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ABSTRACT 

Counteraction to sensitive data leakage in cyber-physical systems is topical task today. Solving of the task is complicated to 

widely usage by attackers of novel steganographic methods for sensitive data embedding into innocuous (cover) files, such as digital 

images. Feature of these embedding methods is minimization of cover image’s parameters alterations during message hiding. This 

negatively affects detection accuracy of formed stego images by state-of-the-art statistical stegdetectors. Therefore, advanced 

methods for detection and amplification of cover image’s parameters abnormal changes caused by data embedding are needed. The 

novel approach for solving of mentioned task is applying of image pre-processing (calibration) methods. These methods are aimed at 

estimation parameters either of cover, or stego images from current analysed image. The majority of known calibration methods are 

based on cover image content suppression by utilization of extensive set of high-pass filters. This makes possible close to state-of-

the-art detection accuracy by the cost of time consuming preselection of appropriate filters. Therefore, this approach may be 

inappropriate in real cases, when fast re-train stegdetector for revealing of stego images formed by unknown embedding methods is 

required. For overcoming this limitation, we proposed to calibrate an image by amplification of alterations caused by message hiding. 

This can be realized by data re-embedding into images or their pre-noising. The effectiveness of such approach was proved for wide 

range of modern embedding methods in the case of message re-embedding. The paper is aimed at performance analysis of image 

calibration by pre-noising, namely by using of non-stationary fraction noise. The performance analysis of proposed solution was 

performed for novel HUGO and MG adaptive embedding methods on standard VISION dataset. According to obtained results, we 

may conclude that applying of proposed solution allows achieving close to state-of-the-art detection accuracy for HUGO embedding 

method and low (less than 10 %) cover image payload. Also, low computation complexity of proposed solution makes it an attractive 

alternative to novel cover rich models based stegdetectors. Nevertheless, solution’s performance concedes effectiveness of novel 

stegdetectors for medium (less than 20 %) and high (more 25 %) cover image payload for MG embedding method.  
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INTRODUCTION 

Protection of critical information infrastructure 

became topical task in last years. Special interest is 

taken on improving security of cyber-physical 

systems (CPS) involved in processing of sensitive 

data [1]. Widespread usage of global communication 

systems for data exchanging between CPS creates 

new threats for sensitive data protection, such as 

unauthorized transmission using covert channels.  

Modern methods for covert (steganographic) 

communication are aimed at message embedding 

into innocuous (cover) files, such as digital images 

(DI), by preserving low level of cover’s features 

alteration [2, 3]. Detection of formed stego images 

requires usage of either statistical models [4], or 

convolutional neural networks [5, 6]. Despite high 

detection accuracy, excessive computation-

complexity makes these approaches inappropriate 

for practical usage, especially in case of detection 

unknown embedding methods. Therefore, 

development of advanced steganalysis methods 

capable to reliably detection of stego 
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images even under limited prior information about 

used embedding method is topical task. 

One of promising approaches for solving 

mentioned task is DI pre-processing (calibration) for 

emphasizing weak alterations caused by message 

hiding [7]. This allows increasing stego-to-cover 

ratio that improves overall performance of 

stegdetectors (SD). Nevertheless, search of effective 

methods for DI calibration under condition of 

limited a prior knowledge about used embedding 

methods remains open problem. 

The work is aimed at performance analysis of 

special type of DI calibration, based on image pre-

noising with fractional noise for emphasizing weak 

alterations of cover images (CI).  

RELATED WORKS 

Feature of modern advanced embedding 

methods (AEM) is minimal alteration of CI 

statistical parameters as well as perceptual quality 

during message hiding [2, 3]. This leads to 

considerable reducing of CI features changes that 

negatively impact on performance of modern SD. 

For overcoming this limitation of known SD, it was 

proposed to include additional pre-processing 
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step (calibration) during DI analysis by stegdetector. 

The calibration is aimed at increasing stego-to-cover 

ratio that can be achieved by estimations parameters 

of either cover, or stego images [8].  

The first approach is aimed at estimation of CI 

parameters from current (noised) image with usage 

of DI statistical models, such as Markov Random 

Fields, multiscale models etc. The well-known 

example of such approach usage is SRM models [9]. 

These models are based on CI context suppression 

by extensive set of high-pass filters. This allows 

drastically improving detection accuracy for wide 

range of modern embedding methods, such as 

HUGO [10], UNIWARD [11] etc., by the cost of 

time-consuming selection of an appropriate filter.  

The second approach to DI calibration is based 

on measuring the expected level of CI distortions by 

message hiding according to known embedding 

method. In practice, this approach may be 

implemented by message re-embedding into DI or 

image pre-noising. The effectiveness of such 

approach was shown in the works [12, 13], by usage 

of either known embedding methods, or widespread 

types of DI noises (thermal and shot noises).  

The message re-embedding approach relies on 

utilization prior information about embedding 

procedure that may be unrealistic cases for real 

steganalysis scenarios. The DI pre-noising approach 

does not require information about used embedding 

method that makes such approach a promising 

candidate for increasing performance of modern SD.  

Nevertheless, modern methods for DI 

calibration via pre-noising include only widespread 

thermal and shot noises for modelling possible 

image alteration during in-camera processing. 

Therefore, device and environment dependent 

effects, such as dispersion of noise parameters, are 

not included into used model. The paper is aimed at 

filling this gap by performance analysis of usage the 

fractional noises for pre-processing of stego image 

formed according to AEM. 

THE SCOPE OF THE RESEARCH 

The paper is aimed at performance analysis of 

digital image calibration by preliminary noising with 

fractional noises for revealing stego images formed 

according to AEM. 

To achieve this aim it is proposed to solve the 

following tasks: 

1) to review features of advanced embedding 

methods for digital images; 

2) to review models of fractional noise 

generation with specified parameters; 

3) to analyse detection accuracy of stego image 

revealing with usage of proposed pre-noising 

approach; 

4) to compare performance of proposed method 

and state-of-the-art rich models for digital images. 

The object of study is methods for detection of 

stego images formed according to AEM. 

The subject of study is methods for increasing 

stego-to-cover ratio to be used in steganalysis of 

advanced AEM. 

NOTATIONS 

The calligraphic font is used for sets and 

collections, while vectors or matrices are always in 

boldface. During investigation, we supposed that a 

stego image Y is created from a grayscale cover 

image X with size M·N pixels and k=8 bits color 

depth. The stego data is represented as binary 

message M  with K  bits length. 

ADAPTIVE EMBEDDING METHODS FOR 

DIGITAL IMAGES 

The feature of AEM is minimization of total 

cost of cover image X distortion during message M 

hiding [14]: 

   ,,
, , min .

const

i ji j
D 


 

M
X Y X Y  (1) 

where ρ(∙) – cost function of cover image pixel 

parameters distortions by embedding of a single bit. 

Ideally, function ρ(∙) in (1) can estimate both CI 

alteration caused by single bit embedding, and non-

linear interaction between these changes [14]. The 

former one can be performed with usage of 

widespread statistical models of CI [2]. The latter 

one requires time-consuming analysis of pixels 

changes combinations that becomes intractable even 

for short messages M (about 100 bits) [14]. 

Therefore, the simplified function ρ(∙) that estimates 

only CI distortions caused by a single bit hiding is 

used in most real cases. 

Frequently, the selection of pixels to be used 

during message embedding (1) is performed by 

heuristic rules that assess noise level in a local 

neighborhood of (i,j)th pixel [14]. This allows 

achieving state-of-the-art empirical security of 

formed stego images while preserving low 

computational complexity of cost ρ(∙) estimation. 

The paper is aimed at analysis of state-of-the-

art HUGO [10] and MG [15] embedding methods.  

The HUGO method is based on minimization of 

CI distortion under constrain of message length [10]: 

     min , ,
Y

E D D
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where: Y – a stego image sampled from the set of all 

stego images  ;  
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π – probability distribution of selection of some 

stego image from the set  ;  

Eπ(D) – averaging operator for function D(∙) 

over distribution π; 

H(π) – entropy function over distribution π. 

Filler et al. [10] proposed to numerical solving 

of eq. (2) by using adjacency matrix  klC X  for 

estimation of CI distortions during message hiding: 

     
  , ,,

, ,c

k l k lc C k l
D 

 
 X Y H Y   

where:  0,1,..., 2 1k   – brightness range of 

cover and stego image with k-bits color depth; 

 , , ,C       – set of scanning directions 

during co-occurrence matrix Ck,l estimation; 

 ωk,l>0 – weights. 

For instance, matrix H in the case of row-wise 

image processing and left-to-right pixels scanning 

can be calculated as [10]: 
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Matrix H for other types of cliques C can be 

calculated in a way similar to eq. (3) [10]. 

In contrast to HUGO method, the MG 

embedding methods is aimed at minimization both 

CI distortion and statistical detectability of formed 

stego image [15]. It is achieved by usage of locally-

estimated multivariate Gaussian model of CI noises. 

The model allows deriving the closed-form 

expression of SD performance as well as capturing 

the non-stationary character of natural images [15]. 

The stego image creation pipeline for MG 

methods consists of several steps [15].  

Firstly, image context is suppressed using 

denoising filter dnF : 

 .dnF r X X   

Secondly, the variance σl
2 of obtained residuals 

r is measured with linear model: 

 , 1; .l l l M N   r Ga ξ   

For MG method the simplified estimation of 

variance σl
2 is used [15]: 

   
1
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where rl – residuals evaluated within p∙p block 

surrounding the lth pixel of CI. 

Thirdly, embedding changes βl, lϵ[1; M·N] that 

minimizes deflection coefficient ζ2, is estimated: 
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The deflection coefficient ζ2 (4) is used as a 

measure of divergence between cover and stego 

images distributions [15].  

The optimization problem (4) can be solved 

using Lagrange multiplier method [15]. Then, 

change rate βl and Lagrange multiplier λL can be 

determined by numerical solving of next equations 

[15]: 

 .;1,
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Then, estimated βl is converted to 

corresponding cost ρl of stego bit hiding in lth pixel 

of CI: 

 .2ln  ll  (5) 

Finally, a message M is embedded into CI 

using syndrome-trellis codes with pixel costs 

determined according to eq. (5). 

The locally-estimated multivariate Gaussian 

model allows accurately measuring local distortions 

of CI caused by message hiding [15]. This makes 

possible achieving state-of-the-art empirical security 

of formed stego images without taking compute-

intensive statistical models. 

MODERN METHODS OF DIGITAL IMAGES 

STEGANALYSIS 

Modern paradigm in digital image steganalysis 

is usage of image pre-processing with extensive set 

of high-pass filters and further statistical parameters 

extraction from obtained residuals [9]. This 

approach shown outstanding result for detection of 

stego images formed according to both widespread 

and advanced EM. On the other hand, necessity of 

time-consuming pre-selection of appropriate high-

pass filters limits fast adaptation of already trained 

SD to revealing of unknown embedding methods. 

Also, such pre-selection requires a priori information 

about features of EM that may by unavailable in real 

situations. Therefore, the topical task is development 

of advanced calibration techniques that is able to 
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preserve high detection accuracy even under limited 

a priori information about embedding process. 

For solving mentioned task, it is proposed to 

increase stego-to-cover ratio by amplification of 

negligible changes of CI. In most cases, these 

changes are noise-like that allows using pre-noising 

methods for image calibration. In the work [13], the 

effectiveness of such approach was shown by usage 

of Gaussian and Poisson noises that models thermal 

and shot noises of natural images. 

Further feature extraction from pre-processed 

images may be performed using well-known SPAM 

model [16]. The model allows estimating correlation 

features of calibrated DI without any additional 

processing. Let us describe this model in details. 

The calculation of SPAM-features starts by 

computation the difference array D by processing an 

image in row-wise and column-wise orders. For 

example, the array D for the case of row-wise 

processing and left-to-right pixels scanning of 

grayscale image U with size M∙N pixels can be 

calculated as [16]: 

, , , 1,i j i j i j



 D U U  

   , 1; , 1; 1 .M N i M j N   U  
 

The first-order SPAM features F1 are used for 

modeling array D with first-order Markov process 

[16]. For the considered example, it leads to: 

 , , 1 ,Pr | ,u v i j i ju v  

  M D D  (6) 

  .,;,  TTTvu  
 

If probability  ,Pr i j v D  is equal to zero, then 

, 0u v

 M  as well. 

The second-order SPAM features F2 are taken 

for modeling difference array D with second-order 

Markov process [17]. Similarly to eq. (6), we obtain: 

 , , , 2 , 1 ,Pr | , ,u v w i j i j i ju v w   

    M D D D  (7) 

  .,;,,  TTTwvu   

 Similarly to F1 features, 
, ,u v w

M  is equal to 

zero if  , 1 ,Pr , 0i j i jv w 

   D D . 

Both features F1 and F2 for other scanning 

directions, namely cϵ{←,↑,→,↓}, can be estimated 

in the same way to eq. (6)-(7). 

For decreasing dimensionality of SPAM-

features, the assumption that statistics in natural 

images are symmetric with respect to mirroring and 

flipping [16] is used. Thus, we can separately 

averaging matrices for horizontal, vertical and 

diagonal directions to form the final features: 

 1 4,kF       M M M M   

   1 2
4.a b c d

k k
F


   M M M M   

Number of parameters for the first-order SPAM 

model is kSPAM=(2T+1)2, while for the second-order 

one – kSPAM=(2T+1)3. 

IMAGE CALIBRATION VIA PRE-NOISING 

The wide range of modern image denoising 

approaches utilizes the standard assumption about 

influence of thermal and shot noises during in-

camera image processing [17]. They correspond to 

stationary stochastic processes that can be accurately 

modeling using well-known Gaussian and Poisson 

distributions. This allows using methods from 

statistical analysis, namely Wiener filters, for 

effectively suppression such kind of noises.  

On the other hand, mentioned assumption does 

not cover cases of influence the non-white 

(Gaussian) noises during in-camera processing. Such 

noises may rise due to fluctuating occupancies of 

traps in semiconductors, namely pixels cells [18]. 

This leads to appearance of “colored” or fractional 

noises which power spectrum concentrates over 

specific frequency range: 

  1 ,fS f


U   

where: U – inputted grayscale image; 

βf ϵ(0;2) – frequency scaler.  

The case of βf=0 corresponds to white 

Gaussian noise, while βf =2 relates to Brownian 

noise. In most cases βf =1 is used that corresponds to 

pink noise. 

 Practically, mentioned fractional noise may be 

modelled using Perlin method [19], namely pre-

generated white Gaussian noise and further applying 

of 1/fα filter to its Fourier spectrum. This allows fast 

generation of multidimensional fractional noise with 

predefined scaler parameter α. 

 Message hiding to cover image leads to 

introducing of non-stationary noises. These noises 

may be approximated by well-known Gaussian or 

Poisson distribution [13]. Nevertheless, it is 

represent the interest to apply the fractional noises 

for improving accuracy of cover alterations caused 

by message hiding. 

EXPERIMENTS 

Performance analysis of statistical SD by 

image noising was performed on VISION dataset 

[20]. The sub-set of 10,000 grayscale images with 

size 512∙512 pixels was pseudo randomly chosen 

from the dataset. The case of message embedding 

into CI with HUGO and MG methods was 
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considered. The CI payload Δp was changed in range 

– 3 %, 5 %, 10 %, 20 %, 30 %, 40 %, 50 %. 

The SD includes Random Forest classifier [21] 

trained with second-order SPAM model [16].  

Practical application of SPAM-features requires 

theirs pre-processing before using in a classifier.  

The modern methods of feature pre-processing 

for DI steganalysis can be divided into next groups 

[8, 12]: 

1. Non-calibrated features – corresponds to the 

case of feature extraction from unprocessed image: 

 .nc eFF U  (8) 

2. Features of calibrated image – corresponds to 

features obtained after image noising: 

  .noise eF CF U  (9) 

3. Linearly transformed features of calibrated 

image – correspond to the difference between 

features of calibrated and unprocessed images: 

.DF noise nc F F F  (10) 

4. Cartesian calibrated features – corresponds to 

the case of merging features of unprocessed and 

calibrated images: 

 ; .CC nc noiseF F F  (11) 

Today, non-calibrated features (8) are rarely 

used due to theirs negligible differences for cover 

and stego images [2]. On the other hand, Cartesian 

calibrated features (11) are widely used for SD 

performance improving since they preserve features 

for both initial and calibrated DI [9]. The calibrated 

(9) and linearly transformed (10) features do not get 

much attention today [12]. Therefore, performance 

analysis of stegdetector by usage of these features 

takes special interest. 

Along with type of features used for SD 

training, stegdetectors performance significantly 

depends on fraction Fα of pairs of cover-stego 

images features utilized by training stage [22]: 

    , : , ,
100%,

i i train

train

i S
F

S



 

X Y X Y
  

where: Strain – set of digital images used during 

training of stegdetector; 

Yi – stego images formed from cover Xi.  

The Fα parameter varies from 0% (absent of 

cover-stego images pairs in training set) to 100 % 

(training set consists only from cover-stego images 

pairs). The former case corresponds to the real 

situation when steganalytics do not have access to 

stego encoder and may use only captured stego 

images. The latter one relates to the situation when 

steganalytics have access to stego encoder and they 

can generate a stego image for any CI. 

The fractional noise was generated using 

known Perlin method [19]. The scaler parameter βf 

was varied from 0.25 to 1.00 with step 0.25. The 

amplitude An of generated fractional noise was 

rescaled to one (An=1) or two (An=2) brightness level 

that corresponds to distortions caused by message 

embedding. 

The SD was tested according to cross-

validation procedure by minimization of detection 

error Pe [21]. The dataset was divided 10 times into 

training (50 %) and testing (50 %) sub-sets during 

cross-validation. 

Performance analysis of proposed stego image 

calibration methods was done in several stages. At 

the first stage, it was compared detection accuracy of 

stego images by using of considered SPAM as well 

as state-of-the-art maxSRMd2 statistical models. 

The dependency of detection error Pe on cover 

image payload by stego images generation according 

to HUGO and MG embedding methods and 

variation of Fα are presented at Fig. 1.   

It should be noted considerable decreasing of 

error Pe by usage of nodel maxSRMd2 model  

(Fig. 1) – the improving of detection accuracy varies 

from 15 % for Fα=100 % to 7 % for Fα=0 %. The 

most influence of this decreasing has only single 

EDGE filter of maxSRMd2 model, while other 

filters have negligible influence on achieved 

detection accuracy. 

As it was mentioned, the case of Fα=100% 

corresponds to the situation when steganalytic has 

full access to stego encoder. This case is quite 

unrealistic in real situations, especially when 

attackers apply (previously) unknown embedding 

methods. Therefore, we paid special attention to the 

case of Fα = 0 %, when steganalytic was able to 

include stego images generated for unknown CI. 

On the second stage, we considered 

performance of SD by pre-noising with fractional 

noise a stego image generated by HUGO embedding 

method. The relative detection accuracy indicator PΔ 

was used for estimating difference of Pe error for 

initial (processing of non-calibrated images) and 

considered cases: 

.SPAM calib

e eP P P     

Positive values of the PΔ index correspond to 

the case, when applying of proposed approach 

(image pre-noising) allows improving detection 

accuracy. The negative ones relates to the case of 

decreasing SD performance in comparison with 

initial (non-calibrated) case. 
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a  

b  

c  

d  

     Fig. 1. The dependency of detection error Pe 

on cover image payload for stego images 

generated by:  

a – HUGO (Fα=0%); b – a – HUGO (Fα=1000%); 

c – MG (Fα=0%); d – a – MG (Fα=1000 %) 

embedding methods 
                   Source: compiled by the author 

The dependency of detection error Pe on cover 

image payload by stego images generation according 

to HUGO embedding methods and image pre-

noising with fractional noise with amplitude An=1 

are presented at Fig. 2.  

It should be noted that images pre-noising 

allows reduce detection error up to 4 % for the most 

difficult case – the low cover image payload (less 

than 10 %, Fig. 2). This makes proposed approach 

comparable with effectiveness of more computation-

intensive sub-model of maxSRMd2 model (Fig.1b). 

Further increasing of cover image payload leads to 

considerable decreasing of detection accuracy (up to 

8 %, Fig 2) that negatively impact on effectiveness 

of proposed approach. 

 

a  

b  

c  

Fig. 2. The dependency of detection error Pe on 

cover image payload by pre-noising (An=1) of 

stego images generated by HUGO method and 

usage of Fnoise (a), FDF (b) and FCC (c) features 
                Source: compiled by the author 

The biggest “gain” of detection accuracy is 

achieved by usage of Fnoise (up to 4 %) and FDF (up 

to 1.5 %) features, while Cartesian calibrated 

features FCC do not allow considerably improving 

detection accuracy. Also, increasing of fractional 

noise scaler βf leads to decreasing of efficiency of 

proposed approach – this can be explained that 

added distortion is transformed from Gaussian noise 

to pink noise which energy is more localized in 

frequency subband. 

For comparison, it was considered the case of 

increasing amplitude of adding noise from An=1 or 

An=2. The dependency of detection error Pe on cover 

image payload by stego images generation according 

to HUGO embedding methods and image pre-

noising with fractional noise with amplitude An=2 

are presented at Fig. 3.  

Increasing of added noise’s amplitude An 

allows additionally improving detection accuracy up 

to 1 % for Fnoise features (Fig. 3a) and 0.5 % for FCC 

features (Fig. 3c) in the case of low cover image 

payload (less than 10 %). On the other hand, 

increasing of noise’s amplitude leads to 

corresponding increasing of detection error for the 

middle (less than 20 %) and high (more 25 %) cover 

image payload for all considered types of features 

(Fig. 3). 
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a  

b  

c  

Fig. 3. The dependency of detection error Pe on 

cover image payload by pre-noising (An=2) of 

stego images generated by HUGO method and 

usage of Fnoise (a), FDF (b) and FCC (c) features 
                    Source: compiled by the author 

On the third stage, we considered performance 

of SD by pre-noising with fractional noise a stego 

image generated by advanced MG embedding 

method. The dependency of detection error Pe on 

cover image payload by stego images generation 

according to MG embedding methods and image 

pre-noising with fractional noise with amplitude 

An=1 are presented at Fig. 4. 

Applying of fractional noise for calibration of 

stego images formed according to MG method  

(Fig. 4) leads to similar results obtained for HUGO 

method (Fig. 2) – increasing of detection accuracy 

for low cover image payload range. Nevertheless, 

obtained “gain” of detection accuracy for MG 

method is smaller than for HUGO one – up to 3 % 

for Fnoise features and about 0.5% for FDF features. 

Usage of Cartesian calibrated features FCC does not 

allow considerably improving detection accuracy 

(Fig. 4c). 

As it was for HUGO method (Fig. 2), 

increasing of frequency scaler βf leads to decreasing 

of efficiency of proposed approach for MG method 

(Fig. 4) that may be explained by moving to 

“bandpass” pink noise instead of “widepass” 

Gaussian one. 

 

a  

b  

c  

Fig. 4. The dependency of detection error Pe on 

cover image payload by pre-noising (An=1) of 

stego images generated by MG method and usage 

of Fnoise (a), FDF (b) and FCC (c) features 
                         Source: compiled by the author 

For comparison, the case of usage the noise’s 

amplitude An=2 was considered for MG embedding 

method. The dependency of detection error Pe on 

cover image payload by stego images generation 

according to MG embedding methods and image 

pre-noising with fractional noise with amplitude 

An=2 are presented at Fig. 5. 

Usage of amplified fractional noise (Fig. 5) 

allows negligibly improving detection accuracy in 

comparison with previous case (Fig. 4). 

Nevertheless, obtained “gain” does not exceed 1 % 

that considerably less than results obtained for sub-

model of modern maxSRMd2 model (Fig. 1). 

DISCUSSIONS 

Obtained results of detection accuracy for stego 

images formed according to state-of-the-art adaptive 

embedding methods proved effectiveness of image 

pre-noising with fractional, Gaussian and Poisson 

noises digital image calibration [13].  The Gaussian 

and Poisson noises were generated according to 

recommendation of work [13], e.g. by estimations of 

theirs parameters with sliding windows of size 3∙3 

pixels. 

The comparison of detection accuracy changes 

by usage of considered models and embedding 

methods are given in Table. 
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a  

b  

c  

Fig. 5. The dependency of detection error Pe on 

cover image payload by pre-noising (An=2) of 

stego images generated by MG method and usage 

of Fnoise (a), FDF (b) and FCC (c) features 
                     Source: compiled by the author 

Detection accuracy improvement for HUGO 

embedding method by image pre-noising is less than 

by usage of image pre-filtering by EDGE filters of 

maxSRMd2 model (Table). Among considered types 

of noises, the biggest improvement is achieved by 

usage of Gaussian noise for low cover image 

payload (up to 5 %), while for middle and high 

payload fractional noise allows obtaining less values 

of detection error.  

For MG embedding methods, we obtained the 

similar results – usage of image pre-filtering allows 

considerably improve detection accuracy in 

comparison with pre-noising case (Table). The 

Poisson noise allows achieving smaller detection 

error levels for low cover image payload, while for 

middle and high payload better results are obtained 

for fractional noise. 

It should be noted that applying of Fnoise 

features allows considerably improve detection 

accuracy in all considered cases for image pre-

noising in comparison with FDF and FCC features 

(Table). This can be explained by increasing cross-

distance between SPAM features of cover and stego 

images after pre-noising, despite absolute values of 

such difference is small. 

 

Table. The PΔ values for stegdetector by 

cover and stego images pre-noised with fractional 

(βf=0.25), Gaussian and Poisson noises by Fα=0 % 

Stego images 

detection 

method 

Cover image payload 

ΔP=5 % ΔP=20 % ΔP=50 % 

mean std mean std mean std 

HUGO embedding method 

SPAM model 0.00 0.00 0.00 0.00 0.00 0.00 

maxSRMd2 

model, EDGE 

sub-model 

12.22 1.63 29.81 0.28 23.83 0.21 

Fract. 

noise 

(An=1) 

Fnoise 4.14 0.43 -6.04 0.38 -8.54 0.37 

FDF 1.40 0.37 -4.58 0.45 -3.92 0.45 

FCC 0.81 0.71 0.04 0.43 -0.22 0.49 

Fract. 

noise 

(An=2) 

Fnoise 4.66 0.37 -7.67 0.33 -12.0 0.35 

FDF 1.98 0.63 -2.72 0.33 -2.68 0.43 

FCC 1.20 0.53 0.25 0.50 0.03 0.40 

Gauss. 

noise 

Fnoise 4.99 0.58 -8.86 0.51 -22.2 0.37 

FDF 1.18 0.78 0.36 0.39 -0.16 0.60 

FCC 1.70 0.99 0.41 0.48 0.13 0.50 

Poisson 

noise 

Fnoise 4.35 0.36 -10.8 0.35 -21.6 0.47 

FDF 0.48 0.42 -2.08 0.43 0.19 0.42 

FCC 0.67 0.97 -1.97 0.58 0.59 0.34 

MG embedding method 

SPAM model 0.00 0.00 0.00 0.00 0.00 0.00 

maxSRMd2 

model, EDGE 

sub-model 

15.65 1.14 28.23 0.46 24.28 0.15 

Fract. 

noise 

(An=1) 

Fnoise 2.98 0.39 -8.19 0.61 -8.19 0.50 

FDF 0.58 0.50 -7.21 0.76 -5.25 0.75 

FCC -0.09 0.59 -0.79 0.52 -0.23 0.66 

Fract. 

noise 

(An=2) 

Fnoise 3.80 0.40 -10.4 0.42 -12.0 0.59 

FDF 1.14 0.53 -4.50 0.40 -2.58 0.32 

FCC 0.69 0.47 -0.19 0.41 0.12 0.54 

Gauss. 

noise 

Fnoise 4.49 0.44 -11.8 0.55 -22.0 0.54 

FDF 0.52 0.48 0.31 0.51 0.43 0.31 

FCC 0.85 0.71 -0.33 0.52 0.65 0.42 

Poisson 

noise 

Fnoise 4.90 0.52 -11.1 0.52 -21.5 0.39 

FDF 0.62 0.50 -0.06 0.42 0.06 0.60 

FCC 0.91 0.37 0.07 0.30 0.56 0.50 
                     Source: compiled by the author 

CONCLUSION 

The paper is devoted to performance analysis of 

image calibration method based on pre-noising with 

fractional noise. The case of pre-processing stego 

images obtained for novel HUGO and MG adaptive 

embedding method is considered.  

According to obtained results, we may conclude 

that image pre-noising with fractional noise allows 

achieving detection accuracy that is comparable with 

maxSRMd2 model results in the case of low (less 

than 10 %) cover image payload for HUGO 

embedding method. Proposed approach for middle 

(less than 20 %) and high (more 25 %) cover image 

payload is much less effective in comparison with 

considered state-of-the-art statistical model. 

On the other hand, applying of proposed 

approach for MG embedding methods does not 

allow improving detection accuracy in comparison 

with state-of-the-art methods. 
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АНОТАЦІЯ 

Протидії витоку конфіденційних даних у кіберфізичних системах сьогодні приділяється особлива увага фахівців в 

галузі інформаційної та кібербезпеки. Вирішення даної задачі ускладнюється широким використанням зловмисниками 

новітніх стеганографічних методів вбудовування конфіденційних даних до файлів-контейнерів, зокрема цифрових 

зображень. Особливістю даних методів є мінімізація змін параметрів зображення-контейнеру під час приховання 

стегоданих. Це суттєво знижує ефективність виявлення сформованих стеганограм при використанні сучасних статистичних 

стегодетекторів. Тому розробка нових методів виявлення стеганограм, здатних локалізувати та підсилювати слабкі зміни 

параметрів зображень-контейнерів обумовлених прихованням повідомлень, є актуальною та важливою задачею. Одним з 

новітніх підходів до вирішення даної задачі є застосування методів попередньої обробки зображення (калібрування). Дані 

методи спрямовані на визначення параметрів зображення-контейнеру, або ж стеганограми за наявним (досліджуваним) 

цифровим зображенням. Більшість відомих методів калібрування засновані на зменшенні впливу зображення-контейнеру 

(контексту) шляхом застосування ансамблю високочастотних фільтрів. Це дозволяє суттєво підвищити точність виявлення 

стеганограм, проте потребує використання обчислювально складних методів підбору високочастотних фільтрів для 

придушення контексту. Внаслідок цього даний підхід може бути неефективним у реальних випадках, коли необхідна 

швидка адаптація стегодетекторів для виявлення стеганограм, сформованих згідно раніше невідомих методів вбудовування 

стегоданих. Для подолання даних обмежень були запропоновані методи калібрування зображень, спрямовані на підсилення 

спотворень, викликаних прихованням повідомлень. Дані методи засновані на повторному вбудовуванні повідомлень до 

досліджуваного зображення, або ж додаткового зашумлення зображень. Ефективність підходу на основі повторного 

вбудовування повідомлень була показана для широкого спектру сучасних стеганографічних методів. Дана робота 

присвячена дослідженню ефективності методів калібрування на основі попереднього зашумлення зображень, зокрема з 

використанням нестаціонарного фрактального шуму. Аналіз ефективності даного підходу був проведений для сучасних 

адаптивних стеганографічних методів HUGO та MG на стандартному пакеті зображень VISION. За результатами аналізу 

отриманих даних, виявлено, що додаткове зашумлення зображень дозволяє суттєво підвищити точність виявлення 

стеганограм для методу HUGO у випадку слабкого заповнення зображення-контейнеру стегоданими (менше 10 %). 

Вагомою перевагою запропонованого методу у порівнянні з сучасними статистичними стегодетекторами є його низька 

обчислювальна складність. Тим не менше, запропований метод суттєво поступається сучасним стегодетекторами у випадку 

середнього (менше 20 %) та сильного (більше 25 %) заповнення зображення-контейнеру стегоданими, зокрема у випадку 

використання стеганографічного методу MG. 

Ключові слова: цифрові зображення; стегоаналіз; статистичні стегодетектори; фрактальний шум 
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