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ABSTRACT 

The article describes an approach to modelling and forecasting non-linear non-stationary time series for various purposes using 
Bayesian structural time series. The concepts of non-linearity and non-stationarity, as well as methods for processing non-linearity’s 
and non-stationarity in the construction of forecasting models are considered. The features of the Bayesian approach in the 
processing of nonlinearities and nonstationary are presented. An approach to the construction of probabilistic-statistical models based 
on Bayesian structural models of time series has been studied. Parametric and non-parametric methods for forecasting non-linear and 
non-stationary time series are considered. Parametric methods include methods: classical autoregressive models, neural networks, 
models of support vector machines, hidden Markov models. Non-parametric methods include methods: state-space models, 
functional decomposition models, Bayesian non-parametric models. One of the types of non-parametric models is Bayesian structural 
time series. The main features of constructing structural time series are considered. Models of structural time series are presented. 
The process of learning the Bayesian structural model of time series is described. Training is performed in four stages: setting the 
structure of the model and a priori probabilities; applying a Kalman filter to update state estimates based on observed data; 
application of the “spike-and-slab” method to select variables in a structural model; Bayesian averaging to combine the results to 
make a prediction. An algorithm for constructing a Bayesian structural time series model is presented. Various components of the 
BSTS model are considered and analysed, with the help of which the structures of alternative predictive models are formed. As an 
example of the application of Bayesian structural time series, the problem of predicting Amazon stock prices is considered. The base 
dataset is amzn_share. After loading, the structure and data types were analysed, and missing values were processed. The data are 
characterized by irregular registration of observations, which leads to a large number of missing values and “masking” possible 
seasonal fluctuations. This makes the task of forecasting rather difficult. To restore gaps in the amzn_share time series, the linear 
interpolation method was used. Using a set of statistical tests (ADF, KPSS, PP), the series was tested for stationarity. The data set is 
divided into two parts: training and testing. The fitting of structural models of time series was performed using the Kalman filter and 
the Monte Carlo method according to the Markov chain scheme. To estimate and simultaneously regularize the regression 
coefficients, the spike-and-slab method was applied. The quality of predictive models was assessed. 
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INTRODUCTION 

Forecasting of complex systems is one of the 
important areas of modern science of data analysis 
and processing [1, 2], [3]. One of the most 
developed and researched areas is forecasting based 
on time series. Time series data reflect the dynamic 
behaviour and cause-and-effect relationships of the 
main processes in a complex system and provide 
basic material for making forecasts and studying the 
development of the system. However, the basis for 
most forecasting methods is models of linear and 
stationary processes. But the effective prediction of 
future states of a real complex system based on time 
series remains a research challenge, mainly due to 
the non-linear and non-stationary dynamic behaviour 
of the system and their various variants in the 

systems under study. The problem of 
taking into account and processing 
nonlinearities and nonstationary in time series 
forecasting is one of the main tasks of 
constructing adequate predictive models of the 
process under study. Models of this type should 
include a complete representation of the dynamics 
of nonlinear and non-stationary systems based on 
observed real data. 

One of the methods for processing 
nonlinearities and nonstationary is the Bayesian 
approach.  
This approach means that a variety of methods are 
used to solve the following problems: 

– construction of probabilistic-statistical models
of various types (assessment of the structure and 
parameters) using statistical data and expert 
assessments;  © Kalinina I., Gozhyj A., 2022 
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– calculation of the final results based on the
created model according to the problem statement: 
estimates of forecasts, control actions, estimates of 
variables and parameters at the output of filters, 
pattern recognition, finding solutions for managing 
the processes and objects under study, etc.; 

– analysis of the correctness of the obtained
results according to the corresponding sets of 
statistical quality criteria. 

The methodology of the Bayesian approach 
includes the following methods: recursive Bayesian 
estimation: filtering, forecasting, smoothing 
variables; hidden Markov models; optimal recursive 
Kalman filters (KF); granular (particle) filters (GF); 
static Bayesian networks (BN); dynamic Bayesian 
networks (DBN); Markov localization (ML) models; 
Bayesian maps; Bayesian method of data processing 
and decision making based on hierarchical models; 
Bayesian regression, generalized linear models; 
Bayesian structural time series. 

The model Bayesian structural of time series 
(BSTS) was proposed by E. Harvey [4] as a theory 
of structural models of time series. Unlike traditional 
statistical ARIMA models, structural time series 
models consist of unobservable components such as 
trends and various seasonality components. In 
addition, models can naturally be extended to 
include explanatory variables and work with 
multivariate time series. In the analysis of time 
series in the case of missing observations, state-
space models and methods and recursive equations 
using the Kalman filter are used [5]. State-space 
models are based on Markov processes, since each 
state depends on the previous state. Accordingly, the 
future state is calculated based on the present. The 
model parameters are calculated iteratively, and this 
allows the development of high-dimensional models. 
From a technical point of view, state-space models 
and the Kalman filter play a key role in the statistical 
processing of structural time series models. The 
structural time series model uses the Markov Chain 
Monte Carlo (MCMC) sampling algorithm for 
posterior distribution modelling, which smoothest 
the predictions obtained using a large number of 
potential underlying models [6]. The MCMC 
approach using the Gibbs algorithm limits the 
preselection, it needs to be paired with probability or 
the Metropolis-Hastings algorithm to speed up 
convergence in multivariate models. 

The article considers an approach to modelling 
and predicting non-linear non-stationary processes 
based on Bayesian structural time series. 

ANALYSIS OF LITERARY DATA 
Most of the prediction methods described in 

the literature assume linearity and/or stationarity of 
the underlying dynamic behavior of the system 
[7], or consider simple forms of non-stationarity 
such as well-defined trends and variations. 
However, real systems exhibit mostly non-linear 
and non-stationary behavior, which greatly 
complicates obtaining accurate predictions. 

The main concept that characterizes real data is 
the concept of non-linearity. In this case, the non-
linear time series y(t) is a signal coming from a non-
linear dynamic process. In other words, this is a 
partial solution of a nonlinear stochastic differential 
(or difference) equation of the following form 

dx/dt = F(x,θ,ε).  (1) 

This equation controls the development of the 
process states x(t) from the initial state x(0), where 
θ - is the process parameter vector and ε - is the 
system noise. The solution of equation (1) is 
represented as x(t) = ϕ(x(0), t). Here, ϕ (x(0), t) is 
called a flow or state transition function. Many real 
systems demonstrate such non-linear stochastic 
dynamics, and the solutions of such systems, called 
non-linear time series, demonstrate non-Gaussian, 
multimodality, time irreversibility, and other 
properties [8]. 

Most real non-linear dynamic systems operate 
in transient (non-stationary) conditions. From a 
statistical point of view, stationarity of time series 
y(t) requires that the joint distribution of each dataset 
[y(t + τ1), y(t + τ2), …, y(t + τk)] be invariant τi (i = 
1,2, …,k) for any k. Even under non-stationary 
conditions, the dynamics of a complex system can 
be viewed as a union of much simpler piecewise 
transitional or near-stationary behaviors. Most often, 
non-stationarity is explained by certain deterministic 
and stochastic tendencies in the moments. 

Various non-linear and non-stationary time 
series forecasting methods presented in the literature 
are considered and classified based on how they are 
applied to predict time series data for real-world 
problems [1, 2], [3, 8], [9, 10], [11, 12]. Prediction 
methods can be classified based on prerequisites or 
approaches to overcome non-stationarity and non-
linearity, as they assume the following features: a 
known trend shape, piecewise stationarity of signals, 
progressively varying parameters, or decompo-
sability of a signal into stationary segments in the 
transformed domain, and they are either parametric 
or non-parametric, depending on whether the 
predictor takes a certain form or is built solely in 
accordance with the data (for example, the number 
of latent variables may vary). 
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Parametric models. The parametric prediction 
model defines an explicit functional form with a 
finite number of parameters θ to describe the 
relationship between input data consisting of internal 
and external variables and their autoregressive 
(retarded) (lag) terms, and output data consisting of 
future values of the internal variable y(t + 1). Model 
parameters are estimated from time series 
implementations. Parametric models include: 
classical autoregressive models, neural networks, 
models of support vector machines, 

Classical autoregressive models. This group 
includes models such as autoregressive (AR) or 
autoregressive moving average (ARMA), which are 
the most widely studied due to their application in 
modeling stationary processes. But they are usually 
unable to accurately predict the development of a 
non-linear and non-stationary process. Models such 
as autoregressive integrated moving average 
(ARIMA) based on the evolution of increment ∆yt = 
yt +1- yt or ∆2yt, are sometimes used to remove/reduce 
first order non-stationarity. However, the difference 
tends to increase high-frequency noise in the time 
series, and more effort is required to determine the 
order of the ARMA model. To incorporate non-
linearity into the ARMA framework, advanced 
models such as thresholding AR (TAR) models [9, 
10], self-excited AR (SETAR) models [11], and 
smooth transition AR (STAR) models [12] are used. 
They were developed for non-linear forecasting. 
However, these methods are generally limited to 
non-linear stationary time series forecasting using 
local linearity assumption implicit with an 
autoregressive structure. 

Neural networks. Neural networks (NN) are 
used for non-linear time series forecasting in many 
applications [13, 14], [15, 16], [17]. These models 
do not require preliminary assumptions about the 
form of nonlinearity and are universal 
approximations [16]. Non-linear feed-forward neural 
network (FNN) models parameterized with the back-
propagation algorithm have been used to predict 
non-linear time series [18]. They are known to 
outperform traditional statistical methods such as the 
regression approach and the Box-Jenkins approach 
in a functional approximation and assume that the 
dynamics underlying the time series are independent 
of time. Feedforward neural networks FNNs with 
recurrent feedback connections have also been 
considered for time series forecasting [17]. Dynamic 
recurrent neural network models (RNN) make it 
possible to predict non-linear time series that occur 
in various areas [19, 20]. In [18], neural network 

models (RPNN) with recurrent functions were 
studied for predicting nonlinear signals. 

Models of support vector machines. Support 
Vector Machine (SVM) model based forecasting 
methods use a class of generalized regression 
models such as Support Vector Machine Regression 
(SVR) and SVM Least Squares (LS-SVM) [22], 
which are parameterized using convex quadratic 
programming methods [23]. The SVM displays the 
input data xi, which may consist of autoregressive 
terms of internal and exogenous variables. The 
scalar product of templates is expressed as a linear 
combination of the specified kernel functions, on the 
basis of which SVM are subdivided into linear, 
Gaussian, polynomial, based on a multilayer 
perceptron, or radial basis function (RBF) and the 
corresponding classifiers are built. A linear 
repressors is then built by structural risk 
minimization (upper bound on the generalization 
error), resulting in a better generalization than 
traditional methods [24]. In [25], the use of SVM for 
predicting chaotic time series was studied. They 
showed that SVM have higher prediction accuracy 
than NN models and use fewer parameters. In [25], 
predictors based on the least squares (LS) and RBF 
method were considered and a local SVM (defined 
in the reconstructed state space) was developed for 
predicting chaotic time series. Such SVM models 
can provide higher accuracy for long-term 
forecasting compared to local polynomial predictors 
based on LS and RBF. 

Hidden Markov Models. Most of the models 
discussed above involve batch processing, where the 
model is set up and periodically updated using 
batches of historical data. However, dimensionality 
limitation due to excessive computational resources, 
memory requirements, and large data sizes prevent 
their applicability to many real-world problems, 
especially for online process monitoring. A variety 
of sequential prediction models such as hidden 
Markov models (HMM) [26] have been explored to 
overcome this limitation. Some HMM have been 
used to predict non-linear time series such as 
extended Kalman filters (EKF) [27] and particle 
filter (PF) models [28, 29]. 

Nonparametric models. Parametric models can 
make accurate predictions when the models are set 
correctly, but they become suboptimal when the 
underlying dynamics are unknown or undetectable. 
In addition, the problem of model displacements 
persists because the dynamics of most complex real 
systems are inherently non-linear and non-
stationary. Non-parametric models can provide a 
complete representation of dynamics based on 
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observed data, do not impose any structural 
assumptions, and simplify modeling efforts. 
Consequently, the accuracy of modeling and 
forecasting for non-linear and non-stationary time 
series is improved. However, compared to 
parametric models, non-parametric models typically 
require large datasets from which information about 
the underlying relationships can be efficiently 
derived. The most well-known non-parametric 
models for predicting non-linear and non-stationary 
time series are state-space neighborhoods, Bayesian 
non-parametric and functional decomposition 
models. 

State-space based models. State-space-based 
approaches predict future values by selectively 
resampling historical observations, with the basic 
assumption being that future behavior changes 
smoothly, i.e. observations similar to the target may 
have similar outcomes. These models are suitable 
for predicting the dynamics of complex systems due 
to their simplicity and accuracy [30]. 

In the nearest neighbor resampling (KNN) 
approach in [31] with multiple predictor variables, 
each predictor was assigned an influence weight to 
identify nearest neighbors. [32] explored a number 
of approaches based on the KNN method for 
predicting chaotic time series, for example, the zero-
order approximation (single nearest neighbor), 
nearest neighbors (multiple neighbors), and the 
model distance weighted approximation (weighted 
average distance of several neighbors). 

For most complex dynamical systems, it is not 
possible to observe all relevant variables. The state 
space reconstructed from the time-delay embedding 
has a strong resemblance to the base state space, as 
noted in [33] and a new way to predict non-linear 
time series was proposed [34]. In [24, 35], [36], a 
local linear model of the reconstructed state space 
was developed for predicting chaotic time series. 
The predicted value of the current observation was 
obtained from the most recent w nesting vectors. 
Next, k nearest neighbors were determined within 
the window width w based on the recurrent property 
of the reconstructed state space. 

In [37], a local polynomial regression model 
was investigated using neighbors and future 
evolutions in the reconstructed state space. An 
ensemble model was then implemented based on the 
nearest neighbor model by selecting a set of 
parameter combinations for the local regression 
model. This ensemble approach reduced the 
parameter uncertainties. 

Functional decomposition model. Among the 
non-parametric models of nonlinear and non-

stationary forecasting in the literature, attention has 
recently been paid to functional expansion models. 
The advantages of this type of model include local 
characteristic time scales and the use of an adaptive 
framework that does not require a parametric 
functional form. These models can be used to 
capture drifts and non-linear modes of any non-
linear and non-stationary processes. Most of the 
models in this category are mixed or hybrid models 
that use the decomposition technique. Among the 
non-parametric decomposition methods, empirical 
mode decomposition (EMD) [38] can decompose 
non-stationary time series into a finite number of 
components called intrinsic mode functions (IMF), 
so that the evolution of each IMF can be explored 
individually using different time scales through 
classical time. Series prediction methods such as AR 
or ARMA models [39, 40]. Since EMD allows the 
original time series to be ideally reconstructed using 
IMF and to isolate the trend and noise components 
from the non-stationary process [41], this improves 
the accuracy of long-term forecasting.  

In [42] presented a two-stage EMD model and 
applied it for long-term forecasting of solvency 
scores. 

Bayesian nonparametric models. Bayesian 
modeling is the process of incorporating prior 
information to visualize the subsequent inference, 
i.e. estimating the conditional distribution p(θ |y) of 
the latent model or parameters θ given the observed 
time series y(t) [43]. Unlike other Bayesian methods, 
Bayesian non-parametric models assume that the 
hidden structure here grows with the data. In other 
words, Bayesian non-parametric models look for one 
model from an infinite set of possibilities (that is, θ 
can be infinite-dimensional) whose complexity (the 
number of estimated parameters) adapts according to 
the data. Among Bayesian nonparametric models, 
Gaussian process (GP) models have been most 
widely studied for time series forecasting [44]. The 
GP model provides not only a point estimate, but 
also a full forecast distribution. However, models 
(MP) have two major limitations, namely the 
computational cost of running the inverse matrix and 
the assumption of a stationary covariance function. 
Many attempts to solve these problems have been 
explored in the literature. Of all the solutions, the 
non-stationary covariance functions introduced to 
overcome stationarity assumptions [45, 46] are only 
suitable for simple non-linear and non-stationary 
forms such as linear trends and require additional 
fitting parameters. 

One of the types of Bayesian non-parametric 
models are Bayesian structural models of time series 
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(BSTS) [6]. BSTS models have a number of features 
and allow you to perform simulations taking into 
account any prior distributions: the BSTS model 
works with many other options (for example, 
asymmetric priors); BSTS models can be combined 
with Bayesian model averaging methods to eliminate 
the uncertainty associated with model selection; in the 
BSTS model, you can choose variables yourself. The 
article [47] describes in detail the Bayesian principles 
of time series analysis and considers various 
macroeconomic examples. Paper [48] describes a 
Bayesian structural hour series approach to predicting 
the unemployment rate from Google search 
processing data. A feature of the problem under 
consideration is that information on unemployment is 
published periodically with a delay, and search 
queries are processed continuously. The authors 
attempted to predict the unemployment rate using a 
combination of Bayesian structural time series and 
ensemble methods. The article [49] describes the 
principles of averaging the Bayesian model, which 
are used in various methods of data analysis. The 
article shows that averaging the Bayesian model 
allows you to get rid of the uncertainty caused by the 
choice of a non-optimal model. The presented 
examples make it possible to accurately assess the 
uncertainty in the forecasts made. 

Various methods of applying Bayesian 
structural time series make it possible to use them to 
build models taking into account various prior 
distributions, reduce uncertainty when choosing a 
model, and work with different types of distributions 
[49, 50], [51, 52], [53, 54], [55]. 

The article will consider the practical aspects of 
the application of Bayesian structural time series in 
forecasting financial indicators (stock prices). 

PURPOSE AND TASKS OF RESEARCH 

The purpose of the article is to study the 
features of the application of Bayesian structural 
time series to solve the problems of modeling and 
predicting nonlinear and non-stationary processes. 
The objectives of the article are: to determine the 
approach to building probabilistic-statistical models 
based on Bayesian structural models of time series, 
as well as to analyze the various components of the 
BSTS model, with the help of which the structures 
of alternative predictive models are formed. 
Determine the quality of predictive models and 
make a forecast based on the most effective model. 
Obtain experimental confirmation of the 
effectiveness of the proposed approach. 

FEATURES OF BUILDING 
STRUCTURAL MODELS OF TIME SERIES 

Structural time series models have three key 
features for modeling non-linear non-stationary 
processes: 

• The ability to determine the uncertainty in
forecasts, in connection with which then to quantify 
future risks. 

• Transparency, to understand the mechanism
of the model. 

• Ability to include external information for
known factors when there is no relationship in 
existing data. 

The structural time series model can be 
described by a pair of equations [51]. The first, the 
observation equation, relates the observed data 𝑦𝑦𝑡𝑡 to 
a vector of latent variables 𝛼𝛼𝑡𝑡 , which is called the 
“state”. The second, the transition equation, 
describes how the latent state evolves over time: 

𝑦𝑦𝑡𝑡 = 𝑍𝑍𝑡𝑡𝑇𝑇𝛼𝛼𝑡𝑡 + 𝜖𝜖𝑡𝑡,𝜖𝜖𝑡𝑡 𝑁𝑁(0,𝐻𝐻𝑡𝑡), (2) 

𝛼𝛼𝑡𝑡+1 = 𝑇𝑇𝑡𝑡𝛼𝛼𝑡𝑡 + 𝑅𝑅𝑡𝑡 𝑡𝑡, 𝑡𝑡 𝑁𝑁(0,𝑄𝑄𝑡𝑡).     (3) 

The model matrices𝑍𝑍𝑡𝑡, 𝑇𝑇𝑡𝑡, and 𝑅𝑅𝑡𝑡are structural 
parameters. They usually contain a mixture of 
known values (often 0 and 1) and unknown 
parameters. The transition matrix 𝑇𝑇𝑡𝑡 is a square 
matrix, and the matrix 𝑅𝑅𝑡𝑡can be rectangular if some 
of the state transitions are deterministic. The 
presence of 𝑅𝑅𝑡𝑡 in equation (3) makes it possible to 
work with the full-rank variance matrix 𝑄𝑄𝑡𝑡, since any 
linear dependencies in the state vector can be moved 
from 𝑄𝑄𝑡𝑡  to 𝑅𝑅𝑡𝑡 . Often when implemented, 𝐻𝐻𝑡𝑡  is a 
positive scalar. The residuals 𝜖𝜖𝑡𝑡 and 𝑡𝑡 are 
independent of each other and have a normal 
distribution with mean 0. It is generally accepted 
that a model that can be described by equations (2) 
and (3) is in the form of a state space. A fairly large 
class of models can be expressed in state-space 
form, including all varieties of ARIMA and 
VARMA models. 

The main advantages of the state-space time 
series model are its modularity and flexibility. The 
independent state components can be combined by 
combining their 𝑍𝑍𝑡𝑡  observation vectors and placing 
other model matrices as elements of a diagonal 
matrix. When designing a model, this gives you 
considerable flexibility in choosing the components 
to model the trend, seasonality, regression effects, 
and, if necessary, other state components. 

Structural time series models are one of the 
families of state space models. In structural models, 
the time series is represented as a sum of unobserved 
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components, which can be interpreted as a trend, 
seasonality, predictor effects, etc.  

These components serve as a kind of “building 
blocks” that can be combined in accordance with the 
problem being solved and the characteristics of the 
data.  

As an example, we present the basic structural 
model of a time series with predictors as follows 
[51]: 

𝑦𝑦𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝑡𝑡 + 𝛽𝛽𝑇𝑇𝑥𝑥𝑡𝑡 + 𝜖𝜖𝑡𝑡 , 
𝜇𝜇𝑡𝑡 = 𝜇𝜇𝑡𝑡−1 + 𝛿𝛿𝑡𝑡−1 + 𝑢𝑢𝑡𝑡, 

𝛿𝛿𝑡𝑡 = 𝛿𝛿𝑡𝑡−1 + 𝑣𝑣𝑡𝑡,   (4) 

𝑡𝑡 = −� 𝑡𝑡−𝑠𝑠 + 𝑤𝑤𝑡𝑡 ,
𝑆𝑆−1

𝑠𝑠=1

 

where 𝜇𝜇𝑡𝑡 is the current trend level of the model, and 
𝛿𝛿𝑡𝑡  is the trend growth factor. The seasonal 
component 𝑡𝑡 can be considered as a set of S 
dummy variables with dynamic coefficients limited 
by zero mathematical expectation during a full cycle 
of S seasons. The independent components of the 
Gaussian random noise are combined into the 
vector 𝑡𝑡 = (𝑢𝑢𝑡𝑡 ,𝑣𝑣𝑡𝑡 ,𝑤𝑤𝑡𝑡) . The matrix QT is diagonal 
with diagonal entries and 𝜎𝜎𝑢𝑢2 , 𝜎𝜎𝑣𝑣2 ,𝜎𝜎𝑤𝑤2  and HT is the 
scalar𝜎𝜎𝜖𝜖2 . The parameters in equation (3) are the 
variances 𝜎𝜎𝜖𝜖2 , 𝜎𝜎𝑢𝑢2,𝜎𝜎𝑣𝑣2,𝜎𝜎𝑤𝑤2  and the regression 
coefficients β. They are subject to evaluation based 
on the original data. Thus, the presented model 
contains trend, seasonality and regression 
components. Vector 𝑥𝑥𝑡𝑡  is a set of independent 
factors (predictors). 

Bayesian Structural Time Series (BSTS) is 
related to the linear Gaussian model that is used in 
Kalman filters. The BSTS model is based on more 
complex mathematical principles than those used in 
the linear Gaussian model. The main difference is 
that Bayesian structural time series allows you to use 
existing components to build more complex models 
that reflect known facts or interesting hypotheses 
about the system. They can be used to design the 
structure of the model and train on the available data 
to evaluate the parameters of the model and see how 
well the model describes and predicts the behaviour 
of the system. 

An approach to modelling and forecasting 
based on Bayesian structural time series is proposed, 
consisting of the following stages: 

1. Creation and training of a time series. The
learning process for a High Degree Bayesian 
Structural Time Series model consists of four steps: 

• Setting structures and a priori probabilities.
• Application of the Kalman filter for state

estimation. 

• Application of the tongue-and-plate sampling
method in the design model. 

• Bayesian averaging to combine the results to
make a prediction. 

The flexibility of the BSTS model based on 
selected modular components is evident in the first 
two steps. What follows is a learning model for data 
acquisition using a Bayesian method whose 
parameters change over time. 

2. Modeling and forecasting. When solving the
problem of predicting a data set, several alternative 
BSTS models are used, based on the results of data 
analysis and processing. Each model is completed 
with components that can reflect the nature of data 
changes. 

The BSTS models are built according to the 
following algorithm: 

• A set of model components.
• If there are no predictors in the model, then

the list of prior probabilities corresponds to the prior 
distribution of the standard distribution of residuals. 
If the model is with predictors, then the a priori 
search is carried out using the spike and slab 
method. 

• Setting the number of iterations of the MCMС
algorithm and parameters of the random number 
generator (for reproducibility of calculation results). 

• Building BSTS models.
• Assessment of the quality of the model and

verification of its adequacy: according to the metric, 
the speed of fitting models and its components, 
checking the autocorrelation in the residuals of the 
models. 

All ready-made alternative BSTS models are 
used for comparison and evaluation in order to select 
the most appropriate model for the original dataset. 
The selected models are used for forecasting. The 
table 1 presents the various components of the BSTS 
models, using the structure of alternative predictive 
models [49-52]. 

FORECASTING USING BAYESIAN 
STRUCTURAL TIME SERIES 

As an example of the application of Bayesian 
structural time series, the problem of forecasting the 
prices of Amazon shares is considered. The base 
dataset is amzn_share, which contains the company's 
stock price values at the close of trading from 
January 1, 2016 to May 26, 2019.  

The data is part of a multivariate time series and 
was taken from https://finance.yahoo.com/. 

Table 1. Specification of model components 
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No. Component name Presentation Form Application features 

1 Local level 
𝑦𝑦𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜖𝜖𝑡𝑡 , 
𝜇𝜇𝑡𝑡 = 𝜇𝜇𝑡𝑡−1 + 𝑢𝑢𝑡𝑡, 

𝜖𝜖𝑡𝑡 𝑁𝑁(0,𝜎𝜎𝜖𝜖2), 𝑢𝑢𝑡𝑡 𝑁𝑁(0,𝜎𝜎𝑢𝑢2). 

A typical non-stationary process 
corresponding to the process “random walk 
with noise”. 

2 
Component of the 
autoregressive 
process 

𝑦𝑦𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜖𝜖𝑡𝑡 , 
𝜇𝜇𝑡𝑡 = ∑ 𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝜇𝜇𝑡𝑡−𝑖𝑖 + 𝑢𝑢𝑡𝑡, 

𝜖𝜖𝑡𝑡 𝑁𝑁(0,𝜎𝜎𝜖𝜖2), 𝑢𝑢𝑡𝑡 𝑁𝑁(0,𝜎𝜎𝑢𝑢2). 

Model parameters 1, … ,𝑝𝑝are subject to 
estimation. For large values of p, the 
“spike-and-slab” method is used to 
regularize the parameters 1, … ,𝑝𝑝. 

3 Local Linear Trend 
Component 

𝑦𝑦𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜖𝜖𝑡𝑡 , 
𝜇𝜇𝑡𝑡 = 𝜇𝜇𝑡𝑡−1 + 𝛿𝛿𝑡𝑡−1 + 𝑢𝑢𝑡𝑡, 

𝛿𝛿𝑡𝑡 = 𝛿𝛿𝑡𝑡−1 + 𝑣𝑣𝑡𝑡, 
𝜖𝜖𝑡𝑡 𝑁𝑁(0,𝜎𝜎𝜖𝜖2), 

𝑢𝑢𝑡𝑡 𝑁𝑁(0,𝜎𝜎𝑢𝑢2),𝑣𝑣𝑡𝑡 𝑁𝑁(0,𝜎𝜎𝑣𝑣2) 

The process of “random walk” describes 
both the dynamics of the average level of 
the time series𝜇𝜇𝑡𝑡,, and the coefficient of its 
growth𝛿𝛿𝑡𝑡 . 

4 Robust local linear 
trend component 

𝑦𝑦𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜖𝜖𝑡𝑡 , 
𝜇𝜇𝑡𝑡 = 𝜇𝜇𝑡𝑡−1 + 𝛿𝛿𝑡𝑡−1 + 𝑢𝑢𝑡𝑡, 

𝛿𝛿𝑡𝑡 = 𝛿𝛿𝑡𝑡−1 + 𝑣𝑣𝑡𝑡, 
𝜖𝜖𝑡𝑡 𝑁𝑁(0,𝜎𝜎𝜖𝜖2),

𝑢𝑢𝑡𝑡 𝑁𝑁(0,𝜎𝜎𝑢𝑢2),𝑣𝑣𝑡𝑡 𝑁𝑁(0,𝜎𝜎𝑣𝑣2) 

Random fluctuations of this component 
obey the Student's distribution, and not 
Gaussian. The component is well suited for 
short-term forecasts based on time series, in 
which there are sharp jumps in the average 
level. This will make it possible to obtain 
more reliable forecasts in the presence of 
anomalous observations. 

5 
Component of a 
semi-local linear 
trend 

𝑦𝑦𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜖𝜖𝑡𝑡 , 
𝜇𝜇𝑡𝑡 = 𝜇𝜇𝑡𝑡−1 + 𝛿𝛿𝑡𝑡−1 + 𝑢𝑢𝑡𝑡, 𝛿𝛿𝑡𝑡 =
𝐷𝐷 +× (𝛿𝛿| |𝑡𝑡 − 1 − 𝐷𝐷) + 𝑣𝑣𝑡𝑡, 

𝜖𝜖𝑡𝑡 𝑁𝑁(0,𝜎𝜎𝜖𝜖2), 
𝑢𝑢𝑡𝑡 𝑁𝑁(0,𝜎𝜎𝑢𝑢2),𝑣𝑣𝑡𝑡 𝑁𝑁(0,𝜎𝜎𝑣𝑣2) 

The growth rate of the average level of the 
series develops in accordance with AR1. 
The process described by this component is 
more stable than the random walk process, 
which makes the model with this 
component more suitable for calculating 
long-term forecasts. 

6 Seasonal component 

𝑦𝑦𝑡𝑡 = 𝛾𝛾𝑡𝑡 + 𝜖𝜖𝑡𝑡 , 

𝛾𝛾𝑡𝑡 = −�𝛾𝛾𝑡𝑡−𝑠𝑠 + 𝑤𝑤𝑡𝑡 ,
𝑆𝑆−1

𝑠𝑠=1

 

𝜖𝜖𝑡𝑡 𝑁𝑁(0,𝜎𝜎𝜖𝜖2),  𝑤𝑤𝑡𝑡 𝑁𝑁(0,𝜎𝜎𝑤𝑤2) 

To model processes with clearly defined 
amplitude and frequency, the seasonal 
component is used, which is presented as a 
sum of elementary trigonometric 
components (cos and sin) with time-varying 
coefficients. 

7 
Component of 
“holidays” and other 
important events 

𝑦𝑦𝑡𝑡 = 𝛽𝛽𝑑𝑑(𝑡𝑡) + 𝜖𝜖𝑡𝑡 , 𝜖𝜖𝑡𝑡 𝑁𝑁(0,𝜎𝜎𝜖𝜖2), 
𝛽𝛽𝑑𝑑  𝑁𝑁(0,𝜎𝜎2) 

The list of events important for the process 
is formed using auxiliary functions 

Source: compiled by the authors 
After loading, the structure and data types were 

analyzed, and missing values were processed. The 
data are characterized by irregular registration of 
observations, which leads to a large number of 
missing values and “masking” possible seasonal 
fluctuations. This makes the task of forecasting 
rather difficult. 

To restore gaps in the amzn_share time series, 
the linear interpolation method was used. The first 

three missing observations were removed. In Fig. 1, 
the original row with filled in missing values is 
visualized. 

Table 1. Specification of model components 
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Fig. 1. Visualizing Amazon Stock Prices
Source: https://finance.yahoo.com/

Fig. 2. ACF and PACF functions for 
time series 

 Source: compiled by the authors

Using a set of statistical tests (ADF, KPSS, PP), 
the original series was tested for stationarity. The 
result of the check was the conclusion about the non-
stationarity of the process, which is reflected by a set 
of observed values of the time series. The non-
stationarity of the process is confirmed by the nature 
of the values of the sample autocorrelation functions 
ACF and PACF (Fig. 2). 

An important condition for building reliable 
predictive models based on the method of Bayesian 
structural time series is the definition and 
identification of the structure of the time series. The 
STL method was used to decompose the original 
series into its constituent components. Fig. 3 shows 
the results of the decomposition of the original series 
using the STL method. 

Fig. 3. STL decomposition of the time 
series of 

      Amazon stock prices 
 Source: compiled by the authors

Viewing the data made it possible to determine 
the principles of modeling. First of all, it is 
necessary to take into account the dominant role of 
the trend present in the data (Fig.3), which 
represents non-linear and non-stationary behavior. 
There are also patterns that reflect the seasonal 
behavior of the data (Fig.3) to be reflected in the 
models. However, their influence is much less. 

Before starting the process of building 
predictive models, the initial data set was divided 
into two parts: training and testing samples. The test 
sample consists of 14 observations, which 
corresponds to a forecast horizon of 14 days for 
short-term forecasting. 

The fitting of structural time series models is 
performed using the Kalman filter and the Monte 
Carlo method according to the Markov chain scheme 
(MСMC). To estimate and simultaneously regularize 
the regression coefficients, the “spike-and-slab” 
method is used. This method consists in assigning to 
each regression coefficient a certain high a priori 
probability that it is equal to zero (“probability of 
inclusion” in the model). Using the original data and 
Bayes' theorem, the inclusion probabilities are 
updated. Further, during MCMC sampling of the 
coefficients from the obtained posterior 
distributions, most of the given values of the 
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coefficients turn out to be equal to zero. Such a 
regularization mechanism makes it possible to 
effectively select the most important predictors and 
simultaneously get rid of multicollinearity, so a large 
number of predictors can be included in Bayesian 
structural models without the risk of overfitting. 

When forming a structural model based on a 
preliminary analysis of the time series, various 
alternative models were considered to select the best 
one. In Table. 2 shows the studied models. 

Table 2. Description of predictive models 

Model 
name Model contents 

Model 1 Linear local trend component + 
annual seasonality component 

Model 2 Linear local trend component + 
autoregressive component 

Model 3 Linear local trend component + 
Weekly seasonality component 

Model 4 
Linear local trend component + 
weekly seasonality component + 
autoregressive component 

Model 5 
Component of a sustainable local 
linear trend + autoregressive 
component 

Model 6 Local level component + annual 
seasonality component 

Model 7 Local level component + 
autoregressive component 

Model 8 Local level component + monthly 
seasonality component 

 Source: compiled by the authors 

One of the significant advantages of the 
Bayesian structural model is the ability to analyze its 
underlying components. Figure 4 shows the mean 
values of the MCMC results for the trend and the 
autoregressive component using the Model 5 model 
as an example. 

The BSTS model makes it possible to test the 
seasonal components as well. For example, the 
seasonal component for the days of the week is 
shown in Fig.5. In weekly seasons, there is a 
difference in prices by day of the week. However, 
the distribution of parameters is relatively stable in 
time for each day of the week. 

Fig. 4. Posterior distributions of the components 
of the Model 5 model.  

Left: local linear trend. Right: autoregressive 
component 

Source: compiled by the authors

Fig. 5. Posterior distributions of weekday effects 
estimated using the Model 4 model. 

The green lines correspond to the medians of 
these distributions 

Source: compiled by the authors

On Figure 6 shows that Amazon's stock price 
was slightly higher on average on Tuesday, 
Wednesday, and Thursday than on other days, but 
the effects of each day of the week were not always 
consistent throughout the historical period. 
Nevertheless, the contribution of the seasonal 
component as a whole turned out to be very 
insignificant compared to the contribution of the 
trend, which is also consistent with the result of the 
exploratory analysis of the initial data. 

An important property of a good time series 
model is the absence of autocorrelation in its 
residuals. For visual verification, a diagram was 
used, which was built on the basis of a matrix with 
model residuals and consists of range diagrams for 
the posterior distributions of the autocorrelation 
function. Ideally, the centers of these posterior 
distributions (starting from shift 1 onwards) should 
be at 0, but in the case of Model 1 this is not the 
case: the cyclist is clearly visible. A similar property 
of the original data was discovered during 
exploratory analysis. The box plots for the Model 7 
show a high degree of model fit. 
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Fig. 6. Posterior distributions of the 
autocorrelation function of the residuals of 

Model 1 and Model 7   
Source: compiled by the authors 

The quality of the built BSTS models is 
simultaneously analyzed using a graph that depicts 
the accumulated average absolute errors of the next 
step for each of the compared models (Fig. 7). 
Below the graph of the accumulated error curves, the 
original training data is shown, which allows you to 
better understand where exactly one or another 
model does not do a good job of describing the data. 
On Fig.7 curve of accumulated errors Model 7 is 
below the curve of other models, which further 
confirms the higher quality Model 7. 

Fig. 7. An example of comparing the quality of 
alternative models using the errors of the  

next step.  
Top: cumulative mean absolute errors of the 

next step.  
Bottom: training dataset 
Source: compiled by the authors 

Table 3 presents the values of the quality 
metrics for predictive models. In the table below, the 
metric residual.sd is the mean of the posterior 
distribution of the standard deviation of the model 

residuals, and 
the metric rsquare is the usual coefficient of 
determination (i.e., the fraction that the variance of 
the residuals is in the total variance in the data). 
The remaining two metrics are calculated using the 
so-called. “next step errors”, which are calculated 
during model fitting as 𝑦𝑦𝑡𝑡 − 𝐸𝐸(𝑦𝑦𝑡𝑡 ∨ 𝑌𝑌𝑡𝑡−1,𝜃𝜃) , 
where𝑌𝑌𝑡𝑡−1 = 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑡𝑡−1 , and θ is a vector with 
current estimates of model parameters. The 
prediction.sd metric is the standard deviation of the 
next step errors calculated from the training data, 
and relative.gof is the so-called Harvey's stats. The 
Harvey statistic is similar to the coefficient of 
determination and is calculated as 𝑅𝑅𝐷𝐷2 = 1 −
∑ 𝑣𝑣2

(𝑛𝑛−2)𝑣𝑣𝑣𝑣𝑣𝑣�𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑦𝑦)�
, where ν are the errors of the next 

step, n is the number of observations y in analyzed 
time series, and var and diff are functions for 
calculating the variance and transition to differences 
(differentiation) of the time series, respectively. An 
assessment of the quality of predictive models is 
shown in Fig.8. 

      Table 3. Evaluation of the quality of predictive models 

Model name residual.sd prediction.sd rsquare relative.gof 

Model 1 7.753 21.380 0.9997 -0.152 
Model 2 6.472 19.952 0.9997 -0.003 
Model 3 8.021 20.191 0.9997 -0.027 
Model 4 6.697 20.138 0.9997 -0.022 
Model 5 5.015 19.970 0.9999 -0.005 
Model 6 7.838 22.117 0.9997 -0.233 
Model 7 6.483 19.859 0.9998 0.002 
Model 8 6.978 20.753 0.9998 -0.087 

Source: compiled by the authors 
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Fig. 8. Evaluation of the quality of 
  predictive models 

Source: compiled by the authors 

The adequacy of the models was assessed by 
how well they described the training data. This 
approach is accompanied by a high risk of choosing 
an over trained model as the optimal one. 
Diagnosing with next-step errors is only part of the 
insurance against this, and the only objective test of 
the quality of a model will always be the accuracy of 
its predictions on an independent data set. 

The predicted values are calculated for built-in 
models with the best quality indicators and are 
presented in Table 4. The predictions are compared 
with the data from the test sample. Mean absolute 
specific prediction error (MAPE), mean absolute 
error (MAE), square root of root mean square error 
(RMSE), and Theil U-statistics were used as metrics 
for selecting the optimal model. Since BSTS models 
predict a large number of possible realizations of 
future values of the dependent variable, the median 
values of possible realizations were used to calculate 
the metrics. 

As follows from the above results, the Model 7 
should be considered optimal. 

Fig.9 shows the visualization of predictive 
values made on the basis of Model 7. The training 
data is marked with a black line. The blue line shows 
the most probable future values of the time series. 
Around this line, semi-transparent black dots also 
show other possible implementations of future 
values. The green dashed lines limit the 95% 
confidence interval of the predicted values. The 
initial data were submitted for a time period of 90 
days, they were supplemented with forecast values 
for the next 14 days with quintiles of 5 % and 95 % 
highlighted. The spread of forecast values increases 
as the forecast period increases. Thus, the figure 
depicts only the last 90 observations from the 
training data. The yellow dots show data from the 
test sample, which allows you to visually assess the 
quality of the forecast. 

Table 4. Evaluation of the quality of the forecast 

Model 
name 

MAPE MAE RMSE U- 
statistics 

Model 2 0.3740 686.4784 59.6242 0.0158 
Model 3 0.4387 805.9569 68.7171 0.1822 
Model 4 0.4164 763.9449 67.0756 0.0178 
Model 5 0.3449 634.2707 52.3890 0.0139 
Model 7 0.2323 431.2109 36.1843 0.0097 

Source: compiled by the authors 

Fig. 
9. Visualization of predictive values

based on Model 7 
  Source: compiled by the authors 

FEATURES AND ADVANTAGES OF 
SOLVING FORECASTING PROBLEMS 

USING THE BSTS METHOD 

In the presented methodology of Bayesian 
structural time series, there are features that affect 
the process of building a model: 

• Possibility to specify non-standard prior
distributions. 

• Ability to select repressor using the "spike-
and-slab" method. 

• Bayesian model averaging.
Along with the presented features, the 

methodology of Bayesian structural time series has 
the following advantages: 

• When building Bayesian models, a
distribution is obtained. Thus, the results are 
returned (for example, forecasts and components) as 
matrices or arrays, where the first dimension 
contains the MCMC iterations 

• Models allow modeling with any prior
distributions. The default linear Gaussian model is 
just one variation of the classic prior distribution. 
Method models work with other variants of 
distributions (for example, asymmetric priors). 

• To build methodology models, it is possible
to choose variables on your own. 

• Models can be combined with Bayesian
model averaging techniques to eliminate the 
uncertainty associated with model selection. 

These advantages are confirmed by the use of 
six data sets from different application areas for 
solving forecasting problems. 
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CONCLUSIONS 
The article discusses the features of the Bayesian 
approach in the processing of nonlinearities 
and nonstationary in the construction of 
forecasting models using Bayesian structural 
time series. Parametric and non-parametric 
methods for forecasting time series are 
considered. One of the types of non-parametric 
models is Bayesian structural time series. 
An approach to the construction of 
probabilistic-statistical models based on Bayesian 
structural models of time series is defined. The 
main features of constructing structural time series 
are considered. The process of learning the 
Bayesian structural model of time series is 
described. An algorithm for constructing a 
BSTS model is presented. Various components 
of the BSTS model are considered and analyzed, 
with the help of which the structures of alternative 
predictive models are formed. As an example of the 
application of Bayesian structural time series, the 
problem of predicting Amazon stock prices is 
considered. The data are characterized by 
irregular registration of 

observations, which leads to a large number of 
missing values and “masking” possible seasonal 
fluctuations. This makes the task of forecasting 
rather difficult. To restore gaps in the amzn_share 
time series, the linear interpolation method was 
used. Using a set of statistical tests such as ADF, 
KPSS, PP, the series was tested for stationarity. The 
data set was divided into two parts: training and 
testing samples. The fitting of structural models of 
time series was performed using the Kalman filter 
and the Monte Carlo method according to the 
Markov chain scheme (MСMC). To estimate and 
simultaneously regularize the regression 
coefficients, the spike-and-slab method was applied. 
The quality of predictive models was assessed. 
Based on the most effective model, a forecast was 
made for Amazon stock prices. The application of 
the method of Bayesian structural time series makes 
it possible to effectively build forecasts taking into 
account the non-linearity and non-stationarity of the 
data. 
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АНОТАЦІЯ 
У статті описано підхід до моделювання та прогнозування нелінійних нестаціонарних часових рядів для різних цілей з 

використанням байєсівських структурних часових рядів (BSTS). Розглянуто поняття нелінійності та нестаціонарності, а також 
методи обробки нелінійності та нестаціонарності при побудові моделей прогнозування. Наведено особливості байєсівського 
підходу в обробці нелінійностей та нестаціонарності. Досліджено підхід до побудови ймовірнісно-статистичних моделей на основі 
байєсівських структурних моделей часових рядів. Розглянуто параметричні та непараметричні методи прогнозування нелінійних 
та нестаціонарних часових рядів. До параметричних методів належать методи: класичних авторегресійних моделей, нейронних 
мереж, моделей опорних векторних машин, прихованих марковських моделей. До непараметричних методів належать методи: 
моделі простору станів, моделі функціональної декомпозиції, байєсівські непараметричні моделі. Одним із видів непараметричних 
моделей є байєсівські структурні часові ряди. Розглянуто основні особливості побудови структурних часових рядів. Представлено 
моделі структурних часових рядів. Описано процес навчання байєсівської структурної моделі часових рядів. Навчання 
виконується в чотири етапи: завдання структури моделі та апріорних ймовірностей; застосування фільтра Калмана для оновлення 
оцінок стану на основі спостережених даних; застосування методу “spike-and-slab” для вибору змінних у структурній моделі; 
Байєсівське усереднення для об’єднання результатів для прогнозування. Наведено алгоритм побудови моделі BSTS. 
Розглядаються та аналізуються різні компоненти моделі BSTS, за допомогою яких формуються структури альтернативних 
прогнозних моделей. Як приклад застосування байєсівських структурних часових рядів розглядається задача прогнозування курсів 
акцій Amazon. Базовим набором даних є amzn_share. Після завантаження структура та типи даних були проаналізовані, а відсутні 
значення оброблені. Для даних характерна нерегулярна реєстрація спостережень, що призводить до великої кількості пропущених 
значень і «маскування» можливих сезонних коливань. Це ускладнює завдання прогнозування. Для відновлення розривів у часових 
рядах amzn_share використовувався метод лінійної інтерполяції. Використовуючи набір статистичних тестів (ADF, KPSS, PP), ряд 
перевіряли на стаціонарність. Набір даних розділений на дві частини: навчання та тестування. Підгонку структурних моделей 
часових рядів проводили за допомогою фільтра Калмана та методу Монте-Карло за схемою ланцюга Маркова (MSMC). Для 
оцінки та одночасної регулярізації коефіцієнтів регресії застосовано метод “spike-and-slab”. Оцінено якість прогностичних 
моделей. 

Ключові слова: Байєсівський структурний часовий ряд (BSTS); прогнозування, нелінійність; нестаціонарність; прогнозна 
оцінка 
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