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ABSTRACT 

The paper considers a problem of provision of the programmable component integrity of computer systems. First the basic 
stages of the programmable components life cycle are presented. The authors note that the program code modification gives the op-
portunity to maliciously violate its (program code) integrity. The traditional methods of integrity modification are based on the usage 
of monitoring hash sums. However the main disadvantage of the traditional methods is that they are not able to hide the fact of integ-
rity monitoring execution itself. This fact cannot be hidden and becomes obvious. Even under the conditions of extra encrypting of 

monitoring hash sum the very existence of it demonstrates that the integrity monitoring is carried out. The paper presents a class of 
methods which offer the hash sum embedding into program code in the form of digital watermark. This class of methods is consid-
ered with reference to monitoring the chip FPGA (Field Programmable Gate Array) program code integrity. For embedding the fea-
tures of LUT-oriented FPGA architecture are used. The monitoring digital watermark embedding is performed due to the usage of 
equivalent program codes conversions in a set of LUT-units included in FPGA. The peculiarities of the digital watermark embedding 
are as follows – such kind of embedding does not change the program code size and does not modify the chip FPGA operation. As a 
result of embedding it is impossible to distinguish the monitoring hash sum in the program code in an evident way. The extraction of 
digital watermark including hash sum can be carried out only in the presence of special steganographic key, which sets the rules of 

watermark location in the FPGA program code space. In the given paper a compositional method of embedding the monitoring digi-
tal watermark into the FPGA program code is offered. The method combines the features of ones providing the recovery of initial 
program code state and the ones (methods), which implement the embedding on the basis of syndrome decoding. The proposed 
method incorporates the useful features of two classes of methods mentioned above and serves to reduce the amount of equivalent 
conversions applied to the program code in the course of the digital watermark embedding. This demonstrates the advantage of the 
proposed method as compared to the base ones of the digital watermark embedding in the FPGA program code. The description and 
results of experimental research of the proposed method are also presented.
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INTRODUCTION 

Among the hardware components used to build 
digital computer systems, two large classes can be 

separate: a) integrated circuits with hard logic of 

functioning; b) program-controlled (programmable) 

integrated circuits.  
The first of these classes is formed by so-called 

ASIC (Application Specific Integrated Circuit) chips 

[1]. These integrated circuits are focused on solving 
one specific computational or control task. Their 

functioning does not change during the life cycle of 

the system in which they are included.  
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Integrated circuits belonging to the class of 

program-controlled [2], on the contrary, allow to 

customize (program) them to solve an arbitrary 
range of tasks. The operation of the integral circuits 

of this class can potentially be changed at any stage 

of their life cycle.  
Programmable hardware components are not in-

itially configured to solve any particular task. In the 

process of designing a computer system, a program 

(program code) is created for such components, 
which custom them to solve the required task. This 

program is placed in the memory of the programma-

ble component, thereby setting it up for a given 

functioning.  
The functioning of programmable components 

can be modified at all stages of their life cycle. This 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk)
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modification is carried out by changing the program 
code of the components.  

A typical (but not exhaustive) set of reasons 

leading to the need to change the functioning of pro-

grammable components is: 
a) detection of errors in the initial version of the 

program code; 
b) the need to optimize the system at a certain 

stage of its operation; 
c) planned upgrade of the program code; 
d) the need to adapt the system to changes in con-

ditions determined by the environment external to it. 
The ability to modify the program code of pro-

grammable components creates vulnerability in en-

suring the integrity of the system. For components 
with hard logic (ASIC), potential integrity violations 

are possible mainly through physical intervention in 

their structure. For programmable components, the 
possibility of integrity violations at the level of pro-

gram code arises. Integrity is further understood as 

the ability of the system to exclude unforeseen chang-

es to the system and the services it provides [3].  
The prerequisites for the occurrence of this vul-

nerability are that: 
a) there is (can be used each of legitimately and 

not illegitimate) the technical possibility of modify-

ing the program code, which leads to a change in the 

operation of the components; 
b) provided for legitimate (made by the devel-

oper or the person operating the system) changes in 

the program code. 
Integrity violation of the program code, caused 

by both the action of natural forces and malicious 

acts of humans is an extremely dangerous phenome-

non that can lead to technological disasters and fi-
nancial losses [4]. 

So programmable components are part of the 

systems for managing high-risk technical objects [5] 
(in safety-critical systems) [6]: energy facilities, chem-

ical industry, aviation objects and high-speed ground 

transportation. Disruption of the functioning of these 

objects can lead to unacceptable consequences.  
An important area of application of program-

mable components, for which functional safety re-

quirements are one of the main development factors, 
is medical equipment (including wearable and im-

plantable in the human body) [7]. Violation of the 

integrity of the software code for components of 

such equipment at the very least degrades the quality 
of life of its users, and, at most, can affect the vital 

functions of the body of users. 
Also, programmable components are part of 

systems that are not characterized by a critical area 

of application, but are used massively [8]. The im-

proper functioning of such systems can lead to fi-

nancial and reputational losses, both for companies 
producing systems and for end users. 

The presence these factors makes ensuring the 

integrity of the program code for programmable 

components of one the priorities in the process of 
creating safe systems. 

One of the types of programmable components 

of modern computer systems is FPGA (Field Pro-
grammable Gate Array) chips [9], [10]. These inte-

grated circuits differ from microprocessors and mi-

crocontrollers in the way they change functioning. 
FPGA chips have a variable (programmable) struc-

ture that can be modified by a program code to solve 

a specific task. 
FPGAs are a matrix of programmable elemen-

tary units of both universal and specialized purposes. 

Each of these units is configured by the FPGA pro-

gram code to implement a specific function. The 
connections of the units between themselves and 

with the external outputs of the chip are also deter-

mined by the program code. Thus, unlike micropro-

cessors and microcontrollers, FPGAs can change 
their functioning by changing the internal structure 

and functions of the elements of this structure. This 

makes it possible to ensure the distribution (parallel-
ing) of the problem solving process in the FPGA 

chip space. 
Due to the above features, FPGA chips have 

greater performance, as compared to the other, fre-

quently used the type of programmable components 

– microprocessors and microcontrollers.  
Typically, FPGA chips are used in cases: 
a) the specificity of the computing tasks that 

need to be solved is that microprocessors cannot be 

used for performance reasons; 
b) this requires the implementation of the solu-

tion of the problem on programmable components (it 

is assumed that at further stages of the life cycle of 
the system, modification of its functioning will be 

required). 
The problem of ensuring and monitoring the in-

tegrity of the software code for such programmable 
components of computer systems as microprocessors 

and microcontrollers is worked out much deeper 

than for FPGAs. This is due to the earlier occurrence 
of microprocessors and microcontrollers and, ac-

cordingly, a longer stage of studying the problem of 

the integrity of their program code. Significant dif-

ferences in the principles of operation and program-
ming of these two classes of programmable compo-

nents (microprocessors and FPGA) do not allow ex-

tending the methods used to monitoring integrity in 
one class to another class. Therefore, the problem of 

ensuring the integrity of the FPGA software code is 

currently significant. 
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ANALYSIS OF RECENT RESEARCH 

AND PUBLICATIONS 
 

Currently, the most effective and frequently 

used mechanism underlying integrity monitoring is 
the use of hash sums [11]. In contrast to the check-

sums used in online-testing of computer systems [12], 

hash sums have a number of additional properties.  
So, the hash functions that help to calculate 

monitoring hash sums provide the properties used in 

the integrity monitoring process, among which we 

can highlight: 
a) non-invertibility – the extreme computational 

complexity of obtaining an argument of a hash func-

tion by its value; 
b) a significant change in the hash sum with a 

slight change in the data block for which this hash 

sum was calculated; 
c) the impossibility, knowing the argument and 

the corresponding hash sum, to find another argu-

ment that gives the same hash sum. 
The main approach to the monitoring of pro-

gram code is to double calculation of the hash sum 

in the framework of following base procedure [13] 

(Fig. 1).  
1) At the stage of preparing the program code 

for integrity monitoring, the hash sum H of the pro-

gram code is calculated. This hash sum is further 

considered to be a standard. The standard hash sum 

H should be available at the time of integrity moni-

toring of the program code. To ensure the availabil-

ity of the hash sum, H is attached to the information 

object of the program code or is in some way associ-

ated with it. 
2) Immediately at the moment of performing 

the integrity check, the hash sum H* is again calcu-

lated for the information object of the program code. 

The calculated hash sum H* is compared with the 

standard hash sum H. Based on the comparison of 

the specified hash sums, it is decided whether the 

integrity of the program code is violation. Any 

change to the information object of the program 

code or / and the standard hash sum leads to a mis-

match between the hash sums H* and H.
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Fig. 1. Basic integrity monitoring procedure 

Source: compiled by the authors 
 

Possible options in the case of the mismatch of 

H* and H hash sums (not an exhaustive list): stop-

ping the system; overwriting the initial program 

code from a reliable source; switch to backup system. 
Depending on the cause of the integrity viola-

tion, the specificity of individual details for the in-

tegrity ensuring process arises.  
So for integrity monitoring, aimed at countering 

the expected violation caused by malicious interfer-

ence in the program code, the essential aspects are: 
a) the storage location of the standard hash sum; 

b) the method of storing the standard hash sum 

and the technique for accessing it; 
c) the extent of openness for fact of the integrity 

monitoring. 
A known approach to integrity monitoring, 

which involves storing the monitoring hash sum in 

open form in a separate information object from the 

program code [14]. This approach is acceptable 

when processing the expected integrity violation as a 

result of natural phenomena. However, for the case 

of malicious interference in program code, the  
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appropriateness of using this approach is questiona-

ble. The reason for this is the openness of the storage 

of the standard hash sum, which creates a potential 

for falsification. 
The traditional integrity monitoring approach 

described above (based on the double calculation of 

the hash sum and its storage in open form) is used to 

monitoring the integrity of the program code, both 
microprocessors and FPGA chips. However, this 

approach has a significant disadvantage. This disad-

vantage is due to two interrelated factors: 
 Factor 1: the standard hash sum is stored in 

such a way that it is available for reading, analysis, 

and possible falsification. 
Factor 2: the fact of performing integrity moni-

toring is open to an outside observer. 
Despite the fact that hash functions have the 

property of non-invertibility, access to the value of 
the standard hash sum creates the possibility of ma-
nipulating the integrity monitoring process. A whole 
range of methods has been developed to accelerate 
the search for the preimage for the hash sum: search 
by rainbow tables [15]; dictionary methods [16]; 
methods focused on frequency analysis [17] and var-
ious compositions of these methods. However, the 
main problem generated by the availability of a hash 
sum is the ability to use insider manipulation meth-
ods [18]. Within these methods, the capabilities of 
persons who have access to the processes of moni-
toring the integrity or legal modification of program 
code are used. These persons can potentially per-
form falsification of the standard hash sum: replace 
it with the hash sum calculated for the object of the 
program code that has been illegitimate changes. 

There are known approaches to minimizing the 
influence of the first factor mentioned above. In par-
ticular, it is proposed to store the standard hash sum 
not in the clear, but to pre-encrypt it using the agreed 
cryptographic method [19], [20]. In this case, to ac-
cess the value of this hash sum, it is necessary to 
decrypt it (Fig. 2). This requires information on the 
encryption method used and the encryption key. 
When using this approach, hash sum falsification 
requires an additional procedure – obtaining the ini-
tial hash sum value. In the absence of a encryption 
key, this procedure is extremely computationally 
complex. However, this approach inherits the disad-
vantages of the basic approach. In the case of using 
such an approach, the fact that integrity monitoring 
is performed remains open, which makes it possible 
to apply cipher-hacking techniques to falsify the 
standard hash sum. Also, this approach does not 
eliminate the possibility of insider manipulation of 
monitoring information. It only narrows the circle of 
persons capable of performing such a manipulation. 

Another approach [21] is known to eliminate 
the influence of the first of the above factors. The 
standard hash sums for the information objects of 

the program code are not distributed together with 
the information objects themselves (they are not at-
tached to them), but are stored in a certain central-
ized database of the subject of control. The main 
disadvantage of this approach is the difficulty of 
protecting this database from information leaks. 
Mass information leaks from such databases are very 
frequent [22]. Such leaks put at threat all integrity 
monitoring systems that store standard hash sums in 
compromised databases. Similar to the previous ap-
proach, this approach does not eliminate the possi-
bility of insider manipulation of standard hash sums. 

The approach based on the application of the 
theory of digital steganography [23] eliminates the  
indicated disadvantages of traditional approaches. 
Steganography is a field in the theory of information 
security, based on information hiding. The main 
mechanism of steganography is the hidden embed-
ding of information objects of one type into infor-
mation objects of another type. Digital steganogra-
phy has various practical applications, the main of 
which are: hidden data transmission, hidden data 
marking, and hidden tracking of data distribution 
paths. To solve the problem of integrity monitoring, 
one of the steganographic-oriented technologies is 
used – the technology of digital watermarks [24]. 

Digital watermark is used as information medi-
um [25] of the standard hash sum within the frame-
work of a steganographic approach to integrity mon-
itoring. In such a case a digital watermark is a data 
block that contains monitoring hash sum and option-
ally additional utility information fields. This digital 
watermark is embedded in the information object of 
the program code in such a way that the fact of this 
embedding becomes hidden from an outside observ-
er. The fact that integrity monitoring is performed is 
also hidden. In this case, the standard hash sum is 
distributed over the information object of the pro-
gram code in such a way that it (hash sum) can be 
accessed only with a special steganographic key 
(stego-key) [26]. 

Thus, when using the steganographic approach, 
the control hash sum is not attached to the infor-
mation object of the program code, but is embedded 
in it in the form of a digital watermark.  

The advantages of this approach are that: 
1) a digital watermark does not increase the 

volume of an information object by the size of the 
hash sum; 

2) there is no possibility for an external observ-
er to identify the fact that the program code is moni-
tored, as well as to identify parts of the information 
object that contain program code and parts that con-
tain the hash sum; 
3) the embedding of a digital watermark in the pro-
gram code is performed in such a way that the op-
eration of the FPGA chip does not change.
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Fig. 2. Integrity monitoring procedure with encryption of standard hash sum 
Source: compiled by the authors 

Methods [27], [28] that implement the concept 

of using digital watermarks to integrity monitoring 

the program code of FPGA-based components use the 

program codes of the LUT (Look Up Table) units 

[29], [30] as the information medium in which the 

digital watermark is embedding. LUT units (Fig. 3) 

are the most mass elementary calculating units of 

FPGA. Their number in modern FPGA chips can vary 

from tens of thousands to several millions.  
The LUT unit is a programmable module for 

calculating an n-arguments (usually from 4 to 8) log-

ical function. Each LUT unit is configured to im-

plement a specific logic function using 2n-bit pro-

gram code. In accordance with the provisions of the 

methods [27], [28], the set of program codes of the 

LUT units is used as the information medium for 

embedding a monitoring digital watermark. 

Adr. Data 

0000 D0 

0001 D1 

0010 D2 

0011 D3 

… … 

1110 D14 

1111 D15 

 

Adr0

Adr1

Adr2

Adr3

Out

Fig. 3. Structure of the 4-input LUT unit of

FPGA chip 
Source: compiled by the authors 

Embedding within the framework of these 
methods is performed using equivalent conversions 

[31], [32], which do not change the logic functions 

implemented by the LUT units and do not affect the 

operation of the FPGA chip. Methods [27], [28] de-
termine that for embedding a digital watermark from 
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general set of LUT units an ordered set of units is 
formed, each element of which uniquely corresponds 

to a bit of a digital watermark and is used to store 

this bit. The specified ordered set is called the ste-

ganographic path (stego-path) in the space of a 
LUT-oriented information object. In this case, the 

stego-path formation rule is a part of the stego-key – 

a set of secret information that defines the formal 
rules for extracting a digital watermark from the 

program codes of the LUT units. 
In Fig. 4 shows a diagram of the steganographic 

procedure for preparing an information object of the 

FPGA program code for integrity monitoring. In 

accordance with this scheme, the considered meth-

ods [27], [28] are functioning. This diagram de-
scribes the formation and use of a digital watermark 
(denoted as a DWM in the diagram). A digital wa-

termark includes a mandatory component – a stand-

ard hash sum H of the code and two optional com-

ponents: the usage monitoring tag (marker) and the 

legitimacy monitoring tag of the program code in-

formation object. Optional components of a digital 

watermark provide a solution to specific problems for 

the protection of FPGA software code. These solu-

tions can be implemented along with integrity moni-

toring by storing special tags in a digital watermark. 
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Fig. 4. Steganographic procedure for preparing an information object for integrity monitoring 

Source: compiled by the authors 
 

The use monitoring tag is designed to track the 

distribution of the program code. This procedure is 
necessary to identify the point of leakage and the 

illegal distribution of FPGA code. The legitimacy 

monitoring tag can be used to confirm the legality or 

authenticity of the program code. 
Programmable LUT units are the most mass in 

the FPGA structure. Because of this, the program 

code of these units makes up the largest part of the 

entire program code FPGA.  It is for the program 
code of LUT units that the equivalent conversions 

[31], [32] are proposed, which are used in the meth-

ods [27], [28] as the basis for the embedding of a 

digital watermark. In addition to LUT units, FPGA 
contains specialized programmable units: lumped 

memory units, multiplication units, I/O units, etc. 
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The program code of these units is not used in the 

process of embedding a digital watermark. In ac-
cordance with the considered diagram (Fig. 4), the 

standard hash sum is calculated for the entire FPGA 

program code, and the destination place of the moni-
toring digital watermark is the program code of the 

LUT units. 
However, the use of the steganographic ap-

proach imposes an additional requirement on the 
integrity monitoring method. This requirement is the 

need to restore the initial state of the information 

object of the program code. Indeed, if a standard 
hash sum is calculated for the program code, then 

any change in the program code will be manifested 

at the time the integrity monitoring is performed. 

When embedding (even performed by equivalent 
conversions) monitoring watermark in the program 

code, its (code) integrity is violated. Thus, there is a 

contradiction between the method of storing the 
standard hash sum and the main method of integrity 

monitoring. 
To resolve this contradiction, the following 

procedure is usually used: 
1) the standard hash sum for the information 

object of the program code is calculated; 
2) the digital watermark is formed, which in-

cludes the standard hash sum; 
3) the state that the information object had at 

the time of calculating the standard hash sum (the 
initial state of the information object) is in some way 

stored. Moreover, the storing is done in such a way 

that only an information object and a stego-key are 
required for monitoring. Based on this, the initial 

state can be stored as part of the same digital water-

mark in which the standard hash sum is placed; 
4) the monitoring digital watermark is embed-

ded in the information object of the program code; 
5) at the time of performing the integrity moni-

toring, the digital watermark is extracted and at the 
same time the initial state of the information object 

is recovered (the state for which the standard hash 

sum was calculated). 
It is a pair of actions “storing - recovering” of 

the initial state of the information object that elimi-

nates this contradiction. 
There is a method [33] that provides this recov-

ery procedure in order to monitoring the integrity of 

the FPGA program code. This method is based on 

the Friedrich method [34], [35] proposed for embed-
ding digital watermarks in multimedia information 

objects. The disadvantage of the Friedrich method is 

that it requires a relatively large number of changes 

made in the program codes. These changes are per-
formed using equivalent conversions; do not change 

the size of the program code and the operation of the 

device. However, any massive code changes (even 

equivalent ones) could potentially be used in the fu-

ture to compromise the method and search for vul-
nerabilities in it. Therefore, the task of minimizing 

the changes in the program code resulting from the 

embedding is very important and significant.  
The steganographic method F5 [36], [37] is 

known, which is characterized by a small value of 

the ratio of information object bits number changed 

during the embedding to the total number of bits. 
The F5 method is based on the joint use of the theo-

ry of steganography and the theory of error check 

coding [38]. This method is intended only for use in 
relation to multimedia information objects: raster 

images, digital video and sound. There is an adapta-

tion of this method to the environment of LUT-

oriented information objects (to embedding digital 
watermarks in the FPGA program code) [39]. How-

ever, neither the basic nor the FPGA-oriented meth-

ods have the ability to ensure the recovery of the 
initial state of an information object in the process of 

extracting a digital watermark. 
Thus, the method [33] and the methods derived 

from it have a property that is useful for the task of 

monitoring integrity – they provide the ability to 

recovery the initial state of an information object in 

the process of extracting a digital watermark. How-
ever, the method [33] in its practical applications 

shows a relatively large value of the ratio of the 

number of modified bits of the program code to their 
total number. 

On the other hand, the method [39] and meth-

ods derived from it, on average, gives fewer modi-
fied code bits, but does not support the ability to re-

covery the initial state of an information object. 
Under these conditions, we consider significant 

the task of obtaining a method that combines the 
useful properties of the methods [33] and [39] in 

solving the problem of monitoring the integrity for 

the FPGA program code. 
 

THE GOAL AND OBJECTIVES OF THE 
WORK 

 

The goal of this work is to reduce the number of 
modifiable bits of the FPGA program code in the 

process of monitoring integrity by combining digital 

watermark embedding methods that:  
a) have the property of recovering the initial 

state for the program code of information object;  
b) generate a small (relative to other similar 

methods) number of changes for bits of the program 

code. 
To achieve this goal in the work the following 

objectives are set: 
– to formalize the method that allows to per-

form the recovering of the initial state for the infor-
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mation object and at the same time provides the 
number of changes for program code bits at the 

method [39] level; 
– develop a procedure for applying the pro-

posed method in the process of the FPGA program 
code integrity monitoring; 

– perform an experimental comparison of the 

proposed method with known methods and draw 
conclusions about the appropriateness of its use. 

 

MAIN PART OF THE WORK 
 

A compositional integrity monitoring method is 

proposed that combines the property of ensuring the 

recovering of the initial state for an information ob-
ject with the property (characteristic for methods 

based on the use of syndrome decoding) of the min-

imal change for bits of the FPGA program code. The 
proposed method is based on the following six key 

principles.  

The first principle of the method. The infor-

mation medium of a digital watermark is the stego-
key-specified bits of the LUT units, which are along 

the stego-path (target bits for embedding). In the 

following, the ordered sequence of such bits will be 
denoted by MSPath = <m1, m2, … , mp>. Each of the 

mi  MSPath bits can be inverted by equivalent con-

versions [31], [32] used in the methods [27], [28]. 

The second principle of the method. To embed 

the bits of a digital watermark, a change is made to 
the syndromes that are associated with n-bit frag-

ments (parameter n is set by the description of the 

error-correcting code used in the embedding pro-
cess) of the MSPath sequence, using the error-

correcting coding method specified by the ste-

ganographic key. 

The third principle of the method. Storing of 
the initial state of the information object of the pro-

gram code is achieved by lossless compression and 

embedding the compression results as part of a digi-
tal watermark (similarly to how this is implemented 

in the Friedrich method [34], [35] and the FPGA-

oriented method [33]). 
The procedure for embedding a digital water-

mark involves changing the values of the bits in the 

MSPath sequence. Because of this, within the frame-

work of this provision, it is ensured that the initial 
state of this part of the FPGA program code is main-

tained. 

The fourth principle of the method is that the 
digital watermark being embedded into the program 

code is formed as a set: 
a) compressed initial state of the MSPath binary 

sequence; 

b) the monitoring part containing the standard 
hash sum; 

c) optional additional information fields. 

The fifth principle is that the initial state of the 

MSPath bit sequence is stored by changing the MSPath 
bits, which (changing) leads to the replacement of 

the original n-bit MSPath fragment syndromes by the 

n-bit fragments obtained after compression. 

The sixth principle of the method is that the 

modification of the syndromes is performed by 

equivalent conversions [31], [32], used in the meth-
ods [27], [28]. 

Based on the presented basic theoretical princi-

ples, the following sequence of actions is proposed, 

which leads to the embedding of the monitoring dig-
ital watermark in the FPGA program code. 

Stage 1. Stego-path is formed in the space of 

the program code of LUT units. To perform this 
stage, we use the stego-path formation procedure 

proposed in [40]. The result of this stage is an or-

dered sequence MSPath = <m1, m2, … , mp> bits of the 

program codes of LUT units located on the stego-
path. The MSPath sequence bits are information medi-

ums of the monitoring digital watermark being im-

plemented in the program code. 

Stage 2. The MSPath sequence is divided into n-

bit fragments. 
Let the stego-key Skey as one of the compo-

nents contain the description of the error-correcting 

code ECode  Skey given by three parameters: n, k, 

H, where n, k are the parameters of the (n, k)-code, n 

is the length of the code word, k is the number in-

formation bits in the code word; H – some rule for 
performing syndrome decoding. Further, for simplic-

ity, the rule H will be specified by the check matrix 

of the block code. However, in the general case, this 

rule can be specified in any other way of describe 
the procedure for obtaining the error syndrome for 

error-correcting coding. 
The sequence of MSPath binary bits is represent-

ed as a sequence of concatenated fragments: 

MSPath = M1 | M2 | … | Mq,                (1) 

where: Mi is a fragment of the MSPath sequence, with 
a length of n bits (the n parameter is specified by the 

description of the used error-correcting code 

Ecode  Skey); 
«|» – designation for the operation of concate-

nation of the binary sequences. 
If the length of the binary sequence MSpath is not 

a multiple of the parameter n, then the sequence is 

supplemented to the nearest multiple of the length of 

the MSpath by the specified placeholder. 
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Stage 3. Each fragment Mi with the help of the 

check matrix H  Ecode is assigned the n - k bit Si 

syndrome. 

Stage 4. From the resulting syndromes, a binary 

sequence is formed by concatenation: 

SSpath = S1 | S2 | … | Sq.                     (2) 

Stage 5. SSPath binary sequence compression is 

performed. In this case, the loss base compression 

method specified by the stego-key is used. In the 

process of compression, the syndromes that make up 

the SSPath sequence are considered as symbols of the 

primary alphabet, and the sequence itself, as a mes-

sage consisting of these symbols. As a result, a com-

pressed sequence of syndromes SSpathCom is formed. 

Stage 6. A digital watermark is formed: 

DWM = SSpathCom | HashSum | ExtraFields,     (3) 

where,   
        HashSum – monitoring hash sum; 
        ExtraFields – optional additional information 

fields; 
         «|» – designation for the operation of concate-

nation of the binary sequences. 
The length of a digital watermark DWM must 

not exceed the length of the SSPath sequence. Since 

SSPathCom is a compressed version of the SSPath se-

quence, the valid size of the control hash sum and 

additional fields cannot exceed the difference be-

tween the lengths of the SSPath and SSPathCom sequences. 

Stage 7. The resulting digital watermark DWM 

is divided into fragments of Si* by n – k bits, i.e. the 

same length as the length of the Si syndromes in ex-

pression (2): 

DWM = S1* | S2* | … | Sq* .              (4) 

Stage 8. The bit values of the MSPath sequence 

are modified in such a way as to ensure that for Mi 

fragments replace Si syndromes with Si* syndromes. 

To perform such a replacement, the current Si and 

the required Si* syndromes are summed modulo two: 

bi = SiSi*. The obtained value bi sets the position 

of the bit that needs to be inverted in the Mi fragment 

to replace Si syndrome with Si* syndrome.  Frag-

ments of Mi*, resulting from changes in syndromes 

concatenate in form a binary sequence M*SPath, which 

coincides in length with the initial MSPath sequence.   
 Thus, the resulting sequence M*SPath contains: 
a) information about the original state of the se-

quence MSPath; 
b) monitoring hash sum; 
c) optional additional information fields. 

Stage 9. The target bit values are modified in the 

program codes of the LUT units. Modifications are 

made in such a way as to change the source sequence 

of the target MSPath bits to the M*SPath sequence ob-

tained in the previous step. Modification is performed 

by applying equivalent conversions [31], [32]. 
In Fig. 5 shows an example of the implementa-

tion of the proposed stages of the integrity control 

method in part of embedding a digital watermark. 

The figure shows an MSPath sequence consisting of 

42 target bits. This sequence is obtained at the first 

stage of the method from the program codes of the 

LUT units that are on the stego-path. 
Let for this example, an error-correcting code 

with the parameters (n, k) = (7, 4) and the check ma-

trix of the following form is used: 



















1111000

1100110

1010101

H . 

At the second stage of the method execution, 

the MSPath sequence is divided into six fragments of 

n = 7 bits each. 
At the third stage of the method, for each of the 

obtained fragments, n – k = 3 bit Si error syndrome is 

calculated using the check matrix H. 
In the fourth stage, the resulting syndromes 

concatenate, forming a binary sequence. 
At the fifth stage, the resulting sequence is 

compressed. In this example, the Huffman method 

[41] is used for compression. This method is used in 

the example for clarity. In real applications, it is ad-

visable to use more efficient lossless compression 

methods. A compressible sequence is considered as 

a set of symbols of the primary alphabet, which is 

formed by the values of Si syndromes. As a result of 

the compression, a code table is formed that assigns 

a code combination to each syndrome. The length of 

code combination is proportional to the frequency of 

occurrence of the syndrome in binary sequence. 

Codes resulting from replacing the primary alphabet 

symbols form the binary sequence SSpathCom. 
At the sixth stage, a digital watermark is formed 

to be embedded. Let, for the considered example, the 

monitoring hash sum is a binary sequence 

“0000011”. At this stage, hash sum (in the figure, 

the bits of the hash sum are shown by accentuation) 

is concatenated with the sequence 
SSpathCom. The result is an 18-bit binary sequence 

of digital watermark DWM.
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Equivalent conversion of program code

LUT7, LUT10, LUT17, LUT30, LUT40

Fig. 5. Example of the proposed method: the steps of embedding a digital 

watermark in the FPGA program code 
Source: compiled by the authors 

At the seventh stage of the method, the result-

ing digital watermark DWM is divided into frag-

ments of n - k = 3 bits each: 6 fragments Si* are 

formed. 
At the eighth stage, the current Si syndromes for 

Mi fragments are replaced with newly calculated Si* 

syndromes. If the syndromes Si and Si* coincide, 

then there is no need to replace them and no addi-

tional actions are taken with respect to the Mi frag-

ment. In this example, the equality holds for 

S4 = S4* = 010. 
In the case of differences between Si and Si*, 

one bit of the fragment Mi is modified, which leads 

to a change in the syndrome. The position of this bit 

is equal to the sum modulo-two syndromes Si and Si*. 
At the ninth stage, the bits are inverted for each 

of the fragments Mi. As a result, the binary sequence 

M*SPath is obtained from the MSPath binary sequence. 

Further, in the target bits of the program code of the 

LUT units, equivalent conversions are performed, 

resulting in values corresponding to the sequence 

M*SPath. As a result of these actions, the digital wa-

termark is embedded in the program code of the 

LUT units. 
In the considered example, to save the initial 

42-bit state of the target bits and the 7-bit monitoring 

hash sum, we needed an equivalent inversion of the 

five target bits (one bit each in the program code of 

five LUT units). 
The following procedure is proposed for ex-

tracting a digital watermark from the FPGA program 

code in the integrity monitoring process. 

Stage 1. Similar to the first stage of a method of 

embedding the set of the LUT units which are on the 

stego-path is formed. From the program codes of 

this units set, an ordered sequence MSPath of target 

bits is selected. 

Stage 2. The sequence M*SPath is divided into n-

bit fragments M*i. 

Stage 3. For each of the fragments M*i, the n –

k bit syndrome S*i is calculated using the check ma-

trix H  Ecode. 
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Stage 4. By concatenating syndromes S*i, a bi-

nary sequence is formed. 

Stage 5. The monitoring hash sum is separated 

from the sequence obtained in the previous step. The 
rest of the sequence is subjected to a decompression 

procedure. To do this, use the decompression meth-

od, the inverse of the compression method used in 
the process of embedding a digital watermark. As a 

result of decompression, a set of Si syndromes is ob-

tained, the number of which coincides with the 
number of M*i fragments. 

Stage 6. The procedure is similar to the one that 

was performed in step 8 in the process of embedding 

a digital watermark. The values of S*i syndromes are 

converted to Si values by modifying one of the bits 

in each of the M*i fragments. In the case of equality 
of the syndromes S*i and Si, the modification of the 

bits of the corresponding M*i fragments is not per-

formed. 

Stage 7. The initial state for the target bits of 

the program code is restored from the modified val-
ues of the fragments M*i by equivalent conversions. 

To test the effectiveness of the proposed meth-

od, an experiment was performed. An experimental 
comparison of the proposed method with a well-

known integrity monitoring method [33] (which per-

forms the recovering of an information object, but 
does not use syndrome decoding during embedding) 

was performed. 
The experiment involved five FPGA projects of 

various volumes and design mission. Synthesis of 
projects was carried out with the help of the CAD 

system Intel (Altera) Quartus Prime [42]. FPGA In-

tel Cyclone IV was used as target synthesis chips 
[43]. The aim of the experiment was to determine 

the number of bits modified in the process of em-

bedding a digital watermark. 
The experiment procedure consisted in the fact 

that a digital watermark was embedded in each of 

the five experimental projects. This watermark con-

tained a monitoring hash sum and a compressed ini-
tial state for the target bits of program code of the 

LUT units. Embedding was performed twice: using 

the known and proposed methods. After each em-
bedding, the number of target bits of the LUT units 

that were modified during the embedding process 

was counted. 
The results of the experiment are shown in the 

table. FPGA-projects (which were used in the exper-

iment) in the table are ordered by increasing their 

volume (total number of LUT units). For each of the 
projects, it is shown by how much, due to the appli-

cation of the proposed method, the number of LUT 

units whose program code has been modified has 
decreased.  

Table. Experimental results 

Project 
No 

Total number of 
LUT units 

Reducing the number of 
modified LUT units 

1 3280 6,1 % 
2 3837 7,6 % 
3 4589 12,9 % 
4 7403 15,1 % 
5 8265 19,4 % 

Source: compiled by the authors 

From the results of the experiment it can be 

seen that the proposed method allows reducing the 

number of modified bits of program codes in LUT 

units. It can also be seen that a greater decrease in 
this number is achieved on projects that have a larg-

er volume. This reduction in the number of modifi-

cations to the program code confirms the validity 
and effectiveness of the proposed method. 

 

CONCLUSIONS AND DIRECTIONS FOR 

FUTURE RESEARCH 

The proposed method is an integrated part of 

the technology for the integrity monitoring of FPGA 

chips program code. The method is based on em-
bedding a standard hash sum in a program code in 

the form of a digital watermark. Integrity monitoring 

in the framework of the proposed method is possible 
due to the property of recovering the initial state for 

an information object of a program code in the pro-

cess of extracting a digital watermark from it.  
The proposed method of integrity monitoring 

for each n-bit fragment of the target bits sequence, 
where n is the parameter used by the (n, k)-code 
(specified by the stego-key): 

a) requires changing the code for only one of 
the n LUT units in the fragment in case of a mis-
match between the syndromes Si and Si*; 

b) does not require changes to the codes of the 
LUT units in the fragment in case these syndromes 
coincide. 

The visible problem (which causes the need for 
future research) of the proposed method is the need 
to include a table of prefix codes in the stego-key. 
This need is caused by the fact that the table is cal-
culated at the stage of embedding a digital water-
mark and cannot be calculated in advance. The re-
maining parameters of the key can be specified in 
advance by the embedding side and the digital wa-
termark extraction side. This requirement increases 
the size of the stego-key. In the case of the inclusion 
of a code table in the composition of a digital water-
mark, the potential effective volume of a digital wa-
termark is reduced. In this regard, there is a need for 
future research on the possibility of using (within the 
framework of the proposed approach) compression 
methods that do not require the preservation of a code 
table as part of a stego-key or digital watermark.
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АНОТАЦІЯ 
 

В роботі розглянута проблема забезпечення цілісності програмованих компонентів комп'ютерних систем. Показані 
основні етапи життєвого циклу програмованих компонентів. Відзначено, що можливість модифікації програмного коду 
відкриває шляхи до зловмисному порушення його цілісності. Традиційні методи контролю цілісності базуються на 
використанні контрольних хеш-сум. Однак недолік традиційних методів полягає в тому, що вони не дозволяють приховати 

факт виконання контролю цілісності. Цей факт є відкритим. Навіть в умовах додаткового шифрування контрольної хеш-
суми її наявність свідчить про те, що проводиться контроль цілісності. В роботі виділяється клас методів, в рамках яких 
контрольна хеш-сума вбудовується в програмний код у вигляді цифрового водяного знаку. Цей клас методів розглядається 
стосовно контролю цілісності програмного коду мікросхем FPGA (Field Programmable Gate Array). Для вбудовування 
використовуються особливості LUT-орієнтованої архітектури FPGA. Вбудовування контрольного цифрового водяного 
знаку виконується за рахунок застосування еквівалентних перетворень програмних кодів на множині блоків LUT, що 
входять до складу FPGA. Особливістю вбудовування цифрового водяного знаку є те, що таке вбудовування не змінює 
розмір програмного коду і не модифікує функціонування мікросхеми FPGA. В результаті вбудовування явно виділити 

контрольну хеш-суму в програмному коді стає неможливим. Витягання цифрового водяного знаку, який включає до свого 
складу хеш-суму можливо тільки при наявності спеціального стеганографічного ключа (що задає правила розміщення 
водяного знака в просторі програмного коду FPGA). В даній роботі пропонується композиційний метод вбудовування 
контрольного цифрового водяного знаку в програмний код FPGA. Метод поєднує властивості методів, що забезпечують 
відновлення первісного стану програмного коду, і методів, які здійснюють вбудовування на основі синдромного 
декодування. Пропонований метод поєднує корисні властивості зазначених двох класів методів і спрямований на 
зменшення кількості еквівалентних перетворень, що застосовуються до програмного коду в ході вбудовування цифрового 
водяного знаку. Представлено опис і результати експериментального дослідження запропонованого методу. Показано 

переваги запропонованого методу в порівнянні з базовими методами, вбудовування цифрових водяних знаків в програмний 
код FPGA. 

Ключові слова: контроль цілісності програмного коду; програмовані апаратні компоненти; FPGA; LUT-орієнтована 
архітектура; контрольна хеш-сума; цифровий водяний знак; стеганографічний підхід до контролю цілісності 
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АННОТАЦИЯ 

В работе рассмотрена проблема обеспечения целостности программируемых компонентов компьютерных систем. 
Показаны основные этапы жизненного цикла программируемых компонентов. Отмечено, что возможность модификации 
программного кода открывает пути к злонамеренному нарушению его целостности. Традиционные методы контроля 

целостности, основаны на использовании контрольных хэш-сумм. Однако недостаток традиционных методов состоит в том, 
что они не дают возможность скрыть факт выполнения контроля целостности. Этот факт является открытым. Даже в 
условиях дополнительного шифрования контрольной хэш-суммы ее наличие свидетельствует о том, что производится 
контроль целостности. В работе выделяется класс методов, в рамках которых контрольная хэш-сумма внедряется в 
программный код в виде цифрового водяного знака. Этот класс методов рассматривается применительно к   контролю 
целостности программного кода микросхем FPGA (Field Programmable Gate Array). Для встраивания используются 
особенности LUT-ориентированной архитектуры FPGA. Встраивание контрольного цифрового водяного знака выполняется 
за счет применения эквивалентных преобразований программных кодов на множестве блоков LUT, входящих в состав 

FPGA. Особенностью встраивания цифрового водяного знака является то, что такое встраивание не изменяет размер 
программного кода и не модифицирует функционирование микросхемы FPGA. В результате встраивания явным образом 
выделить контрольную хэш-сумму в программном коде становится невозможным. Извлечение цифрового водяного знака, 
который включает в свой состав хэш-сумму возможно только при наличии специального стеганографического ключа 
(который задает правила размещения водяного знака в пространстве программного кода FPGA). В данной работе 
предлагается композиционный метод встраивания контрольного цифрового водяного знака в программный код FPGA. 
Метод совмещает свойства методов, обеспечивающих восстановление инициального состояния программного кода, и 
методов, осуществляющих встраивание на основе синдромного декодирования. Предлагаемый метод сочетает полезные 

свойства указанных двух классов методов и направлен на уменьшение количества эквивалентных преобразований, 
применяемых к программному коду в ходе встраивания цифрового водяного знака. Представлено описание и результаты 
экспериментального исследования предлагаемого метода. Показаны преимущества предлагаемого метода в сравнении с 
базовыми методами, встраивания цифровых водяных знаков в программный код FPGA. 

Ключевые слова: контроль целостности программного кода; программируемые аппаратные компоненты; FPGA; 
LUT-ориентированная архитектура; контрольная хэш-сумма; цифровой водяной знак; стеганографический подход к 
контролю целостности 
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