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ABSTRACT

The emotional content of music, interwoven with the intricacies of human affect, poses a unique challenge for computational
recognition and classification. With the digitalization of music libraries expanding exponentially, there is a pressing need for precise,
automated tools capable of navigating and categorizing vast musical repositories based on emotional contexts. This study advances
music emotion classification in the field of music information retrieval by developing a deep learning model that accurately predicts
emotional categories in music. The goal of this research is to advance the field of music emotion classification by leveraging the
capabilities of convolutional neural networks combined with long short-term memory within deep learning frameworks. The
contribution of this study is to provide a refined approach to music emotion classification, combining the power of convolutional
neural networks and long short-term memory architectures with sophisticated preprocessing of the Emotify dataset for a deeper and
more accurate analysis of musical emotions. The research introduces a novel architecture combining Convolutional Neural Networks
and Long Short-Term Memory networks designed to capture the intricate emotional nuances in music. The model leverages
convolutional neural networks for robust feature detection and Long Short-Term Memory networks for effective sequence learning,
addressing the temporal dynamics of musical features. Utilizing the Emotify dataset, comprising tracks annotated with nine
emotional features, the study expands the dataset by segmenting each track into 20 parts, thereby enriching the variety of emotional
expressions. Techniques like the synthetic minority oversampling technique were implemented to counter dataset imbalance,
ensuring equitable representation of various emotions. The spectral characteristics of the samples were analyzed using the Fast
Fourier Transform, contributing to a more comprehensive understanding of the data. Through meticulous fine-tuning, including
dropout implementation to prevent overfitting and learning rate adjustments, the developed model achieved a notable accuracy of
94.7 %. This high level of precision underscores the model's potential for application in digital music services, recommendation
systems, and music therapy. Future enhancements to this music emotion classification system include expanding the dataset and
refining the model architecture for even more nuanced emotional analysis.
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INTRODUCTION

In the evolving landscape of Music information
retrieval (MIR) [1, 2], the classification of musical
emotions through automated systems is a
burgeoning domain of research that has captivated
scholars and technologists alike. The emotional

Traditional methods of MER, which typically
involve the manual curation of audio features fed
into machine learning algorithms, have shown
limitations in their ability to capture the high-
dimensional nature of music data [4, 5].

Deep learning, with its remarkable success in fields

content of music, interwoven with the intricacies of
human affect, poses a unique challenge for
computational recognition and classification. With
the digitalization of music libraries expanding
exponentially, there is a pressing need for precise,
automated tools capable of navigating and
categorizing vast musical repositories based on
emotional contexts. Music emotional recognition
(MER) is not only applicable to music track
navigation, search, and recommendation but is also
widely used in the field of music therapy [3].
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such as computer vision and natural language
processing, presents an innovative frontier for
addressing the challenges of MER.

Leveraging the capabilities of deep learning, this
study introduces a hybrid Convolution neural
network-long short-term memory (CNN-LSTM)
model designed to extract and process visual audio
features, transforming the way emotional content is
discerned in music tracks. By treating audio signals
as visual spectrograms, the model captures a
comprehensive representation of the temporal and
frequency aspects inherent in musical compositions.
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A one-dimensional (1D) Convolution neural
network (CNN) component excels in identifying
patterns within these visual features, while the Long
short-term memory (LSTM) layer interprets the
sequential flow of the music, an essential factor in
understanding emotional progression.

LITERATURE OVERVIEW

Music has long been recognized as a potent
conduit for expressing a spectrum of human
emotions. The quest to decode the emotional content
within  musical compositions has garnered
significant interest across various disciplines. As the
landscape of technology evolves, especially with the
advent of deep learning, the methodologies for
recognizing and categorizing musical emotions are
being revolutionized [7].

The emotional impact of music is diverse and
profound, yet it remains a deeply personal
experience, with individual responses to music
varying widely.

Music often reflects our emotions, and different
features in music help us figure out how a song
might make us feel. For instance, a song with a
quick beat might make us feel excited or happy,
while one with a slower beat might make us feel
calm or sad [8]. To understand these emotions
better, researchers use different methods to study
music. They look at things like the Mel frequency
cepstral coefficients (MFCC) [9], which help
analyze the sound's pitch, and the Zero crossing rate
(ZCR) [10], which tells us about the rhythm and the
pitch analysis to dig deeper into the music's
characteristics.

In the last few years, the CNN architecture has
proven itself not only for image analysis but also for
sound classification. In a recent study [11], authors
present how CNN can accurately classify sounds
from spectrogram images achieved notable success.
One of the key findings of this study is the
effectiveness of the CNN model (Fig. 1) in
classifying environmental sounds.

Fig. 1. Convolutional neural network
model structure
Source: compiled by the [11]

The model achieved a classification accuracy of
77 % on the ESC-10 dataset, while the Tensor Deep

Stacking Network model with which they were
compared achieved only 56 % accuracy.

In the exploration of music emotion
classification, recent advancements have centered
around deep learning techniques that interpret music
as a dynamic language of emotions, capable of
expressing complex human feelings. Notably, a
novel approach utilizing an Inception-GRU residual
structure has been put forth, capturing the intricacies
of musical expressions with significant efficacy.
This methodology, grounded in the spectral matrix
derived from logarithmic short-time Fourier
transform, has showcased promising results on the
Soundtrack dataset, achieving an accuracy
surpassing traditional machine learning models [12].
In this paper, the researches presented an optimized
structure of the Inception-V1 model which combines
different convolution layers in parallel, and a deeper
matrix is formed by concatenation the results
processed by the convolution layers.

Simultaneously, advancements in  music
emotion classification have seen the integration of
pitch frequency and band energy distribution
features, reflecting the nuanced changes in a singer's
emotional state through music. The innovation in
this realm involves an enhanced Deep belief network
(DBN) coupled with a support vector machine for
classification, leading to a robust fusion
classification algorithm. This improved DBN
framework, by assimilating distinctive musical
features, has demonstrated a considerable
improvement in classifying music emotions,
indicating a significant leap forward in the field [13].

Deep belief network is a typical deep learning
model that can learn the corresponding input and
obtain more abstract and higher-level features [14].
The structure of the typical model is shown in Fig. 2.
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Fig. 2. Typical deep belief network
model structure
Source: compiled by the [14]
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The authors take a typical DBN model, which
includes forward propagation and backpropagation
processes and is improved by composed of an n-
layer improved Restricted Boltzmann machine
(RBM) model, a one-layer of traditional RBM
model, and a Softmax layer (Fig. 3).
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Fig. 3. Improved deep belief network

model structure
Source: compiled by the [14]
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After that, they integrated the Support Vector
Machine (SVM) classification algorithm [15], which
uses a small number of support vectors and thus can
better represent the classification information of the
whole training sample set to participate in training
with the DBN network.

THE AIM AND OBJECTIVES OF THE
RESEARCH

The primary goal of this research is to advance
the field of music emotion classification by
leveraging the capabilities of CNNs combined with
LSTM within deep learning frameworks. To achieve
this, the research is focused on optimizing the CNN
architectures coupled with LSTM specifically for the
intricate task of decoding emotional cues in music.

To develop deep learning technology, it is
necessary to solve the following tasks:

— create a CNN-LSTM model for efficient and
accurate classification of a wide range of emotions
in music, leveraging the strengths of CNN and
LSTM architectures to process complex audio data;

— employing the Emotify dataset for model
training and testing, with a focus on preprocessing
techniques to ensure data quality and relevance;

— train the model to achieve high accuracy
with optimized computational resources;

— test the model across various musical genres
to demonstrate its effectiveness and adaptability.

The contribution of this study is to provide a
refined approach to music emotion classification,

combining the power of CNN-LSTM architectures
with sophisticated preprocessing of the Emotify
dataset for a deeper and more accurate analysis of
musical emotions.

METHODS OF AUDIO ANALYSIS

Audio analysis is a crucial component in the
process of music emotion classification, where the
objective is to extract meaningful information from
raw audio that correlates with human emotional
states. To achieve this, visualization of audio data is
often employed, which not only aids in
understanding the characteristics of the sound but
also serves as a pre-processing step for further
analysis and feature extraction.

Sound Wave Visualization

The sound wave or waveform display is a
fundamental method of visual representation,
illustrating the variations in air pressure or the audio
signal amplitude over time. This visualization can
reveal the temporal structure of a sound, including
its rhythm, pauses, and energy fluctuations, which
can be indicative of different emotions in music. The
waveform provides an intuitive understanding of the
loudness and dynamics of the audio track.

Fast Fourier Transform

Fast Fourier transform (FFT) is a popular
algorithm in the signal processing field. Rather than
the information, which we can gather from time-
domain analysis, FFT supplies frequency or spectral-
based information about the audio signals. Fast
Fourier transform implies that any continuous signal
can be expressed in terms of the sum of delicately
chosen sinusoidal waves with appropriate frequency,
amplitude, and phase [16].

Spectrum Analysis

Spectrum analysis (Fig. 4) transforms the audio
signal from the time domain to the frequency
domain using FFT. The resulting spectral plot shows
the distribution of power across various frequency
components. This analysis can uncover the harmonic
content and the balance between different frequency
ranges, which are essential attributes related to the
perceived 'color' or ‘texture' of the sound, often
associated with specific emotional qualities.

Spectrogram

Fig. 4. Spectrogram of audio
Source: compiled by the authors
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Mel Spectrogram

A Mel spectrogram (Fig. 5) is a more
sophisticated visual representation that combines the
concepts of spectrum analysis over time and applies
a Mel scale to the frequency axis. The Mel scale is
designed to mimic the human ear's response to
different pitches, making it highly relevant for audio
analysis in music emotion recognition. The Mel
spectrogram  provides a time-varying visual
depiction of the sound's spectral content,
highlighting the changes in energy across the Mel
frequency bands over time. This can be particularly
revealing of the timbral and textural shifts that
accompany different emotional expressions in
music.

Mel Spectrogram
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Fig. 5. Mel spectrogram of audio
Source: compiled by the authors

Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients (MFCCs)
(Fig. 6) are derived from the Mel spectrogram and
represent the power spectrum of a sound using a
small number of features, which approximate the
audio signal's overall shape. They are widely used in
audio recognition tasks as they capture the key
aspects of the Mel spectrogram that are perceptually
important to humans. By focusing on these features,
MFCCs provide a compact and informative
representation that can be used for machine learning
models to classify emotional content in music.
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Fig. 6. Mel-frequency cepstral coefficient of audio
Source: compiled by the authors
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DATASET DESCRIPTION

The Emotify [17] dataset consists of 400 song
excerpts (1 minute long) in 4 genres (rock, classical,
pop and electronic). The annotations were collected
using the GEMS scale (Geneva Emotional Music
Scales) [18]. Each participant could select

maximally three items from the scale (the emotions
that he felt strongly listening to this song. Below
(Table 1) is the description of the emotional
categories.

The annotations produced are spread unevenly
among the songs, which is caused both by the design
of the experiment and the design of the game.
Participants could skip songs and switch between
genres, and they were encouraged to do so because
induced emotional response does not automatically
occur on every music-listening occasion. Therefore,
less popular (among our particular sample of
participants) genres received fewer annotations, and
the same happened to less popular songs.

Each line in the file corresponds to one
participant (i.e., annotations are not averaged per
song).

This is the description of information found in
the file:

— id of the music file;

— genre of the music file;

— 9 annotations by the participant (whether
emotion was strongly felt for this song or not). 1
means emotion was felt;

— participant's mood prior to playing the game;

— liking (1 if the participant decided to report
he liked the song);

— disliking (1 if participant decided to report
he disliked the song);

— age, gender and mother tongue of the
participant (self-reported).

DATASET PREPROCESSING

The dataset initially contained diverse
emotional feature values for each music file, as rated
by different individuals. To create a unified
representation, these values were averaged for each
track, resulting in a consolidated emotional feature
set per song.

The division of music tracks into segments was
due to the relatively modest size of the data set of
400 tracks. By dividing each minute track into 10
and 20 shorter segments of approximately 6 and 3
seconds each, the size of the dataset was increased
by a factor of 10 and 20, so that we ended up with
4000 and 8000 sample songs as two different
datasets instead of 400.

Following the segmentation, using the python
library librosa were produced feature extraction that
included the chroma-stft, rms, spectral centroid,
spectral bandwidth, spectral rolloff, zero-crossing
rate, harmonic content, tempo, and Mel-frequency
cepstral coefficients (MFCCs).
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Table 1. Description of the emotional categories

Emotional category Explanation
Amazement Feeling of wonder and happiness
Solemnity Feeling of transcendence, inspiration. Thrills
Tenderness Sensuality, affect, feeling of love
Nostalgia Dreamy, melancholic, sentimental feelings
Calmness Relaxation, serenity, meditativeness
Power Feeling strong, heroic, triumphant, energetic
Joyful activation Feels like dancing, bouncy feeling, animated, amused
Tension Nervous, impatient, irritated
Sadness Depressed, sorrowful

Source: compiled by the authors

All features, except of MFCCs, represent
temporal characteristics of sound. These features,
therefore, are suitable for LSTM layers, as they can
track and analyze the evolution of these temporal
characteristics over time, crucial for understanding
the structure and progression of music.

Mel-frequency cepstral coefficients capture the
timbral characteristics of audio signals, representing
the texture and quality of sounds. They encapsulate
complex relationships between different frequencies,
which make them well-suited for CNNS.

All these features encapsulate the core elements
that convey emotion in music, such as rhythm, pitch,
and timbre, and are instrumental for the subsequent
machine learning tasks.

The dataset's class distribution was observed to
be imbalanced (Fig 7).
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Fig. 7. Count of imbalanced emotional features
Source: compiled by the authors

To rectify this imbalance, was implemented
Synthetic  minority  oversampling  technique
(SMOTE) [19]. SMOTE is an oversampling
technique where the synthetic samples are generated
for the minority class. After applying SMOTE
method, the amount of data in the classes was
equalized to 2320.

This algorithm helps to overcome the
overfitting problem posed by random oversampling.
It focuses on the feature space to generate new
instances with the help of interpolation between the
positive instances that lie together.

This method not only augments the
underrepresented classes by generating new,
synthetic samples but does so in a manner that
respects the underlying distribution of each class,
thus preserving the authenticity of the dataset.

Once the features were extracted and the class
balance addressed, were applied normalization, label
encoding and dataset splitting to train, test and
validation parts of the feature set (70%, 15%, 15%).

MODEL ARCHITECTURE

In the development of a music emotion
classification model, a combined CNN-LSTM
architecture (Fig. 8) was utilized to exploit both the
spatial and temporal characteristics of the audio
features.

The input to the CNN block consists of a multi-
dimensional array where each dimension represents
different extracted audio features, such as Chroma-
STFT, RMS, Spectral Centroid, Spectral Bandwidth,
Spectral Rolloff, Zero-Crossing Rate, Harmonic
Content, Tempo, and MFCCs. These features are
structured to form a consistent input shape suitable
for convolutional processing, often resembling a
time-frequency representation of the audio signal.

The model begins with a three ConvlD layers,
each followed by batch normalization, max pooling,
and dropout, which work together to extract and
refine feature representations from the input data.
These convolutional layers progressively increase in
depth, starting from 128 filters and expanding to
512, allowing the network to learn a hierarchy of
features with increasing complexity.
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Fig. 8. Convolutional neural network-Long short-term memory model architecture
Source: compiled by the authors

Batch Norm is a normalization technique done
between the layers of a Neural Network instead of in
the raw data [20]. It is done along mini batches
instead of the full data set.

It serves to speed up training and use higher

learning rates, making learning easier. the
normalization formula of Batch Norm is as follows:
Z—m
M = (), M
SZ

where m,, is the mean of the neurons’ output and s,
is the standard deviation of the neurons’ output.

Max pooling significantly reduces the
dimensionality of the data, ensuring that the most
important features are preserved. The max pooling
means moving the window along the matrix with
data [21]. From the pixels falling into its field of
view, the maximum is selected and moved to the
resulting matrix.

To prevent overfitting was also used dropout.
This method randomly disables a subset of neurons
during training, forcing the network to learn more
diverse features and, therefore, improving
generalization [22].

The Rectified Linear Unit (ReLu) was chosen
as the activation function for CNN layers. RelLU
introduces non-linearity into the network, allowing it
to learn complex patterns in the data [23]. Its
simplicity and efficiency in computation make it a
popular choice in deep learning architectures.

Formula for ReLu activation function:

f(x) = argmax(0, x). 2
Or it can be written as:

0,forx<0 (3)
1,forx =20

After the convolutional layers, two Long Short-
Term Memory (LSTM) layers were incorporated to
capture the temporal dynamics inherent in music
tracks. LSTMs are particularly advantageous for this
application due to their capacity to remember
information over extended periods, making them
suitable for sequence prediction problems such as
time-series analysis found in music tracks.

The output from the LSTM layers is then fed
into dense layers with ReLU and Softmax
activations. The ReLU layer serves as a fully
connected layer that introduces non-linearity and
aids in learning complex patterns, while the Softmax
layer maps the final output to a probability
distribution over the predicted classes. Batch
normalization and dropout are consistently used
throughout the model to ensure generalization and
prevent overfitting. It leveraged the features distilled
by the previous layers to perform the emotion
classification task, outputting a probability
distribution across the predefined emotion labels.

The summary representation of the network
presented at Table 3.

The total number of total parameters is
2507466, where trainable parameters is 2505034,
and non-trainable — 2432.

< RelLU'(x) = {
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Table 3. Summary representation of the

network

Layer (type) Output Shape | Param
Convld 170 (None, 28, 128) 640
Convld_171 (None, 28, 128) 65664
Batch_normalization_158 | (None, 28, 128) 512
Max_poolingld 86 (None, 14, 128) 0
Dropout_158 (None, 14, 128) 0
Convld_172 (None, 14, 256) 131328
Convld_173 (None, 14, 256) | 262400
Batch_normalization_159 | (None, 14, 256) 1024
Max_poolingld 87 (None, 7, 256) 0
Dropout 159 (None, 7, 256) 0
Convld 174 (None, 7,512) 524800
Vonvld_175 (None, 7,512) 104908
Batch_normalization_160 (None, 7,512) 2048
Max_poolingld 88 (None, 3,512) 0
Dropout_160 (None, 3, 512) 0
Lstm 50 (None, 3, 128) 328192
Batch_normalization_161 | (None, 3, 128) 512
Dropout_161 (None, 3, 128) 0
Istm 51 (None, 128) 131584
Batch_normalization_162 | (None, 128) 512
Dropout_162 (None, 128) 0
Dense 46 (None, 64) 8256
Dropout 163 (None, 64) 0
Batch_normalization 163 | (None, 64) 256
Dense 47 (None, 10) 650

Source: compiled by the authors

The final flow of the proposed method for
music emotion classification is illustrated in Fig. 9.

The architecture represents a multi-stage
process starting with a raw audio file. This file is
first segmented into 20 3-second segments, allowing
for more detailed and focused feature extraction.
Features are then extracted from these segments,
capturing both the spectral and temporal
characteristics inherent to the audio. After scaling
and normalization, these features are then fed into

Split input audio

Audio input .wav ( N\
i =
(I T

Probabilities
for each
segment of a
song

Output average prediction

the CNN-LSTM model, a hybrid neural network.,
that employs convolutional layers to detect patterns
and structures within the features and LSTM layers
to understand the temporal progression of these
patterns. The output from this model gives a
prediction of the music's emotion.

EXPERIMENT AND RESULTS

The experiment was performed on the two
types of preprocessed Emotify dataset. In the first
type, the original audio files were divided into 10
segments, resulting in a data set of 4,000 audio files
of 6 seconds each. In the second type — each audio
file was divided into 20 segments; the result dataset
is 8,000 audio files of 3 seconds each. Each track
within the dataset was distinctly characterized by a
prominent emotional label, as perceived by human
listeners and devoid of lyrical content to ensure the
focus remained on the music's instrumental and
timbral properties. The audio files were maintained
in a stereo mp3 format with a 44.1 kHz sampling
rate.

The optimization method used was RMSprop.
RMSProp is an unpublished adaptive learning rate
optimizer proposed by Geoff Hinton [24, 25]. The
motivation is that the magnitude of gradients can
differ for different weights and can change during
learning, making it hard to choose a single global
learning rate. RMSProp tackles this by keeping a
moving average of the squared gradient and
adjusting the weight updates by this magnitude. The
gradient updates are performed as:

E[g%]¢ = YE[9%]¢-1 + (1 — V) g¢, (4)
P N — 5
t+1 = Ut E[gz]t n Egt; (5)

Extract features

Run prediction

Scaling and Normalization
CNN-LSTM Model

Fig. 9. Full flow of music emotion classification based on the

Convolution Neural Network — Long Short-Term Memory model
Source: compiled by the authors
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where E[g] is the moving average of squared
gradients, n is the learning rate. Hinton suggests
y=0.9, with a good default for n as 0.001.

RMSprop involved dynamic adjustments to the
learning  rate,  implemented  through the
ReduceLROnPlateau  callback  [26],  which
methodically reduced the learning rate once learning
stagnated, thereby enhancing the convergence
process. The code was written in Python using the
Librosa library [27], and the training model used the
Keras library [28], also written in Python.

The proposed neural network was compared
with recently proposed models, as represented in
Table 4, including two types of preprocessed
datasets. The inception-GRU Residual Structure
method [12] achieved 84.23 % accuracy in music
emotion classification on the Soundtrack dataset.
Improved deep belief network [13] achieved 83.35%
accuracy. The proposed method in this study
achieved 74.8 % accuracy on the 10-segment dataset
and 94.7 % — on the 20-segment dataset. The
experimental results reflected that the proposed
network model achieved a higher accuracy.

Table 4. Comparison of accuracy of different

models
Method Accuracy
Inception-GRU Residual Structure 84.23 %
(Soundtrack dataset)
Improved deep belief network (FMA) 83.35 %
Proposed CNN-LSTM network (10 74.8 %
segments Emotify dataset)
Proposed CNN-LSTM network (20 94.7 %
segments Emotify dataset)

Source: compiled by the authors

Training and validation accuracy and loss are
shown in Fig. 10 and Fig. 11, respectively.

As a loss function, sparse categorical cross-
entropy was used. Variation of the categorical cross-
entropy loss used for multi-class classification tasks
where the classes are encoded as integers rather than
one-hot encoded vectors. Given that the true labels
are provided as integers, we directly select the
correct class using the provided label index instead
of summing over all possible classes. Thus, the loss
for each example is calculated as

H(y,9) = —log(3, y1). (6)

Training and validation accuracy

1.0 A1

0.8

0.6

Accuracy

0.4

0.2 —— Training accuracy
—— Validation accuracy
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Epochs

Fig. 10. Training and validation accuracy
Source: compiled by the authors

Training and validation loss

2.5 h
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Fig. 11. Training and validation loss
Source: compiled by the authors

And the final sparse categorical cross-entropy
loss is the average over all the samples:

H(Y Y) - __Zlog(YUYL (7)

here y; is the true class of the i-th sample and y,, y;
is the predicted probability of the i-th sample for the
correct class y;.

Table 5 shows the results of precision, recall
and F-1 [30] score with comparison between 10
segments and 20 segments datasets.

The confusion matrix is presented in Fig. 12.
The confusion matrix is a tool for visualizing the
performance of a classification algorithm on a data
set for which the true values are known [29]. It helps
to understand which classes the algorithm mixes
with each other.
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Table. 5 Results of precision, recall and F-1 score for two types of dataset

10 segments/6 sec each 20 segments/3 sec each

Class Precision Recall F1-score Precision Recall Fl1-score
Amazement 0.80 0.67 0.73 1.00 1.00 1.00
Calmness 0.76 0.77 0.77 0.89 0.84 0.86
Joyful activation 0.78 0.82 0.80 0.95 0.90 0.92
Nostalgia 0.73 0.70 0.71 0.92 0.89 0.91
Power 0.82 0.74 0.78 0.95 0.98 0.96
Sadness 0.59 0.61 0.60 0.92 0.99 0.96
Solemnity 0.72 0.72 0.72 0.98 1.00 0.99
Tenderness 0.67 0.59 0.62 0.98 1.00 0.99
Tension 0.71 0.71 0.71 0.94 0.95 0.95

Source: compiled by the authors
amazement 0 0 0 0 0 0 0
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Fig. 12. Confusion matrix
Source: compiled by the authors
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The main components of the confusion matrix:
— True Positive (TP): Number of positive samples
correctly classified as positive.
— False Positive (FP): Number of negative samples
incorrectly classified as positive.
— True Negative (TN): Number of negative samples
correctly classified as negative.
— False Negative (FN): Number of positive samples
incorrectly classified as negative.

CONCLUSIONS

This study represents a significant milestone in
Music information retrieval (MIR), particularly in
the classification of emotional content in music. By
developing a CNN-LSTM network and utilizing the
Emotify dataset, the research introduced innovative
methodologies in data processing and model
architecture. The segmentation of original music
tracks into 4000 six-second clips and 8000 three-
second clips was a key innovation, augmenting the
data's diversity and offering the network a richer
learning environment.

The architecture, combining convolutional
layers and LSTM units, was adept at capturing both
the subtle features and the temporal dynamics of
musical emotions. This synergy resulted in the
model achieving an exceptional accuracy rate of
94.7 % on the three-second segments. This perfor-
mance not only demonstrates the effectiveness of the
segmentation approach but also positions the CNN-

LSTM framework as a leading contender in the
domain of music emotion classification.

Compared to other recent models, such as the
Inception-GRU Residual Structure model and the
Improved deep belief network model, this study
demonstrated higher accuracy, which emphasizes its
reliability and effectiveness. The first comparable
model scored an accuracy of 84.23 %, and the
second model scored 83.35 %. This can be attributed
in part to the significant preprocessing of the music
data, which involved intricate feature extraction and
careful consideration of the emotional attributes
within the music.

The advances made in this research offer
practical applications in the development of more
nuanced and emotionally intelligent music
recommendation systems and  therapeutic
interventions. The potential for enhancing user
interaction  through  emotionally  responsive
technologies is enormous, opening new avenues for
MIR research.

In summary, paves the way for future
advancements in this field. The combination of
detailed data preprocessing, innovative model
architecture, and impressive classification accuracy
highlights the potential of deep learning techniques
to understand and interpret the rich emotional
tapestry of music.
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AHOTALIS

EMouiiiHuit 3MicT My3WKH, MEperuieTeHHid i3 TOHKOI[AMH BIUIMBY Ha IJIIOAWHY, CTBOPIOE YHIKadbHUH BHUKIHK IJISI CHCTEM
KOMIT'FOTEpHOTO po3Mi3HaBaHHs Ta Kiacudikaiiii. Ockinbku onudpyBaHHs My3UUHHX 0i0Ti0TEK eKCIIOHEHI[ATBHO PO3IIMPIOETHCS,
iCHye HaranpbHa MoTpe0a B TOYHHMX aBTOMATH30BAaHHMX IHCTPYMEHTaX, 3[aTHHX HaBiraiii Ta kiacugikamii BeIHYe3HUX MYy3UUHHX
CXOBHII[ HA OCHOBI eMOLiiiHOro KoHTeKcTy. Le mocmimkeHns mokparye Kiacuikaliro My3u4HHX eMOLlii y cdepi NOoIyKy My3uaHOT
iHdopMamii IUIIXoM PO3pOOKH MOJIENi TIIMOOKOTO HAaBYaHHS, SKa TOYHO Mepeadadae eMoIiiHI kaTeropii B My3uili. MeTor 1poro
JIOCITI/KEHHS € PO3BUTOK KJIacH(iKallii My3HIHUX €MOIiH MUITXOM BHKOPUCTAHHS MOXIUBOCTEH 3rOPTKOBUX HEUPOHHUX MEPEXK Y
MOEAHAHHI 3 JJOBFOTPHUBAIOK KOPOTKOYACHOK MaM’STTIO B paMKaxX IJIMOOKOro HaBYaHHS. BHECOK IL(bOro IOCII/DKEHHS MOJSrae B
TOMy, 100 3a0e3meynTd BIOCKOHANCHMI mMiAxix a0 kiaacudikamii My3HMIHHX EMOLiH, MOEAHYIOYH IOTYXKHICTh 3TOPTKOBHX
HEHPOHHHUX MEpPEeX 1 apXiTeKTyp IOBrOTPHBAJIOI KOPOTKOYACHOI MaM’STi 31 CKJIAJHOIO TOMEPETHBOI 00pOOKOI HAOOpy JaHWX
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Emotify mis rmmOmoro Ta TOYHIMIOrO aHajily MY3WYHUX eMOIii. JocnmipkeHHS MpencTaBise HOBY apXiTEKTYpy, IO IOEIHYE
3TOPTKOBI HEHPOHHI Mepeki Ta Mepeski IOBrOTPHUBAJIO] KOPOTKOYACHOI ITaM’ATi, IPU3HAYEHi JUIS BIOBJIIOBAHHS CKJIAJHUX €MOLIHHNIX
HIOAQHCIB y My3HILli. MoziesTb BUKOPHCTOBYE 3TOPTKOBI HEHPOHHI Mepeski JUIsl HaAiHOr O BUSBIICHHS (DyHKIIN 1 Mepeski TOBroTpHUBajIol
KOPOTKOYACHOI aM’sTi A €()eKTHBHOTO HAaBYAHHS ITOCIIIOBHOCTI, 3BEPTAIOYHCh A0 9aCOBOI JWHAMIKM MY3HYHHUX OCOOJIMBOCTEH.
Bukopucroyroun Habip manux Emotify, 1mo BkITtoYae NOpiXKKH 3 JEB’STbMa EMOIIHUMH XapaKTEPUCTHKAMU, JIOCIIHKEHHS
pO3IIMpIOE Hadip JaHUX, CETMEHTYIOUM KOXHY NOpLKKY Ha 20 9acTWH, TaKMM YMHOM 30aradyloud pi3HOMAaHITHICTh €MOLIHHMX
nposiBiB. [lyist mporunii nmucbanancy Habopy aHWX, 3a0e3Iedyloun piBHOMipHE IpeNCTaBICHHS Pi3HUX eMOIlii, Oyl10 3aCTOCOBaHO
TaKi METOIM, SIK TEXHIKa IEPeAMCKPETH3allii CHHTETHYHOI MeEHIIoCTi. CHEeKTpalbHI XapaKTEPUCTHUKH 3pa3KiB aHaTi3yBalld 3a
JIOTIOMOT'OI0 IIBHIKOTO IepeTBopeHHs Dyp’e, mo crpusuio OUTBII MOBHOMY PO3YMIHHIO JAHUX. 3aBISIKH PETEIHHOMY TOHKOMY
HaJIAIITyBaHHIO, BKIFOUAIOYH peasli3amilo BiJICIBY JUIS 3ar100iraHHs HaMipHOMY OCHAIIEHHIO Ta KOPUTYBaHHS IIBHIKOCTI HABYAHHS,
po3pobneHa Mozenb jpocsriia momitHol TowHocTi 94,7 %. lleil BHCOKMI piBEHb TOYHOCTI MiJKPECITIOE IOTEHIAT MOMENi Ui
3aCTOCYBaHHS B IM(POBUX MY3WYHHX CIyK0axX, cHCTeMax peKoMeHnamiii i My3w4Hil Tepamii. MaiOyTHI BJOCKOHAJICHHS Ii€i
CHCTeMH KJIaCH(iKallil My3WYHUX €MOLill BKIIOYarOTh PO3IMIHPEHHS HAOOpY NaHMX 1 BIOCKOHAIEHHS apXiTEeKTypH MOIeINi JUIs Ie
OLITBII TOHKOTO €MOIITHOTO aHaIi3Yy.

KirouoBi cioBa: rimboke HaBYaHHS; Kiacuikallis eMoLiif; HelfpoHHa Meperka; CHeKTpaIbHHI aHali3; 3ropTKoBa HEWPOHHA
Mepexa
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