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ABSTRACT 

The article proposes a new direction for the further development of GL-models – models on the basis of which performs the 

calculation of the reliability parameters of fault-tolerant multiprocessor systems. Such models reflect the reaction of the system to the 

appearance of failures of arbitrary multiplicity. The essence of the new direction is the construction of a model by composition of 

several basic GL-models in such a way that the values of the edge functions of one model form the input vector of the next one. This 

article shows that the model obtained in this way, which is proposed to be called cascade model, will also be basic and, in general 

case, can consist of an arbitrary number of submodels. This article gives a formula that allows one to determine the value of the 

degree of fault tolerance of the cascade model, depending on the values of the levels of fault tolerance of its component submodels. 

This article shows that the graphs of both the cascade and regular models are cyclic and have the same number of edges. At the same 

time, despite the fact that the intermediate submodels also have graphs, their presence does not increase the complexity of the model 

as a whole, since only the expressions of the edge functions are used in them. This article contains examples that confirm the 

correctness of the theoretically obtained results, and it also shows that the cascade model, at least in some cases, has lower 

computational complexity (the total number of logical operations in the expressions of edge functions) compared to the basic model. 

It was found that although the cascade model is basic, the sets of edges it loses and the regular basic GL-model on some input vectors 

may differ. In certain cases, several alternative cascade models can be built, which will differ in their parameters, but will have the 

same resulting value of the degree of fault tolerance. Given an example, where the properties of such alternative cascade models are 

compared. It was found that such models differ both in computational complexity and, in some cases, in the sets of edges they lose on 

certain input vectors. The possibility of modifying the cascade model was shown by changing the expressions of the edge functions 

of its component submodels, both individually and several simultaneously. At the same time, it is possible to block vectors with an 

increased multiplicity of zeros. A number of tasks for future research were formulated. 

Keywords: Cascade GL-models; fault-tolerant multiprocessor systems; modification of GL-models; calculation of reliability 

parameters 
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INTRODUCTION 

In the modern world, constantly increasing 

amounts of various devices and systems are 

becoming automated or completely automatic [1]. 

Management of their operation is partially or 

completely based on a special system, the so-called 

control system (CS) [2]. It receives signals from 

various sensors, processes them and generates 

control signals according to a certain algorithm. 

At the same time, in some cases, especially for 

complex systems, the computational complexity of 

the tasks performed by the CS can be very high. In 

addition, an important property is the reliability of 
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the control system [3], because its failure can lead, at 

best, the controlled object’s operation to a halt, and 

sometimes to an accident. 

This is especially important for so-called 

critical application systems (CAS). [4,5], [6], the 

refusal of which can lead to significant material 

losses, threaten the life or health of people, the 

security of the state, cause significant damage to the 

environment, etc. (for example, power plants, 

military equipment [7], space vehicles [8, 9], 

complex production processes, aviation [10], 

railway, and recently some types of personal 

transport [11] etc.). 

Both of the above-mentioned problems can be 

solved by using the so-called fault-tolerant 

multiprocessor systems (FTMS) as CS [12, 13]. 
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Such systems often contain a large number of 

processors and can continue full operation even if 

some of them fail. 

ANALYSIS OF THE LITERATURE DATA 

AND STATEMENT OF THE PROBLEM 

One of the tasks faced by the FTMS developer 

is the assessment of its reliability parameters, for 

example, such as the probability of failure-free 

operation during the specified time. These values are 

needed to evaluate the properties of the system at the 

development stage, for example, in order to identify 

its most vulnerable places, and to confirm its 

compliance with the specified criteria at the 

implementation stage [14]. There are two main 

approaches to solving this problem [15, 16], [17, 

18]. 

The first one is based on the construction of 

analytical expressions that accurately or 

approximately allows the determination of system 

reliability parameters [19, 20], [21, 22], [23, 24], 

[25]. One of the disadvantages of this approach is its 

limited application: each system usually requires the 

development of its own approach and a set of 

formulas [26, 27], [28, 29], [30, 31, [32]. 

The second approach boils down to determining 

system reliability parameters by conducting 

statistical experiments with models of system 

behavior in the flow of failures [33, 34]. One of the 

disadvantages of this approach is that the parameters 

are determined only with a certain accuracy, which 

usually depends on the number of experiments 

conducted with the models. Thus, to increase the 

accuracy of the estimate, it is desirable to increase 

the number of experiments, which can be achieved, 

in particular, by reducing the complexity of the 

model. 

PURPOSE AND OBJECTIVES OF THE 

RESEARCH 

As models of FTMS behavior in the flow of 

failures can be used the so-called graph-logic models 

(GL-models) [34, 35]. This approach is universal, 

that is, it allows building a model for any system. 

The basis of the GL-model is an undirected 

graph, each edge of which corresponds to a boolean 

edge function. The arguments of the edge functions 

are the elements of the Boolean vector of the system 

state, each element of which corresponds to a certain 

processor of the system and takes the value 1 if this 

processor is healthy, or 0 if it has failed. 

If the edge function takes a zero value, the edge 

corresponding to it is removed from the graph. The 

connectivity of the model graph, in turn, corresponds 

to the performance of the system. Thus, to evaluate 

the behavior of the system in the flow of failures, it 

is enough to calculate the values of all edge 

functions of the model, and then determine the 

connectivity of the resulting graph. 

The authors suggest that the developer can use 

controlled generators of pseudorandom vectors to 

use them as input vectors for models. After that, by 

using the methods of mathematical statistics, the 

values of the probability of fault-free operation of 

the system are being estimated with a certain 

accuracy. 

Among FTMS, it is worth noting those that are 

resistant precisely to failures of a certain 

multiplicity, that is, they remain operational until no 

more than a certain number of any processors fail. 

Such systems, as well as GL-models corresponding 

to them, are called basic and denoted K(m, n), where 

n is the number of processors in the system, and m is 

the maximum allowable number of failures during 

which the system will remain operational. All other 

systems and their corresponding models are called 

non-basic. 

There are a number of different methods for 

building GL-models [36-38], among them it is worth 

noting [37]. Basic model K(m, n), constructed by 

this method is based on a cyclic graph with n –

 m + 1 edge and loses exactly two edges on the 

vectors with m + 1 zero. Using a cyclic graph allows 

to make procedure of checking the connectivity of 

the graph trivial. 

The creation of methods for building new types 

of GL-models, as well as modifications of existing 

models, remain relevant, in particular, with the aim 

of simplifying the process of building models, 

reducing the computational complexity of the 

models, building models of non-basic systems, etc. 

CASCADE MODELS AND THEIR 

PROPERTIES 

GL-model K(m, n), built according to [37] in 

the column will contain exactly N = n – m + 1 edges. 

To construct the expressions of its edge functions, 

the input vector is divided into 2 parts. In the general 

case, such a division can be arbitrary, but in practice 

it is advisable to divide it into two equal or almost 

equal parts. 

A set of the model edge functions K(m, n) built 

in accordance with [37] will look like that: 

http://aait.ccs.od.ua/index.php/journal/theme4
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where K1(m, n1) and K2(m, n2) – edge functions of 

similar models constructed, if possible, for the 

corresponding parts of the input vector, and κ1(i,  n1) 

with κ2(j,  n2) are conjunctions of expressions of 

edge functions of the models K1(i, n1) and K2(j, n2), 

constructed for the corresponding parts of the input 

vector.  

Thus, the construction process is recursive and 

ends with the construction of trivial models Κ(1, 1), 

each of which contains exactly one edge function of 

the type f = xk, where xk is a certain element of the 

input vector. 

In addition, in [39] it was proved that on any 

vector with l zeros she will lose exactly L edges, 

where 

 

0,  when  

1,  when 

l m
L

l m l m


 

  
. (2) 

Note: the loss of an edge by the GL-model 

occurs due to the fact that the corresponding edge 

function takes a zero value. Therefore, on vectors 

with l zeros in the K(m, n) model, exactly L child 

functions will take a value equal to zero. Let's 

combine the values of the edge functions of this 

model into a vector, denoted as v. 

Let’s build model K’(M, N) in accordance with 

[37], which as input accepts vector v. In accordance 

with [39] on vectors with L zeros it losses exactly λ 

edges, where: 

0,  when L  

1,  when L

M

L M M


  

  
. (3) 

In accordance with (2) we have: L < M ~ 

~ l – m + 1 < M ~ l < M + m – 1.  

Similarly and L ≥ M ~ l ≥ M + m – 1.  

In addition,  

L – M + 1 == l – (M + m – 1) + 1.  

Thus, we can rewrite (3) as 

 

0,  when l 1

1 1,  when l 1

M m

L M m M m

  
  

      
. (4) 

Let's denote 1M m    . In that case (4) will 

take the form: 

0,  when l

1,  when lL

 
  

   
. (5) 

Let’s note that, as shown in [37] model 

K’(M, N) will have exactly ν edges, where 

 

 

1 1 1

1 1 1

n m M

n M m n

          

       

 
. (6) 

Let's also consider the model Λ(μ, n), built 

according to [37]. It is easy to spot that it will also 

have ν edges, and on vectors with l zeros it will also 

lose exactly λ edges (in accordance with (5)). Thus, 

properties of the models K’ and Λ in terms of the 

number of edges, as well as the number of edges that 

are lost on vectors with a certain multiplicity of 

zeros, coincide. 

The procedure described above, namely, using 

the values of the edge functions of one model as the 

input vector of the next one, can be repeated an 

arbitrary number of times. Thus, a model can be 

obtained, which we will call a cascade model. Let’s 

denote the value of the parameters of the degree of 

fault tolerance of each of the models of the cascade 

model as m1, m2, …, mT, where T is the number of 

those models. Let’s denote this model as 

K([m1, m2, …, mT], n). Number of T models in a 

cascade model will be called its depth. 

One can see that the resulting model will have 

properties (in terms of the number of edges, as well 

as the number of edges that are lost on vectors with a 

certain multiplicity of zeros) similar to the properties 

of the model Λ(μ, n),  

where 

1

1
T

i

i

m T


   
 

. (7) 

EXAMPLE 

For this example, let's build a model of a basic 

multiprocessor system, which contains 8 processors 

and is resistant to the failure of any 3 of them. A 

model of such a system, built according to [37], let’s 

denote it as K(3, 8), will contain the next edge 

functions: 
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. (8) 

Note that x1, x2, …, x8 here denote the elements 

of the input vector of the system state. 

This model will correspond to the cyclic graph 

presented on Fig. 1. 

 

Fig. 1. Model K (3, 8) 

Source: compiled by the authors 
 

Let’s also build a cascade model K’([2, 2], 8) 

for this system. To do this, we will first build a 

model K1(2, 8) in accordance with [37], that will 

have the next edge functions: 
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. (9) 

Next, using the obtained values of the edge 

functions as an input vector
1 2 7, , ,y y y , let us 

build model K2(2, 7) in accordance with [37], that 

will have the next edge functions: 

1 1 2
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3 3 4
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y y y y

y y

y y y y y y y

y y
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. 

(10) 

The resulting cascade model is presented on 

Fig. 2. 

Experimental data confirm the adequacy of 

both models: both of them do not lose a single edge 

on vectors with less than two zeros, and on vectors 

with more zeros they lose exactly l – 2 edges each, 

where l is number of zeros in the input vector. 

However, it is worth noting that the 

combinations of edges that each model loses on 

some input vectors may differ. Thus, on vector 

<10101100> model K(3, 8) will lose edges, 

corresponding to edge functions f3 and f4. At the 

same time, an intermediate model K1(2, 8) will lose 

edges corresponding to edge functions y2, y4 and y7. 

Accordingly, the model K2(2, 7), and, therefore, the 

model K’([2, 2], 8), will lose edges corresponding  

 

Fig. 2. Cascade model K’([2, 2], 8) 

Source: compiled by the authors 
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to edge functions φ2 and φ4 (Fig. 3a). On the other 

side, on vector <11001100> the model K(3, 8) will 

also lose edges, that correspond to edge functions f3 

and f4. Intermediate model K1(2, 8) in turn, it will 

lose the edges corresponding to the edge functions 

y3, y4 and y7. And the model K2(2, 7) and, 

accordingly, the model K’([2, 2], 8), will lose edges   

that correspond to edge functions φ3 and φ4 

(Fig. 3b). This means that for the considered 

example, the same behavior of the models in terms 

of sets of edges that are lost on different input 

vectors cannot be achieved by permuting these 

edges. 

 

Fig. 3. Behavior of the models K (3, 8) and 

K’([2, 2], 8) on different input vectors: 

a – K (3, 8);    b – K’([2, 2], 8) 
Source: compiled by the authors 

We also compare the complexity of the 

considered models, namely the number of operations 

that must be performed to calculate their edge 

functions. 

So, the expressions of the edge functions of the 

model K(3, 8) contain 16 disjunctions and 18 

conjunctions. Expressions of edge functions of the 

model K1(2, 8) contain 7 disjunctions and 10 

conjunctions, and expressions of edge functions of 

the model K2(2, 7) contain 6 disjunctions and 8 

conjunctions. Thus, in general, to calculate the edge 

functions of the cascade model K’ ([2, 2], 8) it is 

necessary to perform 13 disjunctions and 18 

conjunctions, which is 3 operations less compared to 

the usual model. 

The numbers of logical operations used in the edge 

functions of each of the models are given in Table 1. 

It is also worth noting that the graphs of both 

models are the same – in both cases they are cyclic 

graphs with 6 vertices. In this case, the graph of the 

intermediate model can be ignored, since it is not 

actually used, and only the expressions of edge 

functions are taken from it. 

Table 1. The number of logical operations in the 

models from Example 1 

Model The 

number of 

conjunction

s 

The 

number of 

disjunctio

ns 

Number 

of 

operation

s 

K(3,8) 18 16 34 

K1(2,8) 10 7 17 

K2(2,7) 8 6 14 

K’([2,2],8) 18 13 31 
Source: compiled by the authors 

 

VARIABILITY OF CASCADE MODELS 

It is worth noting that the model K(1, n), built 
in accordance with [37] will have trivial expressions 
of edge functions of the form fj = xj. Thus, the 
submodels of the cascade model with values mi = 1 
are trivial and can simply be removed from it 
without changing its behavior. Therefore, when 
analyzing cascading GL-models, it makes sense to 
consider only those of them that have values mi of 
each of the submodels is at least 2. 

In accordance with (7), it is easy to notice that 
only for case μ = 3 (as in above-mentioned example) 
it is possible to build only one version of the cascade 
model, which will consist of two sub-models, in 
which m1 = m2 = 2. Otherwise if μ is bigger, a few 
different variants of such a model can be built. At 
the same time, their behavior and complexity may 
also differ among themselves. 

For example, consider a system that contains 10 
processors and is resistant to the failure of no more 
than 4 of them. For such a system will correspond 
GL-model K(4, 10). In accordance with [37] such a 
model will have 7 edge functions: 
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(11) 
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Similarly to the previous example, x1, x2, …, x10 

denote the elements of the system state vector. 

This model will correspond to the cyclic graph 

presented on Fig. 4. 

 

 

 

Fig. 4. Model K (4, 10) 
Source: compiled by the authors 

 

Note that a total of 39 disjunctions and 42 

conjunctions are used in the child function 

expressions of the built model, in other words, a 

total of 81 logical operations. 

It is possible to also build several different 

cascade models, each of which will correspond to 

the system under consideration, namely: K1 

([2, 3], 10), K2 ([3, 2], 10), K3 ([2, 2, 2], 10). 

Let’s build model K1([2, 3], 10). To do this, 

let’s first build a model  1

1 2,10K , that in accor-

dance with [37] will have the next edge functions: 
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(12) 

 

After that, using the obtained values of edge 

functions as an input vector 1 1 1

1 2 9, , ,y y y , let’s 

build model  1

2 3,9K . In accordance with [37] it 

will have the next edge functions: 
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(13) 

The resulting cascade model is shown on Fig. 5. 

 

 

Fig. 5. Cascade model K1 ([2, 3], 10) 

Source: compiled by the authors 
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Let's count the number of logical operations 

used in the edge functions of this model. Edge 

functions of the models  1

1 2,10K  contain 9 

disjunction and 16 conjunctions, thus, a total of 25 

logical operations. At the same time, edge functions 

of the model  1

2 3,9K  include 20 disjunctions and 

25 conjunctions, in other words 45 logical 

operations. Thus, in edge functions of the model 

K1([2, 3], 10) there are 29 disjunctions and 41 

conjunctions, in other words 70 logical operations. 

Now, let’s build a cascade model K2([3, 2], 10). 

As a first step let’s build model  2

1 3,10K , that in 

accordance with [37] will have next edge functions: 
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(14) 

As the next step, in accordance with [37] let’s 

build model  2

2 2,8K , while using as input vectors 

received on the previous step values of the edge 

functions 2 2 2

1 2 8, , ,y y y . Let’s note that expressions 

of edge functions of the model that's being built, 

with precision to renaming of input and output 

variables will correspond to expressions (9).  

      The resulting expressions will take form of: 
2 2 2
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(15) 

The build cascade model is presented on Fig. 6. 

Let’s also count the number of logical 

operations used in the expressions of edge functions 

of the model. Edge functions of the model  2

1 3,10K  

contain 24 disjunctions and 32 conjunctions, in other 

words, a total of 56 logical operations. Edge 

functions of the model  2

2 2,8K  include 7 

disjunctions and 10 conjunctions, in other words, a 

total of 17 logical operations. Thus, edge functions 

of the model K2([3, 2], 10) contain 31 disjunctions 

and 42 conjunctions, in other words, 73 logical 

operations.  

As a final step, let’s build model 

K3([2, 2, 2], 10). For this at first we build model 

 3

1 2,10K .  

In accordance with [37] it will contain edge 

functions, expressions of which, as one can notice, 

will correspond to (12), namely: 

 

 

Fig. 6. Cascade model K2 ([3, 2], 10) 

Source: compiled by the authors 
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(16) 

Next let’s build model  3

2 2,9K , for which let’s 

formulate input vector from received on the previous 

step values of edge functions 3 3 3

1 2 9, , ,y y y . In 

accordance with [37]: 
3 3 3

1 1 2

3 3 3 3

2 1 2 3

3 3 3 3 3 3

3 1 2 3 4 5

3 3 3

4 4 5

3 3 3 3 3 3 3 3 3 3

5 1 2 3 4 5 6 7 8 9

3 3 3

6 6 7

3 3 3 3 3

7 6 7 8 9

3 3 3

8 8 9

z y y

z y y y

z y y y y y

z y y

z y y y y y y y y y

z y y

z y y y y

z y y

 

 

 

 

 

 

 

 

. 

(17) 

Finally, let’s build model  3

3 2,8K , input 

vector for which is formulated from values of edge 

 

functions of the previous model, in other words 
3 3 3

1 2 8, , ,z z z . Let’s formulate expressions of edge 

functions of this model in accordance with [37]. One 

can notice that they correspond to expressions (15) 

with precision to change the names of the input 

variables. Namely: 
3 3 3

1 1 2

3 3 3 3 3

2 1 2 3 4

3 3 3

3 3 4

3 3 3 3 3 3 3 3 3

4 1 2 3 4 5 6 7 8

3 3 3

5 5 6

3 3 3 3 3

6 5 6 7 8

3 3 3

7 7 8

z z

z z z z

z z

z z z z z z z z

z z

z z z z

z z















 

 

 

 

 

 

 

. 

(18) 

The resulting cascade model is shown on Fig. 7.  

Let’s calculate the number of logical 

operations, used in expression of edge functions, and 

for this model. Edge functions of the model 

 3

1 2,10K  have 9 disjunction and 16 conjunctions, 

in other words, 25 logical operations. Edge functions 

of the model  3

2 2,9K  have 8 disjunction and 13 

conjunctions, in other words, a total of 21 logical 

operations. Edge functions of the model  3

3 2,8K  

includes 7 disjunction and 10 conjunctions, in other 

words, a total of 17 logical operations. Thus, edge 

functions of the model K3([2, 2, 2], 10) have 24 

disjunctions and 39 conjunctions, in other words, 63 

logical operations. 

 

 

 

Fig. 7. Cascade model K2([3, 2], 10) 

            Source: compiled by the authors 
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Number of logical operations that are being 

used in edge functions of each model is shown in the 

Table 2. 

Similarly to the previous example, the graphs of 

all models are the same – in all cases they are cyclic 

graphs with 7 nodes. Graphs of intermediate models 

and their number can be ignored, since, as 

mentioned before, they are not actually used, and 

only the expressions of their edge functions are 

taken from them. 

From Table 1 and Table 2 one can see that 

cascade models in all of the considered cases 

required the use of a smaller number of logical 

operations compared to conventional basic models. 

Whether this is true for all cases requires further 

research. It can also be noticed that in some cases 

the cascade model contains a smaller number of both 

disjunctions and conjunctions compared to the usual 

one, and in others only the number of disjunctions is 

smaller, and the number of conjunctions remains the 

same. The study of this fact can also become the 

topic of future works. Further work may concern the 

search for parameters of the optimal partition of the 

cascade of the model, in other words, parameter 

values mi, which make it possible to obtain a model 

that allows the use of the smallest number of logical 

operations. 

Table 2. Number of logical operations in models 

from Example 2 

Model Number 

of 

conjuncti

ons 

Number 

of 

disjunctio

ns 

Number 

of 

operation

s 

K(4,10) 42 39 81 

 1

1 2,10K  16 9 25 

 1

2 3,9K  25 20 45 

K1([2,3],10) 41 29 70 

 2

1 3,10K  32 24 56 

 2

2 2,8K  10 7 17 

K2([3,2],10) 42 31 73 

 3

1 2,10K  16 9 25 

 3

2 2,9K  13 8 21 

 3

3 2,8K  10 7 17 

K3([2,2,2],10) 39 24 63 
Source: compiled by the authors 

Experimental data confirms the adequacy of all 

four models from Example 2: all of them do not lose 

a single edge on vectors with less than three zeros 

and on vectors with more zeros they lose exactly  

l - 3 edges, where l is number of zeros in the input 

vector. 

However, as in the previous example, the 

combinations of edges that each model loses on 

some input vectors may differ. 

Thus, on vector <1001011100> model K(4, 10) 

loses edges, that correspond to edge functions f3 and f4. 

At the same time, intermediate model  1

1 2,10K  will 

lose edges, that correspond to edge functions 1

2y , 1

3y , 

1

5y  and 1

9y . Therefore, model  1

2 3,9K , and, thus, and 

model K1([2, 3], 10), will lose edges, that correspond to 

edge functions 1

2  and 1

4  (Fig. 8a). On the other hand, 

on vector <1100011100> model K(4, 10) will also lose 

edges, that correspond to edge functions f3 and f4. At 

the same time, intermediate model  1

1 2,10K  will lose 

edges, that correspond to edge functions 1

3y , 1

4y , 1

5y  

and 1

9y , thus model  1

2 3,9K  and, therefore, model 

K1([2, 3], 10), will lose edges, that correspond to 

functions 1

3  and 1

4  (Fig. 8b). 

On vector <1110001001> model K(4, 10) will 

lose edges, that correspond to edge functions f4 and 

f5. At the same time, intermediate model  2

1 3,10K  

will lose edges, that correspond to edge functions 
2

4y , 2

5y  and 2

7y . Models  2

2 2,8K  and K2([3, 2], 10) 

will lose edges, that correspond to edge functions 2

4  

and 2

6  (Fig. 9a). However, on vector 

<1011000011> model K(4, 10) will also lose edges, 

that correspond to edge functions f4 and f5. On the 

other hand, intermediate model  2

1 3,10K  will lose 

edges, that correspond to edge functions 2

4y , 2

5y  and 

2

6y . Meanwhile model  2

2 2,8K  and model 

K2([3, 2], 10) will lose edges, that correspond to 

edge functions 2

4  and 2

5  (Fig. 9b). 

 

 

Fig. 8. Behaviour of the models K(4, 10) and 

K1([2, 3], 10) for different input vectors: 

a – K(4, 10);    b – K1([2, 3], 10) 
Source: compiled by the authors 
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Fig. 9. Behaviour of the models K(4, 10) and 

K2([3, 2], 10) on different input vectors: 

a – K(4, 10);    b – K2([3, 2], 10) 
Source: compiled by the authors 

 

Similarly, on the vector <1110000101> model 

K(4, 10) will also lose the edges corresponding to 

the edge functions f4 and f5. Meanwhile intermediate 

model  3

1 2,10K  will lose edges, that correspond to 

edge functions 3

4y , 3

5y , 3

6y  and 3

8y , while model 

 3

2 2,9K  will lose edges, that correspond to the 

functions 3

4z , 3

5z  and 3

7z . Therefore, model  3

3 2,8K  

and K3([2, 2, 2], 10) will lose edges, that correspond 

to edge functions 3

4  and 3

6  (Fig. 10a). Yet for input 

vector <1010100011> model K(4, 10) will also lose 

edges, that correspond to edge functions f4 and f5. 

Meanwhile intermediate model  3

1 2,10K  on that 

vector will lose edges, that correspond to functions 
3

3y , 3

5y , 3

6y  and 3

7y . Model  3

2 2,9K  accordingly will 

lose edges, that correspond to functions 3

3z , 3

5z  and 

3

6z . Meanwhile model  3

3 2,8K  and K3([2, 2, 2], 10) 

will lose edges, that correspond to edge functions 3

4  

and 3

5  (Fig. 10b).  

Similarly to the previous example, the same 

behavior of models in terms of sets of edges that are 

lost on different input vectors cannot be achieved by 

permuting these edges. 

Let’s also analyze the behavior of cascade 

models K1, K2 and K3 on different input vectors. On 

vector <1111010000> intermediate model 

 3

1 2,10K  will lose edges, that correspond to 

functions 1

5y , 1

7y , 1

8y  and 1

9y . In turn, model 

 1

2 3,9K  and K1 ([2, 3], 10) will lose edges, that 

correspond to edge functions 1

5   and 1

7 . On the 

other hand, intermediate model  2

1 3,10K  will lose 

edges, that correspond to edge functions 2

5y , 2

7y  and 

2

8y , meanwhile model  2

2 2,8K  and K2([3, 2], 10) 

will lose edges, that correspond to edge functions 2

6  

and 2

7  (Fig. 11a). Yet on vector <1111100000> 

intermediate model  3

1 2,10K  will lose edges, that 

correspond to functions 1

6y , 1

7y , 1

8y  and 1

9y .  

Accordingly, model  1

2 3,9K  and K1([2, 3], 10) 

will lose edges, that correspond to edge functions 1

6  

and 1

7 . On the same vector, intermediate model 

 2

1 3,10K  will lose edges, that correspond to edge 

functions 2

6y , 2

7y  and 2

8y . Accordingly, model 

 2

2 2,8K  and K2 ([3, 2], 10), similarly to the 

previous example, will lose edges, that correspond to 

edge functions 2

6  and 2

7  (Fig. 11b). 

 

 

Fig. 10. Behaviour of the models K(4, 10) and K3([2, 2, 2], 10) on different input vectors: 

a – K(4, 10);    b – K3([2, 2, 2], 10) 
Source: compiled by the authors 
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Fig. 11. Behaviour of the models K1([2, 3], 10) and 

K2([3, 2], 10) on different input vectors: 

a – K1([2, 3], 10);    b – K2([3, 2], 10) 
Source: compiled by the authors 

 

On vector <1110010001> intermediate model 

 3

1 2,10K  will lose edges, that correspond to edge 

functions 1

4y , 1

5y , 1

7y  and 1

8y . Therefore, model 

 1

2 3,9K , and, thus, model K1([2, 3], 10) will lose 

edges, that correspond to edge functions 1

4  and 1

5 . 

On the other hand, intermediate model  3

1 2,10K  on 

that vector will lose edges, that correspond to 

functions 3

4y , 3

5y , 3

7y  and 3

8y , meanwhile model 

 3

2 2,9K  will lose edges, that correspond to 

functions 3

4z , 3

5z  and 3

7z . Accordingly, model 

 3

3 2,8K  and K3([2, 2, 2], 10) will lose edges, that 

correspond to edge functions 3

4  and 3

6  (Fig. 12a). 

However, on vector <1010100011> intermediate 

model  3

1 2,10K  will lose edges, that correspond to 

edge functions 1

3y , 1

5y , 1

6y  and 1

7y . Therefore, model 

 1

2 3,9K  and thus model K1([2, 3], 10), similarly to 

the previous example, will lose edges, that 

correspond to edge functions 1

4  and 1

5 . At the same 

time, intermediate model  3

1 2,10K  on that vector 

will lose edges, that correspond to functions 3

3y , 3

5y , 

3

6y  and 3

7y , model  3

2 2,9K  will lose edges, that 

correspond to functions 3

3z , 3

5z  and 3

6z , meanwhile 

model  3

3 2,8K  and K3([2, 2, 2], 10) will lose edges, 

that correspond to edge functions 3

4  and 3

5  

(Fig. 12b). 

Note that for the considered pairs of cascade 

models, the same behavior in terms of sets of edges 

lost on different input vectors cannot be achieved by 

permuting these edges either. 

At the same time, experimental data shows that 

the model K2([3, 2], 10) and K3([2, 2, 2], 10) behave 

identically on each of the input vectors, in other 

words, 2 3

i i   . 

The formation of criteria that will allow determining 

in which cases the behavior of models 

(classical/cascade or several different cascades) will 

be identical, and in which will differ, for which 

edges and on which input vectors, also requires 

further research.

 

 

Fig. 12. Behaviour of the models K1([2, 3], 10) and K3([2, 2, 2], 10) on different input vectors: 

a – K1([2, 3], 10);    b – K3([2, 2, 2], 10) 
Source: compiled by the authors 
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MODIFICATION OF THE CASCADE 

MODELS 

Let us note that submodels of the cascade 

model can be modified, in particular, by the methods 

described in [40]. It is expected that as a result of 

such a modification, some non-basic GL-model will 

be obtained, the behavior of which will differ from 

the original one on some set of so-called blocked 

input vectors. That is, on these vectors, the modified 

model shows the operational state of the system, 

unlike the original model. 

As a result of modification of the basic model 

K(m, n), in the way proposed in [40], the set of 

blocked vectors will contain vectors exactly with 

m + 1 zeroes. Using as an example the cascade 

model K’([2, 2], 8), considered above, let’s examine 

the effect of some cases of modification of its 

component submodels in the manner described in 

[40] on a set of blocked vectors. 

Thus, one of the variants of such a modification 

may consist of replacing the expression of the edge 

function y4 of the model K1(2, 8) in (9) with 

expression: 

   4 1 2 1 2 3 4 3 4

5 6 7 8

y x x x x x x x x

x x x x

     



. 
(19) 

As a result, 16 vectors with 4 zeros will be 

blocked: B1 = {<01110001>, <01110010>, 

<01110100>, <01111000>, <10110001>, 

<10110010>, <10110100>, <10111000>, 

<11010001>, <11010010>, <11010100>, 

<11011000>, <11100001>, <11100010>, 

<11100100>, <11101000>}. 

Another option for modification may be to 

change the expression of the function φ4 of the 

model K2(2, 7) in (10) with expression: 

   4 1 2 1 2 3 4 3 4

5 6 7

y y y y y y y y

y y y

     



. 
(20) 

As a result of this modification, exactly the 

same vectors will be blocked as in the previous case. 

We can also perform both of the above-

mentioned modifications of submodels at once 

K1(2, 8) and K2(2, 7). The set of blocked vectors will 

be the same as in the previous cases, in other words, 

B1. 

If the modification consists of changing the 

expression of the function y2 of the model K1(2, 8) in 

(9) with expression: 

 

2 1 2 3 4y x x x x    , (21) 

the set of blocked vectors will contain 32 vectors 

with 4 zeros: B2 = {<01000111>, <01001011>, 

<01001101>, <01001110>, <01010011>, 

<01010101>, <01010110>, <01011001>, 

<01011010>, <01011100>, <01100011>, 

<01100101>, <01100110>, <01101001>, 

<01101010>, <01101100>, <10000111>, 

<10001011>, <10001101>, <10001110>, 

<10010011>, <10010101>, <10010110>, 

<10011001>, <10011010>, <10011100>, 

<10100011>, <10100101>, <10100110>, 

<10101001>, <10101010>, <10101100>}, which is 

obviously different from set B1, obtained as a result 

of previous modifications. 

By adding to this modification a modification 

of the model K2(2, 7), considered above, we will get 

a set of blocked vectors, which will include 48 

vectors with 4 zeros blocked by applying each of 

them separately, in other words, B1 ∪ B2. However, 

16 more vectors with an increased multiplicity of 

zeros, in this case with 5 zeros, will also be blocked: 

{<01010001>, <01010010>, <01010100>, 

<01011000>, <01100001>, <01100010>, 

<01100100>, <01101000>, <10010001>, 

<10010010>, <10010100>, <10011000>, 

<10100001>, <10100010>, <10100100>, 

<10101000>}. 

An assessment of exactly what the set of 

blocked vectors will be in the case of modification 

of certain submodels of the cascade model, as well 

as whether it will include vectors with an increased 

multiplicity of zeros, requires additional research. 

CONCLUSIONS 

The article discusses a new direction of 

GL-model development, which is distinguished by 

the formation of one model through the cascading 

application of several basic GL-models. It shows 

that the model obtained in this way, which is 

proposed to be called cascade, will also be basic and 

will have properties similar to those of the usual 

basic GL-model, namely: the total number of edges 

and the number of edges it loses on vectors of a 

certain multiplicity. Preservation of the above-

mentioned properties allows building a cascade 

model of arbitrary depth. 

Was given examples and performed comparison 

of conventional and cascade GL-models. Was shown 

that despite the conservation of properties, the 

specific sets of edges lost by each of the models on 

certain state vectors of the system may differ. In 

addition, a comparison of the number of logical 

operations required to calculate the edge functions of 

each of the models was performed. Was shown that, 
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at least in some cases, the use of cascade models 

reduces the time of performing one statistical 

experiment with the model, which leads to an 

increase in the accuracy of the system reliability 

calculation. 

Based on the obtained experimental data, a 

number of questions for future research were 

formulated. Namely: does the calculation of edge 

functions cascade model always require the 

execution of a smaller number of logical operations 

compared to the classical model; in which cases it is 

possible to achieve a reduction in the number of both 

conjunctions and disjunctions, and in which - only 

disjunctions; what are the optimal cascade model 

parameters; in which cases the behavior of the 

models in terms of the set of lost edges on different 

vectors is identical, and in which cases it differs, for 

exactly which edges, on which input vectors, etc. 

It was also shown that the cascade model can be 

modified by changing its component sub-models, 

both individually and several at the same time. At 

the same time, vectors with an increased multiplicity 

of zeros can also be blocked. Evaluation of the set of 

vectors blocked as a result of cascade model 

modification requires additional research. 
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АНОТАЦІЯ 

В статті пропонується новий напрямок подальшого розвитку GL-моделей – моделей, на базі яких виконується 

розрахунок надійнісних параметрів відмовостійких багатопроцесорних систем. Такі моделі віддзеркалюють реакцію 

системи на появу відмов довільної кратності. Суть нового напрямку – побудова моделі шляхом композиції декількох 

базових GL-моделей таким чином, що, значення реберних функцій однієї моделі формують вхідний вектор наступної. 
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Показано, що отримана таким чином модель, яку запропоновано називати каскадною, також буде базовою та в загальному 

випадку може складатися із довільної кількості підмоделей. Наведено формулу, що дозволяє визначати значення ступеня 

відмовостійкості каскадної моделі, в залежності від значень рівнів відмовостійкості її складових підмоделей. Показано, що 

графи як каскадної, так і звичайної моделей є циклічними та мають однакову кількість ребер. При цьому, не зважаючи на те, 

що проміжні підмоделі також мають графи, їх наявність не підвищує складності моделі в цілому, оскільки в них 

використовуються лише вирази реберних функцій. На прикладах підтверджено коректність теоретично отриманих 

результатів, а також показано, що каскадна модель, принаймні, в деяких випадках має меншу розрахункову складність 

(загальну кількість логічних операцій у виразах реберних функцій), в порівнянні зі звичайною. Виявлено, що, хоч каскадна 

модель є базовою, множини ребер, які втрачає вона та звичайна базова GL-модель на деяких вхідних векторах можуть 

відрізнятися. В певних випадках може бути побудовано декілька альтернативних каскадних моделей, що відрізнятимуться 

своїми параметрами, але матимуть однакове результуюче значення ступеня відмовостійкості. На прикладі виконано 

порівняння властивостей таких альтернативних каскадних моделей. Виявлено, що такі моделі відрізняються як за 

розрахунковою складністю, так і, в деяких випадках, за множинами ребер, які вони втрачають на певних вхідних векторах. 

Показано можливість модифікації каскадної моделі шляхом зміни виразів реберних функцій її складових підмоделей, як 

кожної окремо, так і декількох одночасно. При цьому можливим є блокування векторів із підвищеною кратністю нулів. 

Сформульовано ряд задач для майбутніх досліджень. 
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