storing of
the initial state of the information object of the pro-

gram code is achieved by lossless compression and

embedding the compression results as part of a digi-
tal watermark (similarly to how this is implemented

in the Friedrich method [34], [35] and the FPGA-

oriented method [33]).
The procedure for embedding a digital water-

mark involves changing the values of the bits in the

MSPath sequence. Because of this, within the frame-

work of this provision, it is ensured that the initial
state of this part of the FPGA program code is main-

tained.

The fourth principle of the method is that the
digital watermark being embedded into the program

code is formed as a set:
a) compressed initial state of the MSPath binary

sequence;

b) the monitoring part containing the standard
hash sum;

c) optional additional information fields.

The fifth principle is that the initial state of the

MSPath bit sequence is stored by changing the MSPath
bits, which (changing) leads to the replacement of

the original n-bit MSPath fragment syndromes by the

n-bit fragments obtained after compression.

The sixth principle of the method is that the

modification of the syndromes is performed by

equivalent conversions [31], [32], used in the meth-
ods [27], [28].

Based on the presented basic theoretical princi-

ples, the following sequence of actions is proposed,

which leads to the embedding of the monitoring dig-
ital watermark in the FPGA program code.

Stage 1. Stego-path is formed in the space of

the program code of LUT units. To perform this
stage, we use the stego-path formation procedure

proposed in [40]. The result of this stage is an or-

dered sequence MSPath = <m1, m2, … , mp> bits of the

program codes of LUT units located on the stego-
path. The MSPath sequence bits are information medi-

ums of the monitoring digital watermark being im-

plemented in the program code.

Stage 2. The MSPath sequence is divided into n-

bit fragments.
Let the stego-key Skey as one of the compo-

nents contain the description of the error-correcting

code ECode  Skey given by three parameters: n, k,

H, where n, k are the parameters of the (n, k)-code, n

is the length of the code word, k is the number in-

formation bits in the code word; H – some rule for
performing syndrome decoding. Further, for simplic-

ity, the rule H will be specified by the check matrix

of the block code. However, in the general case, this

rule can be specified in any other way of describe
the procedure for obtaining the error syndrome for

error-correcting coding.
The sequence of MSPath binary bits is represent-

ed as a sequence of concatenated fragments:

MSPath = M1 | M2 | … | Mq, (1)

where: Mi is a fragment of the MSPath sequence, with
a length of n bits (the n parameter is specified by the

description of the used error-correcting code

Ecode  Skey);
«|» – designation for the operation of concate-

nation of the binary sequences.
If the length of the binary sequence MSpath is not

a multiple of the parameter n, then the sequence is

supplemented to the nearest multiple of the length of

the MSpath by the specified placeholder.

Computer engineering and cybersecurity

Applied Aspects of Information Technology 2019; Vol.2 No.2:138–152

146 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Stage 3. Each fragment Mi with the help of the

check matrix H  Ecode is assigned the n - k bit Si

syndrome.

Stage 4. From the resulting syndromes, a binary

sequence is formed by concatenation:

SSpath = S1 | S2 | … | Sq. (2)

Stage 5. SSPath binary sequence compression is

performed. In this case, the loss base compression

method specified by the stego-key is used. In the

process of compression, the syndromes that make up

the SSPath sequence are considered as symbols of the

primary alphabet, and the sequence itself, as a mes-

sage consisting of these symbols. As a result, a com-

pressed sequence of syndromes SSpathCom is formed.

Stage 6. A digital watermark is formed:

DWM = SSpathCom | HashSum | ExtraFields, (3)

where,
 HashSum – monitoring hash sum;
 ExtraFields – optional additional information

fields;
 «|» – designation for the operation of concate-

nation of the binary sequences.
The length of a digital watermark DWM must

not exceed the length of the SSPath sequence. Since

SSPathCom is a compressed version of the SSPath se-

quence, the valid size of the control hash sum and

additional fields cannot exceed the difference be-

tween the lengths of the SSPath and SSPathCom sequences.

Stage 7. The resulting digital watermark DWM

is divided into fragments of Si* by n – k bits, i.e. the

same length as the length of the Si syndromes in ex-

pression (2):

DWM = S1* | S2* | … | Sq* . (4)

Stage 8. The bit values of the MSPath sequence

are modified in such a way as to ensure that for Mi

fragments replace Si syndromes with Si* syndromes.

To perform such a replacement, the current Si and

the required Si* syndromes are summed modulo two:

bi = SiSi*. The obtained value bi sets the position

of the bit that needs to be inverted in the Mi fragment

to replace Si syndrome with Si* syndrome. Frag-

ments of Mi*, resulting from changes in syndromes

concatenate in form a binary sequence M*SPath, which

coincides in length with the initial MSPath sequence.
 Thus, the resulting sequence M*SPath contains:
a) information about the original state of the se-

quence MSPath;
b) monitoring hash sum;
c) optional additional information fields.

Stage 9. The target bit values are modified in the

program codes of the LUT units. Modifications are

made in such a way as to change the source sequence

of the target MSPath bits to the M*SPath sequence ob-

tained in the previous step. Modification is performed

by applying equivalent conversions [31], [32].
In Fig. 5 shows an example of the implementa-

tion of the proposed stages of the integrity control

method in part of embedding a digital watermark.

The figure shows an MSPath sequence consisting of

42 target bits. This sequence is obtained at the first

stage of the method from the program codes of the

LUT units that are on the stego-path.
Let for this example, an error-correcting code

with the parameters (n, k) = (7, 4) and the check ma-

trix of the following form is used:



















1111000

1100110

1010101

H .

At the second stage of the method execution,

the MSPath sequence is divided into six fragments of

n = 7 bits each.
At the third stage of the method, for each of the

obtained fragments, n – k = 3 bit Si error syndrome is

calculated using the check matrix H.
In the fourth stage, the resulting syndromes

concatenate, forming a binary sequence.
At the fifth stage, the resulting sequence is

compressed. In this example, the Huffman method

[41] is used for compression. This method is used in

the example for clarity. In real applications, it is ad-

visable to use more efficient lossless compression

methods. A compressible sequence is considered as

a set of symbols of the primary alphabet, which is

formed by the values of Si syndromes. As a result of

the compression, a code table is formed that assigns

a code combination to each syndrome. The length of

code combination is proportional to the frequency of

occurrence of the syndrome in binary sequence.

Codes resulting from replacing the primary alphabet

symbols form the binary sequence SSpathCom.
At the sixth stage, a digital watermark is formed

to be embedded. Let, for the considered example, the

monitoring hash sum is a binary sequence

“0000011”. At this stage, hash sum (in the figure,

the bits of the hash sum are shown by accentuation)

is concatenated with the sequence
SSpathCom. The result is an 18-bit binary sequence

of digital watermark DWM.

Computer engineering and cybersecurity

Applied Aspects of Information Technology 2019; Vol.2 No.2:138–152

147 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

1 0 1 0

4 5 6 7

0 0 0

1 2 3

0 1 0 1

11 12 13 14

0 1 1

8 9 10

0 1 1 1

18 19 20 21

1 0 0

15 16 17

0 1 1 0

25 26 27 28

1 0 0

22 23 24

1 1 0 0

32 33 34 35

1 1 0

29 30 31

0 1 0 0

39 40 41 42

1 1 0

36 37 38

0 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 1 0

Syndrome calculation

Lossless compression
Code table

010→1; 011→01; 101→000; 110→001

10 1 0 0 0 1 0 0 1

0 0 0 1 1 0 0 11 0 1 0 0 0 0 0 1 1

ЦВЗ

1

S1 S2 S3 S4 S5 S6

+

S*
1 S*

2 S*
3 S*

4 S*
5 S*

6

+0 1 0S1

1112

7р

0 1 1S2

0112

3р

+ +1 0 1S3

0112

3р

0 1 0S4

0002

–

+ +0 1 0S5

0102

2р

1 1 0S6

1012

5р

1 0 1 1
4 5 6 7

0 0 0
1 2 3

0 1 0 1
11 12 13 14

0 1 0
8 9 10

0 1 1 1
18 19 20 21

1 0 1
15 16 17

0 1 1 0
25 26 27 28

1 0 0
22 23 24

1 1 0 0
32 33 34 35

1 0 0
29 30 31

0 0 0 0
39 40 41 42

1 1 0
36 37 38

4 5 6 71 2 3 4 5 6 71 2 3 4 5 6 71 2 3 4 5 6 71 2 3 4 5 6 71 2 3 4 5 6 71 2 3

Equivalent conversion of program code

LUT7, LUT10, LUT17, LUT30, LUT40

Fig. 5. Example of the proposed method: the steps of embedding a digital

watermark in the FPGA program code
Source: compiled by the authors

At the seventh stage of the method, the result-

ing digital watermark DWM is divided into frag-

ments of n - k = 3 bits each: 6 fragments Si* are

formed.
At the eighth stage, the current Si syndromes for

Mi fragments are replaced with newly calculated Si*

syndromes. If the syndromes Si and Si* coincide,

then there is no need to replace them and no addi-

tional actions are taken with respect to the Mi frag-

ment. In this example, the equality holds for

S4 = S4* = 010.
In the case of differences between Si and Si*,

one bit of the fragment Mi is modified, which leads

to a change in the syndrome. The position of this bit

is equal to the sum modulo-two syndromes Si and Si*.
At the ninth stage, the bits are inverted for each

of the fragments Mi. As a result, the binary sequence

M*SPath is obtained from the MSPath binary sequence.

Further, in the target bits of the program code of the

LUT units, equivalent conversions are performed,

resulting in values corresponding to the sequence

M*SPath. As a result of these actions, the digital wa-

termark is embedded in the program code of the

LUT units.
In the considered example, to save the initial

42-bit state of the target bits and the 7-bit monitoring

hash sum, we needed an equivalent inversion of the

five target bits (one bit each in the program code of

five LUT units).
The following procedure is proposed for ex-

tracting a digital watermark from the FPGA program

code in the integrity monitoring process.

Stage 1. Similar to the first stage of a method of

embedding the set of the LUT units which are on the

stego-path is formed. From the program codes of

this units set, an ordered sequence MSPath of target

bits is selected.

Stage 2. The sequence M*SPath is divided into n-

bit fragments M*i.

Stage 3. For each of the fragments M*i, the n –

k bit syndrome S*i is calculated using the check ma-

trix H  Ecode.

Computer engineering and cybersecurity

Applied Aspects of Information Technology 2019; Vol.2 No.2:138–152

148 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Stage 4. By concatenating syndromes S*i, a bi-

nary sequence is formed.

Stage 5. The monitoring hash sum is separated

from the sequence obtained in the previous step. The
rest of the sequence is subjected to a decompression

procedure. To do this, use the decompression meth-

od, the inverse of the compression method used in
the process of embedding a digital watermark. As a

result of decompression, a set of Si syndromes is ob-

tained, the number of which coincides with the
number of M*i fragments.

Stage 6. The procedure is similar to the one that

was performed in step 8 in the process of embedding

a digital watermark. The values of S*i syndromes are

converted to Si values by modifying one of the bits

in each of the M*i fragments. In the case of equality
of the syndromes S*i and Si, the modification of the

bits of the corresponding M*i fragments is not per-

formed.

Stage 7. The initial state for the target bits of

the program code is restored from the modified val-
ues of the fragments M*i by equivalent conversions.

To test the effectiveness of the proposed meth-

od, an experiment was performed. An experimental
comparison of the proposed method with a well-

known integrity monitoring method [33] (which per-

forms the recovering of an information object, but
does not use syndrome decoding during embedding)

was performed.
The experiment involved five FPGA projects of

various volumes and design mission. Synthesis of
projects was carried out with the help of the CAD

system Intel (Altera) Quartus Prime [42]. FPGA In-

tel Cyclone IV was used as target synthesis chips
[43]. The aim of the experiment was to determine

the number of bits modified in the process of em-

bedding a digital watermark.
The experiment procedure consisted in the fact

that a digital watermark was embedded in each of

the five experimental projects. This watermark con-

tained a monitoring hash sum and a compressed ini-
tial state for the target bits of program code of the

LUT units. Embedding was performed twice: using

the known and proposed methods. After each em-
bedding, the number of target bits of the LUT units

that were modified during the embedding process

was counted.
The results of the experiment are shown in the

table. FPGA-projects (which were used in the exper-

iment) in the table are ordered by increasing their

volume (total number of LUT units). For each of the
projects, it is shown by how much, due to the appli-

cation of the proposed method, the number of LUT

units whose program code has been modified has
decreased.

Table. Experimental results

Project
No

Total number of
LUT units

Reducing the number of
modified LUT units

1 3280 6,1 %
2 3837 7,6 %
3 4589 12,9 %
4 7403 15,1 %
5 8265 19,4 %

Source: compiled by the authors

From the results of the experiment it can be

seen that the proposed method allows reducing the

number of modified bits of program codes in LUT

units. It can also be seen that a greater decrease in
this number is achieved on projects that have a larg-

er volume. This reduction in the number of modifi-

cations to the program code confirms the validity
and effectiveness of the proposed method.

CONCLUSIONS AND DIRECTIONS FOR

FUTURE RESEARCH

The proposed method is an integrated part of

the technology for the integrity monitoring of FPGA

chips program code. The method is based on em-
bedding a standard hash sum in a program code in

the form of a digital watermark. Integrity monitoring

in the framework of the proposed method is possible
due to the property of recovering the initial state for

an information object of a program code in the pro-

cess of extracting a digital watermark from it.
The proposed method of integrity monitoring

for each n-bit fragment of the target bits sequence,
where n is the parameter used by the (n, k)-code
(specified by the stego-key):

a) requires changing the code for only one of
the n LUT units in the fragment in case of a mis-
match between the syndromes Si and Si*;

b) does not require changes to the codes of the
LUT units in the fragment in case these syndromes
coincide.

The visible problem (which causes the need for
future research) of the proposed method is the need
to include a table of prefix codes in the stego-key.
This need is caused by the fact that the table is cal-
culated at the stage of embedding a digital water-
mark and cannot be calculated in advance. The re-
maining parameters of the key can be specified in
advance by the embedding side and the digital wa-
termark extraction side. This requirement increases
the size of the stego-key. In the case of the inclusion
of a code table in the composition of a digital water-
mark, the potential effective volume of a digital wa-
termark is reduced. In this regard, there is a need for
future research on the possibility of using (within the
framework of the proposed approach) compression
methods that do not require the preservation of a code
table as part of a stego-key or digital watermark.

Computer engineering and cybersecurity

Applied Aspects of Information Technology 2019; Vol.2 No.2:138–152

149 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

REFERENCES

1. Mehta, A. “ASIC/SoC Functional Design Verification”. Publ. Springer. 2018. Cham: Switzerland.

2. Amano, H. “Principles and Structures of FPGAs”. Publ. Springer. New York: USA. 2018.
3. Kharchenko, V., Gorbenko, A., Sklyar V. & Phillips, C. “Green Computing and Communications in

Critical Application Domains: Challenges and Solutions”. In: 9th International Conference on Digital Tech-

nologies (DT2013). Zhilina: Slovak Republic. 2013. p. 191–197.

4. Kharchenko, V., Illiashenko, O., Kovalenko, A., Sklyar, V. & Boyarchuk, A. “Security Informed
Safety Assessment of NPP I&C Systems: GAP-IMECA Technique”. In: 22nd International Conference on

Nuclear Engineering. Prague: Czech Republic. 2014. p. 1–9.

5. Drozd, A., Drozd, M. & Antonyuk, V. “Features of Hidden Fault Detection in Pipeline Components
of Safety-Related System”. CEUR Workshop Proceedings. 2015; Vol. 1356: 476–485.

 Drozd, A., Antoshchuk, S., Drozd, J., Zashcholkin, K., Drozd, M., Kuznietsov, M., Al-Dhabi, M. &

Nikul, V. “Checkable FPGA Design: Energy Consumption, Throughput and Trustworthiness”. In:
Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (eds.) “Green IT Engineering: Social, Business and

Industrial Applications, Studies in Systems, Decision and Control”. 2019; Vol. 171: 73–94. Publ. Springer.

Heidelberg. DOI: https://doi.org/10.1007/978-3-030-00253-4_4.
6. Mukhopadhyay, D. & Chakraborty, R. “Hardware Security: Design, Threats, and Safeguards”. Publ.

Chapman and CRC. Boca Raton: USA. (2014).

7. Maevsky, D., Bojko, A., Maevskaya, E., Vinakov, O. & Shapa, L. “Internet of things: Hierarhy of

smart systems”. In: 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Com-
puting Systems: Technology and Applications (IDAACS). 2017; Vol. 2: p. 821–827.

8. Andina, J. “FPGAs: Fundamentals, Advanced Features, and Applications in Industrial Electronics”.

Publ. CRC Press. Boca Raton: USA. 2017.
9. Vanderbauwhede, W. & Benkrid, K. “High-performance computing using FPGAs”. Publ. Springer.

New York: USA. 2016.

10. Yang, Y., Chen, F., Zhang, X., Yu, J. & Zhang, P. “Research on the Hash Function Structures and its

Application”. In: International Conference Wireless Personal Communications. 2016.
Drozd, A., Drozd, J., Antoshchuk, S., Nikul, V. & Al-Dhabi, M. “Objects and methods of on-line testing:

Main requirements and perspectives of development”. In: IEEE East-West Design and Test Symposium,

EWDTS-2016. 2016. p. 1–9. DOI: https://doi.org/10.1109/EWDTS.2016.7807750.
11. Stallings, W. “Cryptography and Network Security: Principles and Practice”. 7th edn. Publ. Pearson

Education Limited. Harlow: United Kingdom. 2017.

12. Habli, I., Hawkins, R. & Kelly, T. “Software safety: relating software assurance and software integri-

ty”, International Journal of Critical Computer-Based Systems. 2010; 1(4): 364–383.
13. Vacca, J. “Computer and information security”. 2nd edn. Publ. Morgan Kaufmann Publishers. Wal-

tham: USA. 2013.

14. Ferguson, N., Schneier, B. & Kohno, T. “Cryptography engineering”. Publ. Wiley. Hoboken: USA.
2013.

15. Katz, J. “Digital signatures. Advances in Information Security”. Publ. Springer. New York: USA.

2010.
16. Mishra, P., Bhunia, S. & Tehranipoor, M. “Hardware IP Security and Trust”. Publ. Springer. New

York: USA. 2017.

17. Bishop, M. “Computer Security. 2nd edn.” Publ. Addison-Wesley. Boston: USA. 2018.

18. Kleidermacher, D. & Kleidermacher, M. “Embedded Systems Security: Practical Methods for Safe
and Secure Software and Systems Development”. Publ. Newnes. Boston: USA. 2012.

19. Sklavos, N., Chaves, R., Natale, G. & Regazzoni, F. “Hardware Security and Trust: Design and De-

ployment of Integrated Circuits in a Threatened Environment”. Publ. Springer. Cham: Switzerland. 2017.
20. Berchtold, W., Schafer, M. & Steinebach, M. “Leakage detection and tracing for databases”. In:

ACM Information Hiding and Multimedia Security Workshop. 2013.

21. Ching-Nung Yang, Chia-chen Lin & Chin-chen Chang. “Steganography and Watermarking”. Publ.

Nova Science Publishers. New York: USA. 2013.
22. Shih, F “Digital Watermarking and Steganography: Fundamentals and Techniques”. 2nd edn. Publ.

CRC Press. Boca Raton: USA. 2017.

Computer engineering and cybersecurity

https://doi.org/
https://doi.org/

Applied Aspects of Information Technology 2019; Vol.2 No.2:138–152

150 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

23. Cox, I., Miller, M., Bloom, J. & Fridrich, J. “Digital Watermarking and Steganography”. Publ. Mor-

gan Kaufmann Publishers. Amsterdam: 2008.
24. Arnold, M., Schmucker, M. & Wolthusen, S. “Techniques and Applications of Digital Watermarking

and Content Protection”. Publ. Artech House. Boston: 2003.

25. Zashcholkin, K. V. & Ivanova, E. N. “Metod steganograficheskogo skrytiya dannykh v LUT-

oriyentirovannykh apparatnykh konteynerakh”. [Method of Steganographical Hiding of Information in

LUT-Oriented Hardware Containers] (in Russian). Electrotechnic and Computer Systems. 2013; No. 12

(88): 83–90.

26. Zashcholkin, K. V. & Ivanova, E. N. “Informatsionnaya tekhnologiya vnedreniya samovossta-

navlivayushchikh tsifrovykh vodyanykh znakov v LUT-oriyentirovannyye konteynery”. [Information Tech-

nology of Embedding Self-Recovery Digital Watermark in LUT-Oriented Containers] (in Russian). Electro-

technic and Computer Systems. 2014; No.16 (92): 78–84.

27. Sklyarov, V., Skliarova, I., Barkalov, A. & Titarenko, L. “Synthesis and Optimization of FPGA-

Based Systems”. Publ. Springer. Berlin: 2014.

28. Barkalov, A., Titarenko, L., Zeleneva, I. & Hrushko, S. “Implementing on the Field Programmable
Gate Array of Combined Finite State Machine With Counter”. In: Conference Proceedings of 2018 IEEE 9th

International Conference on Dependable Systems, Services and Technologies DESSERT-2018. 2018.

p. 247–251.

29. Drozd, A., Drozd, M. & Kuznietsov, M. “Use of Natural LUT Redundancy to Improve Trustworthi-
ness of FPGA Design”. CEUR Workshop Proceedings. 2016; Vol. 1614: 322–331.

30. Drozd, A., Drozd, M., Martynyuk, O. & Kuznietsov, M. “Improving of o Сircuit Сheckability and

Trustworthiness of Data Processing Results in LUT-based FPGA Components of Safety-Related Systems”.
CEUR Workshop Proceedings. 2017; Vol.1844: 654–661.

31. Zashcholkin, K. & Ivanova, O. “The Control Technology of Integrity and Legitimacy of Lut-

Oriented Information Object Usage by Self-Recovering Digital Watermark”. CEUR Workshop Proceedings.

2015; Vol. 1356: 498–506.
32. Fridrich, J. “Steganography in Digital Media”. Publ. Cambridge University Press. New York: USA.

2010.

33. Bossuet, L. & Torres, L. “Foundations of Hardware IP Protection”. Publ. Springer. New York: USA.
2018.

34. Westfeld, A. “F5 - A Steganographic algorithm. High capacity despite better steganalysis”. In Pro-

ceeding of 4th International Workshop on Information Hiding. 2001; Vol. 2137: 289–302.
35. Fridrich, J., Goljan, M. & Du, R. “Lossless Data Embedding – New Paradigm in Digital Watermark-

ing”. EURASIP Journal on Advances Signal Processing. 2002. p. 185–196.

36. Morelos-Zaragoza, R. “The art of error correcting coding”. Publ. Wiley. Chichester. 2006.

37. Zashcholkin, K. & Ivanova, O. “LUT-Object Integrity Monitoring Methods Based on Low Impact
Embedding of Digital Watermark” In: 14th International Conference “Advanced Trends in Radioelecrtron-

ics, Telecommunications and Computer Engineering (TCSET-2018)”. 2018. p. 519–523.

38. Zashcholkin, K. V., Drozd, A. V., Sulima, J. J. & Ivanova, E. N. “Metod formirovaniya stego-puti

pri reshenii zadachi kontrolya tselostnosti programmnogo koda FPGA-bazirovannykh ustroystv”. [The

Method for Stego-Path Formation in Solving the Problem of Monitoring the Integrity of the Program Code

of FPGA-Based Devices] (in Russian). Systems and Technology. 2018; No. 1(56): 5–17.
39. Salomon, D. & Motta, G. “Handbook of data compression”. Publ. Springer. London: 2010.

40. “Intel Quartus”. [Electronic Resource]. – Access mode: https://www.intel.com/ con-

tent/www/us/en/software/programmable/quartus-prime/overview. Html, Title from the screen. – Active link
– 26.02.2019.

41. “Intel Cyclone FPGA series”. [Electronic Resource]. – Access mode: https://www.intel.com

/content/www/us/en/products/programmable/cyclone-series.html, Title from the screen. – Active link –
26.02.2019.

Conflicts of Interest: the authors declare no conflict of interest

Received 05.03.2019

Received after revision 10.04.2019
Accepted 14.04.2019

Computer engineering and cybersecurity

Applied Aspects of Information Technology 2019; Vol.2 No.2:138–152

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 151

DOI: https://doi.org/10.15276/aait.02.2019.5
УДК 004.056.53

КОМПОЗИЦІЙНИЙ МЕТОД КОНТРОЛЮ ЦІЛІСНОСТІ ПРОГРАМНОГО КОДУ FPGA,

БАЗОВАНИЙ НА ВИКОРИСТАННІ ЦИФРОВИХ ВОДЯНИХ ЗНАКІВ

 Костянтин Вячеславович Защолкін
1)

 ORCID ID: https://orcid.org/0000-0003-0427-9005, const-z@te.net.ua

 Олександр Валентинович Дрозд
1)

 ORCID ID: https://orcid.org/0000-0003-2191-6758, drozd@ukr.net

 Олена Миколаївна Іванова
1)

 ORCID ID: https://orcid.org/0000-0002-4743-6931, en.ivanova.ua@gmail.com

 Юліан Юрійович Суліма
2)

 ORCID ID: https://orcid.org/0000-0003-3986-7296, mr_lemur@ukr.net

 1) Одеський національний політехнічний університет, проспект Шевченка, 1, Одеса,Україна
 2) Одеський технічний коледж Одеської національної академії харчових технологій, вул. Балківська, 54, Одеса,Україна

АНОТАЦІЯ

В роботі розглянута проблема забезпечення цілісності програмованих компонентів комп'ютерних систем. Показані
основні етапи життєвого циклу програмованих компонентів. Відзначено, що можливість модифікації програмного коду
відкриває шляхи до зловмисному порушення його цілісності. Традиційні методи контролю цілісності базуються на
використанні контрольних хеш-сум. Однак недолік традиційних методів полягає в тому, що вони не дозволяють приховати

факт виконання контролю цілісності. Цей факт є відкритим. Навіть в умовах додаткового шифрування контрольної хеш-
суми її наявність свідчить про те, що проводиться контроль цілісності. В роботі виділяється клас методів, в рамках яких
контрольна хеш-сума вбудовується в програмний код у вигляді цифрового водяного знаку. Цей клас методів розглядається
стосовно контролю цілісності програмного коду мікросхем FPGA (Field Programmable Gate Array). Для вбудовування
використовуються особливості LUT-орієнтованої архітектури FPGA. Вбудовування контрольного цифрового водяного
знаку виконується за рахунок застосування еквівалентних перетворень програмних кодів на множині блоків LUT, що
входять до складу FPGA. Особливістю вбудовування цифрового водяного знаку є те, що таке вбудовування не змінює
розмір програмного коду і не модифікує функціонування мікросхеми FPGA. В результаті вбудовування явно виділити

контрольну хеш-суму в програмному коді стає неможливим. Витягання цифрового водяного знаку, який включає до свого
складу хеш-суму можливо тільки при наявності спеціального стеганографічного ключа (що задає правила розміщення
водяного знака в просторі програмного коду FPGA). В даній роботі пропонується композиційний метод вбудовування
контрольного цифрового водяного знаку в програмний код FPGA. Метод поєднує властивості методів, що забезпечують
відновлення первісного стану програмного коду, і методів, які здійснюють вбудовування на основі синдромного
декодування. Пропонований метод поєднує корисні властивості зазначених двох класів методів і спрямований на
зменшення кількості еквівалентних перетворень, що застосовуються до програмного коду в ході вбудовування цифрового
водяного знаку. Представлено опис і результати експериментального дослідження запропонованого методу. Показано

переваги запропонованого методу в порівнянні з базовими методами, вбудовування цифрових водяних знаків в програмний
код FPGA.

Ключові слова: контроль цілісності програмного коду; програмовані апаратні компоненти; FPGA; LUT-орієнтована
архітектура; контрольна хеш-сума; цифровий водяний знак; стеганографічний підхід до контролю цілісності

DOI: https://doi.org/10.15276/aait.02.2019.5
УДК 004.056.53

КОМПОЗИЦИОННЫЙ МЕТОД КОНТРОЛЯ ЦЕЛОСТНОСТИ ПРОГРАММНОГО КОДА

FPGA, ОСНОВАННЫЙ НА ИСПОЛЬЗОВАНИИ ЦИФРОВЫХ ВОДЯНЫХ ЗНАКОВ
 Константин Вячеславович Защелкин

1)
 ORCID ID: https://orcid.org/0000-0003-0427-9005, const-z@te.net.ua
 Александр Валентинович Дрозд

1)
 ORCID ID: https://orcid.org/0000-0003-2191-6758, drozd@ukr.net
 Елена Николаевна Иванова

1)
 ORCID ID: https://orcid.org/0000-0002-4743-6931, en.ivanova.ua@gmail.com
 Юлиан Юрьевич Сулима

2)
 ORCID ID: https://orcid.org/ 0000-0003-3986-7296, mr_lemur@ukr.net
 1) Одесский национальный политехнический университет, проспект Шевченко, 1, Одесса, Украина
 2) Одесский технический колледж Одесской национальной академии пищевых технологий, ул. Балковская, 54, Одесса,

Computer engineering and cybersecurity

https://doi.org/
https://doi.org/

Applied Aspects of Information Technology 2019; Vol.2 No.2:138–152

152 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 Украина

АННОТАЦИЯ

В работе рассмотрена проблема обеспечения целостности программируемых компонентов компьютерных систем.
Показаны основные этапы жизненного цикла программируемых компонентов. Отмечено, что возможность модификации
программного кода открывает пути к злонамеренному нарушению его целостности. Традиционные методы контроля

целостности, основаны на использовании контрольных хэш-сумм. Однако недостаток традиционных методов состоит в том,
что они не дают возможность скрыть факт выполнения контроля целостности. Этот факт является открытым. Даже в
условиях дополнительного шифрования контрольной хэш-суммы ее наличие свидетельствует о том, что производится
контроль целостности. В работе выделяется класс методов, в рамках которых контрольная хэш-сумма внедряется в
программный код в виде цифрового водяного знака. Этот класс методов рассматривается применительно к контролю
целостности программного кода микросхем FPGA (Field Programmable Gate Array). Для встраивания используются
особенности LUT-ориентированной архитектуры FPGA. Встраивание контрольного цифрового водяного знака выполняется
за счет применения эквивалентных преобразований программных кодов на множестве блоков LUT, входящих в состав

FPGA. Особенностью встраивания цифрового водяного знака является то, что такое встраивание не изменяет размер
программного кода и не модифицирует функционирование микросхемы FPGA. В результате встраивания явным образом
выделить контрольную хэш-сумму в программном коде становится невозможным. Извлечение цифрового водяного знака,
который включает в свой состав хэш-сумму возможно только при наличии специального стеганографического ключа
(который задает правила размещения водяного знака в пространстве программного кода FPGA). В данной работе
предлагается композиционный метод встраивания контрольного цифрового водяного знака в программный код FPGA.
Метод совмещает свойства методов, обеспечивающих восстановление инициального состояния программного кода, и
методов, осуществляющих встраивание на основе синдромного декодирования. Предлагаемый метод сочетает полезные

свойства указанных двух классов методов и направлен на уменьшение количества эквивалентных преобразований,
применяемых к программному коду в ходе встраивания цифрового водяного знака. Представлено описание и результаты
экспериментального исследования предлагаемого метода. Показаны преимущества предлагаемого метода в сравнении с
базовыми методами, встраивания цифровых водяных знаков в программный код FPGA.

Ключевые слова: контроль целостности программного кода; программируемые аппаратные компоненты; FPGA;
LUT-ориентированная архитектура; контрольная хэш-сумма; цифровой водяной знак; стеганографический подход к
контролю целостности

ABOUT THE AUTHOR

Kostiantyn V. Zashcholkin, PhD (Eng), Associate Professor, Department of Computer Intellectual Systems and

Networks. ORCID ID: https://orcid.org/ 0000-0003-0427-9005, const-z@te.net.ua. Odessa National Polytechnic

University, 1, Shevchenko Avenue. Odesa, Ukraine

Костянтин Вячеславович Защолкін, кандидат технічних наук, доцент кафедри Комп’ютерних

інтелектуальних систем та мереж, Одеський національний політехнічний університет, пр. Шевченка, 1,

Одеса, 65044, Україна

Oleksandr V. Drozd – Dr. Sci. (Eng.) (2003), Prof. of Computer Intellectual Systems and Networks Department.

ORCID ID: https://orcid.org/0000-0003-2191-6758, drozd@ukr.net. Odesa National Polytechnic University, 1,

Shevchenko Avenue. Odesa, Ukraine
Research field: On-Line Testing; Green Technologies and Circuit Checkability in the Digital Component of Safe-

ty-Rlated Systems; LUT-oriented Architecture of FPGA-Based Systems

Олександр Валентинович Дрозд, доктор технічних наук, професор кафедри Комп’ютерних

інтелектуальних систем та мереж, Одеський національний політехнічний університет, пр. Шевченка, 1.

Одеса, 65044, Україна

Olena M. Ivanova, Senior Lecturer, Department of Computer Systems. ORCID ID: https://orcid.org/0000-0002-

4743-6931, en.ivanova.ua@gmail.com. Odessa National Polytechnic University, 1, Shevchenko Avenue. Odesa,

Ukraine

Олена Миколаївна Іванова, старший викладач кафедри комп’ютерних систем, , Одеський національний

політехнічний університет, пр. Шевченка, 1, Одеса, 65044, Україна

Yulian Yu. Sulima – PhD (2014), Head of the Computer Systems Department, SSU “Odessa Technical Profes-

sional College of the Odessa National Academy of Food Technologies”. Balkivska Str, Odessa, Ukraine
ORCID ID: https://orcid.org/0000-0003-3986-7296, mr_lemur@ukr.net

Research field: Technology of Designing Computer Systems on FPGA; Computer Systems for Critical Applica-

tion; Checkability and Detection of Hidden Faults of Integrated Circuits

Юліан Юрійович Суліма – кандидат технічних наук (2014), завідувач відділення комп’ютерних систем
ВСП «Одеський технічний фаховий коледж Одеської національної академії харчових технологій», вул.

Балківська, 54, Одеса, 65110, Україна

Computer engineering and cybersecurity

mailto:const-z@te.net.ua
mailto:drozd@ukr.net
mailto:en.ivanova.ua@gmail.com

