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DETERMINISTIC IDENTIFICATION METHODS FOR NONLINEAR DYNAMICAL 

SYSTEMS BASED ON THE VOLTERRA MODEL   

Abstract. The paper solves an important scientific and practical problem, which is to improve the accuracy and computational 
stability of the methods of deterministic identification of nonlinear dynamic systems in the form of Volterra model based on 
experimental data of observations ”input-output” taking.  On the base of theoretical and experimental studies created effective 
instrumental algorithmic and software tools for estimating Volterra kernels in the time domain Into account measurement errors. 
Results of the further development of methods of deterministic identification of nonlinear dynamic systems based on Volterra models 
using irregular pulse sequences show. The methods are based on the use of the Tikhonov regularization procedure. The amplitude of 

test impulses is used as a regularization parameter. In the identification, procedure applies wavelet filtering for smooth the estimates 
of the Volterra kernels apply. This gives increase the accuracy and noise immunity of identification methods. The approximation 
method of identification of the nonlinear dynamic systems based on Volterra models is improved. Method is consists in the choice of 
amplitudes of test signals and of coefficients scaling of the partial components of responses a nonlinear system in procedure of 
processing of signals-responses. The improvement is reduced to minimizing the methodological error in the allocation of partial 
components from the response of the identification object and allows obtaining more accurate estimates of Volterra nuclei. To 
improve the computational stability of the developed identification algorithms and for noise reduction in the obtained estimates of 
multidimensional Volterra kernels the wavelet filtration is used. This allows obtaining smoothed solutions and decreases error of the 
identification by 1,5-2,5 times. A new robust method of deterministic identification of nonlinear dynamic systems based on Volterra 

models in the time domain is developed. In contrast to the interpolation method, where finite difference formulas with a 
predetermined number of experimental studies of the object of identification are used for numerical differentiation. It is proposed to 
solve the corresponding Volterra integral equations of the first kind, for the numerical implementation of which an unlimited number 
of experiments can be used. This makes it possible to increase the accuracy of the calculation of derivatives, and consequently, the 
accuracy of identification. Software tools on the system Matlab platform have been developed to implement the developed 
computational algorithms for deterministic identification of nonlinear dynamic systems in the form of Volterra kernels. 

Keywords: nonlinear dynamical systems; identification; Volterra model; Volterra kernels; ill-posed problem; Tikhonov 

regularization; wavelet transformation 
 

Introduction 

Mathematical modeling methods and 
experiment [1-5] are the main research means of 

complex nonlinear dynamical systems (NDS). For 

exposition of NDS an appliance of Volterra integro-

power series is often used [6-13]. Nonlinear and 
dynamical properties of the system are fully charac-

terized by a sequence of multidimensional weight 

functions – Volterra kernels. NDS identification 
problem – creation of model as Volterra series – is 

based on identification of Volterra kernels using 

experimental “input-output” system investigation 
data [14-18].  

Identification itself is a reverse task so during 

solving such severe calculation problems occur due 

to inconsistent problem definition. The occurred 
results appear to be unstable to input data errors due 

to changes in replies of the identified NDS [19-20]. 

In addition, in case of the use of models as Volterra 

serie some NDS for partial component )(tyn , which 

correspond to different parts of Volterra series, since 

y(t), total reply to the input signal x(t) [15]. Thus, it 

is  required  to  use  specialized  difficulties  rise  in 
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separation of the y(t) reply of examined approaches 

for extraction of partial component out of NDS 
replies. Different methods of such decomposition 

based on compensation [21-22], approximation [23- 

25] and interpolation [26-28] approaches are 

proposed. NDS deterministic identification method 
with the use of test no regular impulse sequences is 

shown. The advantage of proposed methods in 

comparison to statistic identification [29] based ones 
lies in simplified experimental data processing and 

implementation of test signals. Though deterministic 

identification results a greatly impacted by 
measurement error which narrows its application in 

real experiments. To improve the computational 

stability of the algorithms identification the method 

of A. N. Tikhonov regularization of ill-posed 
problems [30-31], is used and demising procedures 

in the estimates of multidimensional Volterra 

kernels based on the wavelet transform [32-34]. 
The main goal is to examine errors, which 

appear while determined identification is applied to 

the NDS with unknown structure in the real life 

experiment, comparison analysis of its preciseness, 
and noise proof efficiency. 
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1. Volterra Models 
In the general case the “input-output” 

relationship for a nonlinear dynamical system can be 
represented in terms of the Volterra series as 
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where  tx  and   txy  are the input and output signals, 

respectively,  nnw τ,...,τ1
 is the Volterra kernel of the n-

th order and )(tyn
 stands for the n-th partial component of  

the system response. 

Commonly, the Volterra series are replaced by 

a polynomial, with only taking several first terms of 
series (1) into consideration. Then the identification 

procedure consists in extracting the partial 

components with subsequent determination of 

Volterra kernels  nnw τ,...,τ1
. They are a 

nonparametric model of the input-output system 

under study. The output function of the model )(ˆ ty  

approximately describes the system output 

   )(tytxy   for a given input signal  tx .  

The block diagram of the Volterra model in the 

time domain is shown in Fig. 1. 

 

 
Fig. 1. Volterra model in the time domain 

 

For descriptions of NDS with multiple input 
and multiple output a multivariate Volterra series is 

used: 
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where  yj(t) – responses of the NDS on j-th output in 

case zero start values; x1(t),...,x(t) – input signals; 

)τ,...,τ( 1...21 n

j

iii n
w  – Vоlterra kernel of n-th order based 

on i1,...,in input and j-th output, function is 

symmetric for real arguments 1,…,n; ,  – amount 

of input and output NDS outlets correspondingly. 

In real live Volterra serie changed to polynomial so 

only, few first elements are being taken. The model 

creation of NDS as Volterra serie lies in choice of test 

signals x(t) and algorithm development which allows to 

show partial component   txyn  
based on measured 

results y(t) and estimation Volterra kernels where 

wn(1,…,n), n=1,2,…,∞. 

Wide usage of models as Volterra series for 

identification and modeling of NDS, usage of 

modeling results in a huge variety of appliances, is 
explained by its major preferences such as 

invariativity to input signal type, which means that a 

problem could be solved for both determined and 
random input signal; explicit dependency for input 

and output variables; versatility – a possibility to 

examine nonlinear continuous in time and nonlinear 
impulse systems, steady-state and rheo nomic 

systems, with lumped and distributed parameters, 

stochastic systems as well as systems with multiple 

input and multiple output outlets. Grants a 
possibility of examination in analytic and 

computable applications; simultaneous and compact 

use of nonlinear and inertial NDS properties; 
interpolation of linear systems as subclass of 

nonlinear systems, which allows to use time-based 

and spectral-based methods designed for linear 

systems for nonlinear systems as well. 

2. Identification Methods  

2.1. Compensation Method. The modified 

compensation method for identification NDS in the 
form Volterra kernels in time domain is based on 

testing the system under study with using irregular 

impulse sequences with varying parameters: 
amplitude, duration of test pulses and intervals 

between them [21-22]. 

The model of the test signal in the form of an 

irregular sequence containing no more than n 

rectangular pulses of duration  with different 

amplitudes ak acting at the time k (k=1, 2, …, n), has 

the form 

],0[τ),τ(δθ)(
1

ttStx k

n

k

kkk 


,          (3) 

where Sk=ak – the area of the k-th pulse in the test 

sequence; )τ(δ kt   – the Dirac delta function; t – the 

current time; 
kθ – the parameters that determines the 

number of pulses in the sequence and the intervals 

between them; if 1θ k
, then at the time k in the 

sequence of the pulse is; if 0θ k
– none. 

Let the amplitude of the test pulses a1,..., an. For 

sufficiently small values of the duration  and 

amplitude ak (k=1,...,n) pulses, the following 
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statements are true. Their proof using the method of 

mathematical induction is given in the Appendix. 

The following statements that define the 
computational algorithm of the compensation 

identification method are valid. 

Statement 1. Let the test signals be irregular 

pulse sequences of various lengths, each of which 
consists of no more than n pulses acting at times 

1,..,n. Then for the NDS with one input and one 

output, the estimate of the cross section of the 

Volterra kernel of the n-th order is: 
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where )θ...,,θ,( 1 nty  – is response of NDS, which is 

measured at t moment, under the operation of 
modulated delta-impulses with Sk square in 

proportion to time point of 1,…,n. If 1θ k
, then 

there is impulse in NDS input at k time point, but if 

0θ k
, there is none.  

Statement 2. There occur such proportion for 

the definition Volterra kernel of n order NDS with  

input and  output: 
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where ),...,(
1,...,1 n

j

ii
ttw

n
  – is estimation of n 

order Volterra kernels, which is the result of data 

processing of experiment; )θ,...,θ,( 1

1
ni

n

i

j ty  – is 

response of the object, which is measured at j-output 

at t point time under the operation of i1,...,in  

modulated delta-impulses with S square in 

proportion to time point of t1,…tn,. If 1θ ki

k
, then 

there is impulse in ik input NDS at k time point, but 

if 0θ ki

k
, there is none.  

For example, to determine the of Volterra 

kernel of the NDS second order is tested by 

single pulses, which are fed at the moments of 

time 1 and 2: 

)τ(δ)( 111  tStx  and )τ(δ)( 222  tStx .      (6) 

The corresponding responses and are measured. 

Then, two pulses are fed to the NDS input  

)τ(δ)τ(δ)( 2211  tStStx ,
                (7) 

and from the resulting response is subtracted 

responses to single pulses 
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From (4), after normalization, it follows: 
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At fixed values 1 and 2 estimation Volterra 

kernel of the second order ),(ˆ
212
 ttw  a function 

of the variable t – section of the surface by a plane 
passing at an angle of 450 to the axes t1 and t2 and 

shifted along the axis t1 by a value 
120  . By 

changing the value 0, get various 

sections ),(ˆ
02
ttw , which can restore the entire 

surface ),(ˆ
212 ttw . 

A schematic representation of the procedure for 

identification Volterra kernel second order of the 

NDS with one input and one output and with two 

inputs and one output show in Fig. 3 and 4 
respectively. 

A schematic representation of the procedure for 

identification Volterra kernel third order of the NDS 
with two inputs and one output 

),,(ˆ
21112  tttw show in Fig. 3. As a result of 

such operations, we have: 
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Fig. 2. Procedure identification of the  

Volterra kernel second order  
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Fig. 3. Procedure identification of the  

Volterra kernel  second order at different inputs 

 

Fig. 4. Procedure identification of the  

Volterra kernel  third order at different inputs 

As a result of processing the responses 
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1 m

ty  and )θ,...,θ,( 1

1

ni

n

ity j
 of the NDS in 

accordance with (4) and (5), the approximate values 

of the cross sections of the Volterra kernels are 

obtained. The accuracy of identification depends on 
the choice of the area of the test pulses Sk, i.e. the 

duration and amplitude of the pulses. 

With decreasing the pulse amplitude of the test 

sequence, its optimal value corresponding to the 
minimum error of the experimental determination of 

the Volterra kernels based on the compensation 

method of identification is found. Since in the 
conditions of the real experiment the measurements 

of the NDS responses are carried out with some 

instrumental error, the relative measurement error (a 
random error) will increase when the amplitude of 

the test pulses decreases. The instability of the 

computational algorithms of deterministic 

identification (4) and (5) to the errors of the initial 
data — measurements of pulse responses, especially 

strongly affects the determination of high order 

Volterra kernels. Practical implementation of the 
algorithms is possible only in conditions of 

relatively small noise levels in the measurement of 

NDS responses. To improve the accuracy of the 

identification method, procedures can also be used 

to suppress the response components of all even and 
all odd orders. 

If it is known that NDS is described by a 

functional polynomial of power N, then when 

determining the n-th order by the compensation 
method, the methodical error will be zero. The 

determination of Volterra kernels below the N-th 

order is made by sequentially lowering the order of 
the NDS model. In this case, the components of the 

response from the Volterra kernel of the higher 

orders model are subtracted from the output signal 
of the system. 

2.2. Approximation Method. The approxima-tion 

method identification in domain time it is based on the 

allocation of the n-th partial component in the NDS 

response by constructing linear combinations of responses 

to test signals with different amplitudes [23-24].  

The amplitudes of test signals which were proposed 

for usage of approximated method of identification are 

not optimal and do not provide with minimum error of 

multidimensional identification Volterra kernels system. 

The following affirmations are correct.  
Statement 3. Let at system input test signals are 

given successively a1x(t), a2x(t),…,aNx(t) (N – is 

approximation model order, a1, a2,…,aN  – different real 

numbers, which satisfy the term 0<aj1 for 

j=1,2,...,N; x(t) – arbitrary function). Then linear NDS 

combination of responses with coefficient cj amount to n 

partial component of NDS response in case input signal 

x(t) with error due to higher orders partial components, 

n>N: 
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and 1kb  at nk   and 0kb  at nk  , 

}.,,2,1{;,1 NnNk   

Let input test signals x(t) present themselves in 

irregular sequences impulses of different length. 

Each sequences consists of not more than of n delta 

impulses with area of S=x ( – duration, x – 
the amplitude of the rectangular impulses), which 

function at t1….tn time point. Then for NDS with 

one input and output the estimation of diagonal 

section of Volterra kernel n-th order is: 
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where )θ,...,θ,(ˆ
1 nn ty  – is estimation of n-th partial 

component of the NDS response at t time point, 

which was obtained in the result of data processing 
of experiments on bases of (11). 

The estimation of the diagonal section Volterra 

kernel n-th order 

n

n
n

ty
ttw
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where ˆ ( )ny t  – is estimation of n-th partial component 

of the NDS response at single impulse at t time 
point, which was obtained as the result of data 

processing of experiments on bases of (11). 

Statement 4. To minimize the influence of the 
Volterra serie balance on the error in the allocation 

of the partial component NDS response (12), it is 

necessary to provide a minimum of the sum of the 
modules of the coefficients cj (j=1,2,...,N), which are 

determined from a system of equations (12) 
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According to (15) the task of providing 

methodical minimum error reduces to discovering of 

local functional minimum of ensemble variables by 
means of usage the approximated identification 

method. In other words, it is sum of rate modulus in 

linear combination of responses. By means of 

complete searching procedures of different 
amplitude value, appropriate rate is discovered and 

each time the system of linear algebraic equations 

(12) is solved. 
After calculating the form, there should be got 

optimal amplitude value. In [25] it is illustrated that 

the decreasing of methodical error of identification 
method could be reached by two means; by selection 

of rather low amplitude of test signals with pre-

assigned approximated order or by fixed amplitude 

with increasing of approximated model order.  
2.3. Interpolation Method. There was proposed 

interpolation method of NDS identification on base of PB in 

[26-28], where for splitting of NDS response at PS ˆ ( )ny t  is 

used and it is multiple differencing of output signal 

according to parameter of amplitude test signals. The 

following affirmations are proved.   

 Statement 5.  Let at input of system test signal 
of ax(t) kind is given, where x(t) – is arbitrary 

function and a – is the coefficients of scale  

(amplitude of signal), where 0<a1. Then for 

marking out partial component of n order )(ˆ tyn
 from 

measured NDS response   taxy  it is necessary to 

find n partial component of response according to 

the amplitude a where a=0: 
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While using test irregular impulse series with 

Δτ  duration, could be discovered diagonal and sub-
diagonal Volterra kernel section on the basis of (15) 

and (14) forms accordingly. It is taken into 

consideration that calculation of ˆ ( )ny t  and 

)θ,...,θ,(ˆ
1 nn ty  is made by means of (17) procedure.  

Partial component should be substituted by 

form of finite difference for calculation of (17). 

Differentiation of function, which was set in discrete 
spots, could be accomplished by means of numerical 

computing after preliminary smoothing of measured 

results.  
Various formulas for the numerical differen-

tiation known. They vary from each other by means 

of error. 

Let's use universal reception which allows to 
substitute a derivative of any n order for differential 

ratio so that the error from such replacement for 

function y(a) was any beforehand set order of p 

approximation concerning a step of h=a of 

computational mesh on amplitude [35]. Method of 
undetermined coefficients for the equality: 
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let's pick up coefficients 
rс  not depending on h, 

211 ,...,1, rrrr  , so that equality (18) was fair. 
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 (19) 

When 121  pnrr  then inscribed in pn   

equality forms linear system concerning the same 

number of 
rс  unknown. The determiner of this 

system is Vandermond's determiner and differs from 

zero. Thus, there is the only one set of n coefficients, 

http://lingvopro.abbyyonline.com/ru/Search/GlossaryItemExtraInfo?text=%d0%b4%d0%b8%d1%84%d1%84%d0%b5%d1%80%d0%b5%d0%bd%d1%86%d0%b8%d1%80%d0%be%d0%b2%d0%b0%d0%bd%d0%b8%d0%b5&translation=differencing&srcLang=ru&destLang=en
http://lingvopro.abbyyonline.com/ru/Search/GlossaryItemExtraInfo?text=%d1%87%d0%b0%d1%81%d1%82%d0%bd%d0%b0%d1%8f%20%d0%bf%d1%80%d0%be%d0%b8%d0%b7%d0%b2%d0%be%d0%b4%d0%bd%d0%b0%d1%8f&translation=partial%20derivative&srcLang=ru&destLang=en
http://lingvopro.abbyyonline.com/ru/Search/GlossaryItemExtraInfo?text=%d1%87%d0%b0%d1%81%d1%82%d0%bd%d0%b0%d1%8f%20%d0%bf%d1%80%d0%be%d0%b8%d0%b7%d0%b2%d0%be%d0%b4%d0%bd%d0%b0%d1%8f&translation=partial%20derivative&srcLang=ru&destLang=en
http://lingvopro.abbyyonline.com/ru/Search/GlossaryItemExtraInfo?text=%d0%b4%d0%b8%d1%84%d1%84%d0%b5%d1%80%d0%b5%d0%bd%d1%86%d0%b8%d1%80%d0%be%d0%b2%d0%b0%d0%bd%d0%b8%d0%b5&translation=differentiation&srcLang=ru&destLang=en
http://lingvopro.abbyyonline.com/ru/Search/GlossaryItemExtraInfo?text=%d0%bf%d1%80%d0%b5%d0%b4%d0%b2%d0%b0%d1%80%d0%b8%d1%82%d0%b5%d0%bb%d1%8c%d0%bd%d0%be%d0%b5%20%d1%81%d0%b3%d0%bb%d0%b0%d0%b6%d0%b8%d0%b2%d0%b0%d0%bd%d0%b8%d0%b5&translation=preliminary%20smoothing&srcLang=ru&destLang=en
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satisfying the system (19). When pkrr  21
 then 

obviously quite a number of such 
rc  coefficients 

systems exist. 
On the basis of (18) in [28] the formulas of 

derivative calculation of the first, second, third and 

fourth orders are received at a=0 with use of the 

central and right differences for equidistant 
assembly.  

In paper, formulas for numerical differentiation 

with use of the central differences for equidistant 
assembly are used. For definition of first Volterra 

kernels order the first derivative is calculated at  

121  rr  or 221  rr  respectively on formulas 
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            (20) 

For definition of second Volterra kernels order 

the second derivative is calculated at 121  rr  or 

221  rr  respectively on formulas 
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       (21) 

For definition of third Volterra, kernels order 

the third derivative is calculated at 121  rr  or 

221  rr  respectively on formulas 
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 (22) 

In formulas (20) – (22) the notation is entered: 

 .3;2,1,0),();0(),0(),0( 000  rrhyyyyyyyy r
 

The corresponding partial component is found 

by the formula (18). Sections of Volterra kernels by 
the diagonal and the sub diagonal are calculated on 

the basis of expressions (14) and (13). 

2.4. Robust Method. Proposed robust method 
of deterministic identification of the NDS based on 

Volterra model in the time domain [36-39]. Irregular 

pulse sequences are used as test signals. The stability 

of the computational process of the identification 
procedure is ensured by using the method of A. N. 

Tikhonov regularization of ill-posed problems [30]. 

The problem of finding the derivative of n-th 
order z(a) from the function y(a), for which 

y(0)=y′(0)=...=y(n–1)(0)=0, reduces to solving the 

Volterra integral equation of the first kind [30]  with 

respect to z(ξ): 
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1 )(ξ)ξ()ξ(
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1

.

                (23) 

This problem is characterized by the lack of 
stability of the solution to small changes in the right 

side of the equation y(a). To find the approximate 

solution z(ξ) of equation (23), which is resistant to 
the errors of the initial data, the method of 

regularization of ill-posed problems is applied [7; 

15]. 

The problem of estimation diagonal section of 
Volterra kernel n-th order is the solution of the 

integrated equation Volterra of the first sort (23). For 

realization of an algorithm of identification (13) and 
(14) we will pass to a discrete analog of a problem 

of finding of regularized approximate solutions of 

the equation (17).  Let us measure NDS responses 
on a set of trial impulse signals with amplitude of 

impulses change discretely on max0 aa   with a 

step. Then each data set for the specified point-in-

time value t from of the received set of responses  

),()θ,...,θ,,( 1 aiytay ni   where aiai  , i =1, 2 ,..., L (L  

–    the number of levels of sampling on amplitude 
a) subjected to the operation of n-fold numerical 

differentiation by a.  Such a procedure comes down 

to the solution of the system of linear algebraic 
equations: 
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where );()()(,/,ξ max iiij ayaauLaaaj   )(σ a  – 

some function for which conditions are satisfied: 
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As function, )(a  it is possible to choose, for 

example, sigmoid function 

)2/(λexp1

1
)(σ

maxaa
a


 .               (26) 

The system of the equations (24) can be written 

down in a vector-matrix form 
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The matrix An for n=1, 2 and 3 are the form, 

respectively 

























11121

01121

00121

00021

Α1











a
                      (28) 





























1)2()1(2

01223

0011

00021

)(Α 2

2











LLL

a

                 (29) 
































1)2()1(2

01429

0012

00021

2

)(
Α

222

3

3











LLL

a

.

              (30) 

The required solution of z(iΔa) is found at i=0 

(z0). Then, we receive 

z0 = uʹ(0) = yʹ(0)σ(0) = yʹ(0)/2,                  (31)        

where 
yʹ(0) = 2uʹ(0) = 2z0.                                         (32) 

In general 
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u
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
 .                (33) 

Thus, the computing algorithm realizing a 
method of identification of multidimensional 

Volterra kernels on the basis of ratios (13), (14) and 

(17) comes down to the decision of the system of 
linear algebraic equations (24) for each fixed time 

point of t on an interval [0, T], where T – is 

modeling time. 

For construction operator of the estimation 
Volterra kernels method of A. N. Tikhonov 

regularization is used. He on a variation method of 

creation of the regularized operator is based. This 
method comes down to finding of an approximate 

vector of the decision 
αz which minimizes some 

functional of smoothing. The only vector meeting a 

condition of a minimum of the functional of 

smoothing can be defined from the decision of the 
system of linear algebraic equations:  

uΑzαI)ΑΑ( α

  ,                        (33) 

where Α  – the matrix conjugate to Α , I – a unit 

matrix,  – regularization parameter.  

For the choice of value of the  parameter the  

residual criterion is used [21]: 

εuΑz  ,                                (34) 

where ε – the set decision error; .  – norm in 

vector space.  

The approximate decision received on the basis 

of (33) and (34) corresponds to a 0-order of 
regularization. For increase in smoothness of 

decisions, the regularized matrix of R is used and 

solution of the system of linear algebraic equations 

at value of the parameter α which provides 
performance of a condition (25) is fended: 

uΑzαR)ΑΑ( α

  .                        (35) 

The regularized matrix of R has tape structure 

which diagonal elements are equal 2)(1  arii
, 

and elements in the over diagonal and sub diagonal 

are equal Ljijiarij ,1,;,)( 2    (the first order 

of regularization) [31]. 

2.5. Constructing of the Approximation 
Model. Is developing a method of constructing 

approximate Volterra model of the NDS [40]. 

Method identification is based on the approximation 
y(t) at an arbitrary deterministic signal x(t) in the 

form of integral power of the polynomial Volterra 

N-th order (N - order approximation model) 

.τ)τ()τ,...,τ(...

)(ˆ)(~

11 0

1

0

1

 











n

i

ii

N

n

t

nn

t

times
n

N

n

nN

dtxw

tyty

      (36) 

Statement 5.  Let the input test signals NDS are 
fed alternately a1x(t), a2x(t), ,…, aLx(t); a1, a2,…,aL – 

distinct real numbers satisfying the condition aj1 

for j=1,2,...,L; then 
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The partial components in the approximation 

model )(ˆ tyn  are found using the least square 

method (LSM). This makes it possible to obtain such 

evaluation in which the sum of squared deviations of 
responses identified the nonlinear dynamical system 

)]([ txay j  on the model )]([ˆ txay jN   response is 

minimal, i.e., NDS provides a minimum criterion 
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where )]([)( txayty jj  . Minimization of the criterion 

(6) is reduced to solving the system of normal 

equations of Gauss, which in vector-matrix form can 

be written as 
,yAŷAA                                 (39) 
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From (7) we obtain 

yA)AA(ŷ 1                                (40) 

In (8), matrix operations, we obtain 
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3. Computer Simulation 
Efficiency of the developed methods, 

algorithms and tools of NDS identification with use 

of irregular sequences of impulses is confirmed by 
means of computer simulation in Matlab-Simulink 

on test object for which analytical expressions for 

Volterra kernels were received. They were used as a 
standard at researches of potential accuracy and a 

noise stability of the developed methods of 

identification. 

3.1. Performance Criterion. For error estimate 
of experimental determination of Volterra kernels 

sections is used criterion mean-square error (MSE)  

 




k

t
tt

ww
k 1

2)ˆ(
1 ,                     (42) 

where k – is  number of samples at the time slice of 

measurements, wt – etalon values of Volterra 

kernels, 
tŵ – estimation value of Volterra kernels 

received as a result of experimental data (system 

responses) processing in discrete t time points. 

The criterion of the normalized percentage 

mean-squared error (NPMSE) also is used: 
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3.2. Test Object for Identification. There was 

chosen an object for the research of identification 
method which is described by the nonlinear 

differential equation: 

),()(β)(α
)( 2 txtyty

dt

tdy
                  (44) 

where  and  are constant real. Structure chart of 

nonparametric model of the object is illustrated by 
means of three members of Volterra model in Fig. 5. 

 

Fig. 5. Structure chart of nonparametric  

model of the object 
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It’s considered that 1=2=3=t, then diagonal 

Volterra kernels bnsection is received 

When 1=2=3=t we get the diagonal sections 

of the Volterra kernels 
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3.3. Wavelet Filtration in Identification 
Procedure. Procedure of noise smoothing are 

applied to increase the noise stability of determined 

identification method to receive estimates of the 
multidimensional Volterra kernels, based on wavelet 

transformation [22].  

Noise reduction is usually reached by removal 

of high-frequency components from a the signal 
range representing an additive mix of information 

component – received as a result of the Volterra 
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kernels section processing  responses and the  noise 

caused by an error of measuring equipment. In 

relation to wavelet decomposition, it can be realized 
directly by removal of detailing coefficients of high-

frequency levels. Setting some line for their level, 

and cutting off accordingly detailing coefficients it is 

possible to achieve reduction of noise level. 
For smoothing of identification results when utility 

from a package of the Wavelet Toolbox expansion of 

Matlab system with maternal wavelet coif let – coif4 was 

used at the following values of parameters. Parameter of 

the rule calculation unit of threshold valuation for 

restriction of TPTR='minimaxi' coefficients 

decomposition (by minimax estimation). Parameter of the 

unit like a threshold of SORH ='s' (flexible) cleaning; the 

parameter defining a way of SCAL ='one' recalculation 

threshold (us of a threshold, integrated decomposition for 

all levels, without rescaling). Depth of data 
decomposition – 3. 

In researches the model of a received noisy 

assessment of Volterra kernels section is accepted by 

the additive:  tttwn ξ,,ˆ  with an even pitch on 

argument of t, where  ttwn ,,ˆ   – is a useful 

information component, ξ(t) – a hindrance (white 

Gaussian noise with D dispersion and average zero 

value). 
In Matlab-Simulink MSE assessment were 

received  by means of compensation method of 

Volterra kernels sections identification diagonal of 
the second and third orders for NDS test (Fig. 5) at  

error measurements  of responses σ=1, σ=3 and σ=5 

% without application and with application of 
wavelet filtration (Tabl. 1). 

Table 1. Mean-square error identification of Volterra 

kernels of second and third order 

Volterra 

kernels 

n order 

Without application 

of  wavelet filtration 

With application of  

wavelet filtration 

Error measurements  

of responses σ = % 

Error measurements  

of responses σ, % 

1 3 5 1 3 5 

2 0,024 0,037 0,045 0,019 0,033 0,037 

3 0,025 0,028 0,032 0,014 0,017 0,020 

The application of Wavelet filtration in 

identification procedure on the basis of compensa-

tion method allows to receive smoothed estimates of 

Volterra kernels sections and increase identification 
accuracy that is criterion of MSE for 20 – 45 %. 

There were received dependences (Fig. 6) of 

MSE identification by means of interpolation 

method of diagonal Volterra kernels sections of  

second (Fig. 6, a) and third (Fig. 6, b)  orders from 
the area of test S pulse at  error of measurement  

responses σ = 1, σ = 3 and σ = 5 % without 

application of smoothing  procedure of received 

Volterra kernels sections. 
In Fig. 7 and Fig. 8 dependences of the MSE 

identification results by means of Volterra kernels 

interpolation method of the second order from the 
area of test impulses S at error of measurements σ = 

1 % are presented. Also after wavelet filtration 

application to the received estimates of Volterra 
kernels sections of by means of wavelet 

transformation on the basis of maternal wavelet 

coiflet (Fig. 7) with use at various levels of 

decomposition of L on basis of wavelet coif4 (Fig. 
8) are presented. The minimum of MSE 

identification is reached by using maternal wavelet 

coiflet – coif4 (Fig. 7) with level of decomposition 
depth L=4 (Fig. 8). Thus smoothed solutions turn 

out, and the error of identification decreases bin 1,5 

– 2 times. 

3.4. Comparative Analysis of Identification 

Methods. The errors arising at application of 

determined identification methods are investigated, 

the comparative analysis of their efficiency on the 
accuracy and noise stability is carried out. The 

choice of amplitude of impulses sequence is possible 

to receive optimum estimates on the accuracy of any 
Volterra section kernels. The procedures of noise 

reduction based on wavelet transformations are 

applied to increase the computing stability of 

identification algorithms. 
The NDS (Fig. 5) received by means of three 

methods of determined identification are given in 

Tabl. 2 – compensation, approximating and inter-
polation methods by NPMSE of diagonal Volterra 

kernels sections assessment of second order for test, 

at an error of  responses σ = 1, σ = 3 and σ = 5 % 
measurements without application and with wavelet 

filtration application. 

Dependence diagram of MSE Volterra kernels 

identification of  second order from the area S 
(amplitude)  trial impulses in the conditions of ideal 

experiment (exact measurements) and taking into 

account errors of measurement responses 
 (error σ = 3 %) are submitted in Fig. 9 and Fig.10 

respectively.   
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a b 

Fig. 6. Mean-square error identification of Volterra kernels of second and third order dependences of 

identification by Volterra kernels interpolation method of the second (a) and the third orders(b) from the area 
of S test pulses respectively for r1=r2=1, and r1=r2=2 at errors of measurements: 1 – 1 %;   2 –3 %;  3 – 5 % 

 
Fig. 7. Dependences of the MSE identification of 
Volterra kernel second order on the area of test 

impulses S at error of measurements of 1 %:  

1 – without filtration; 2 – at wavelet-filtration 
application with help wavelet coif1; 3 – coif2;  

4 – coif3; 5 – coif4; 6 – coif5 

 

 
Fig. 8. Dependences of the MSE identification of 

Volterra kernel second order on the area of test 

impulses S at error of measurements of 1%:  

1 – without filtration; 2 – at wavelet-filtration 
application on a basis of wavelet coif4 with levels of 

decomposition of  L = 1; 3 – L = 2; 4 – L = 3;  

5 – L=4; 6 –L=5; 7 – L=6 

 
Fig. 9. Dependence diagrams of MSE assessment of 

diagonal Volterra kernel section of second order 

from the area S trial impulses at identification on 
exact measurements:  

1 – for a compensation method; 2 – at r1=r2=1; 

3 – at r1=r2=2 for an interpolation method; 4 – at 
N=2 and N=3; 5 – at N=4 and N =5, 6 – at N=6;  

7 – at N=7; 8 – at N=8 for an approximation method 

 
Fig. 10. Dependence  diagrams of MSE assessment 

of diagonal Volterra kernel section of second order 

from the area S trial impulses at identification with 
error 3 %:  

1 – for compensation method; 2 – at N=2; 3 – at N=4 

and N=5 for approximation method; 4 – at r1=r2=1; 
5 – at r1=r2=2 for  interpolation method 
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The results of the estimated of Volterra kernels 

with basis of identification methods on based 

compensation (Fig. 11), of approximation (Fig. 12) 
and of interpolation (Fig. 13). Estimations of 

diagonal Volterra kernels sections of second and 

third orders for test NDS at error of measurements 

responses by σ = 1 % without application and with 
wavelet filtration application on basis of maternal 

wavelet coif4 with decomposition level L=4 

received. 
The analysis of identification results of three 

methods by means of pulse sequences (Fig. 11, Fig. 

12 and Fig. 13) on test object (Fig. 5) shows that 
the highest precision and noise stability possesses 

the interpolation method of identification, 

consisting in responses differentiation on parameter 

amplitude of trial impulses (17). Least exact of 
considered methods of determined identification is 

compensatory method (4), (5). 

Researches of a robust method were 
implement by means of computer modeling in the 

environment of Matlab–Simulink at the following 

values of parameters of test impulses signals: 

=0,01,  amax=100. 

On the Fig. 14 results of identification of a test 
object (Fig. 5) on basis with accurate response 

measurements of responses and without application 

of regularization  – estimates of Volterra kernels of 
the first order of w1(t) (Fig. 14, a) and the diagonal 

section of Volterra kernels of the second order of 

w2(t,t) (Fig. 14, b) are presented. 

Experiments were carried out with a step on 

amplitude of test impulses Δa, successively taking 

values from a set {8, 10, 16, 20 and 40}. The 
number of experiments L is 8, 10, 16, 20, and 40, 

respectively. The best results of identification are 

received at a=5 (L=40). 

Estimates of diagonal section of Volterra 

kernels of the second order of w2(t,t) at an error of 
measurements of 1 % on the basis of the decision 

of SLAE (35) for a=4 (L=50) without 

regularization are presented in Fig. 15, a. The big 

mistakes received at the same time are not 

acceptable in practice, NPMSE makes 244,2 %. In 
Fig. 15, b estimates are given w2(t,t), received by 

means of a method of regularization and 

smoothings with use of Wavelet-transformation 
[22, 34]. At this NPMSE of identification makes 

2,95 %, respectively accuracy increased by 82,8  

times. 

For test NDS (Fig. 5) are received the results 
of identification by means of four of the 

computational methods – compensation method, 

approximation method, interpolation method and 
robust method are given in Tabl. 2. Here are values 

of the criterion NPMSE obtained with using the 

methods deterministic identification, at estimation 
of the diagonal section of a second order Volterra 

kernel from measurements of responses with an 

error σ=1, σ=3 and σ=5 % without application and 

with Wavelet-filtration application. 

 
 

 

 
 

 

a b 

 

Fig. 11. Result of diagonal identification Volterra kernel sections of the second (a) and the third (b) NDS 
orders by means of compensation method at measurement error of 1 %:  

1 – etalon of the Volterra kernel; 2 – identified kernel; 3 –identified kernel at wavelet-filtration application 

on wavelet basis coif4 with level of decomposition L=4 
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a b 
Fig. 12. Result of diagonal identification Volterra kernel sections of the second (a) and the third (b) NDS 

orders by means of approximation method (N=4) at measurement error of 1 %:  

1 – etalon of the Volterra kernel; 2 – identified kernel; 3 – identified kernel at wavelet filtration application 

on wavelet basis coif4 with level of decomposition L=4 

  

а b 

Fig. 13. Result of diagonal identification Volterra kernel sections of the second (a) and the third (b) NDS 
orders by means of interpolation method (r1+r2=4) at measurement error of 1 %:  

1 – etalon of the Volterra kernel; 2 – identified kernel; 3 – identified kernel at wavelet filtration application 

on wavelet basis coif4 with level of decomposition L=4 

 

 

  
a b 

Fig. 14. Results of identification of a test object without regularization at exact measurements of responses: 

estimates of Volterra kernel of the first order (a) and diagonal section of Volterra kernel of the second order (b). A 

dotted line – etalon 
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а b 

Fig. 15. Estimates of diagonal section of NDS of the second order of a test object of w2(t,t), at errors of 

measurements of 1 % on the basis of the decision of SLAE (24) without regularization (a) and the regularizations 

received by means of a method and smoothing with wavelet-filtration use (a robust method) at a=4, L=50 (b):  

1 – result of identification; 2 – etalon 

 

Table 2. Normal Percentage Mean-square error identification of the Volterra kernel second order 

P
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ex
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ts
 

Q
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o
p
er

at
io

n
s Minimum NPMSE (%) at an error of measurements σ (%) 

Without application 

Wavelet – filtrations 

With application 

 Wavelet – filtrations 

σ=1% σ=3% σ=5% σ=1% σ =3% σ=5% 

 Compensation method 

2 4 44,0 66,5 77,1 30,1 43,7 53,7 

N Approximation method 

2 2 4 12,6 25,9 37,0 10,8 15,0 18,3 

3 3 6 11,9 24,5 33,5 9,08 13,3 16,9 

4 4 8 15,7 40,3 63,3 11,2 18,1 24,5 

5 5 10 15,2 38,0 58,7 11,1 17,0 22,7 

6 6 12 18,7 50,4 80,5 11,9 20,5 29,3 

r1=r2 Interpolation method 

1 2 5 13,0 26,3 37,5 10,9 15,5 19,2 

2 4 9 14,7 36,5 58,1 11,2 16,8 23,6 

3 6 11 19,6 54,1 88,1 11,6 20,8 31,5 

4 8 12 25,6 77,3 126,0 13,1 25,1 44,0 

Δa Robust method 

4 50 – 6,8 18,4 – 3,0 5,8 – 

 

Results of comparison of a regularized method 

of identification on the basis of the decision of 
SLAE (35) and an interpolation method where for 

numerical differentiation formulas in final 

differences are used and natural regularization – 
optimization of a step on amplitude of test impulses 

is applied, for a kernel of the second order are 

provided in Tab. 3. 

4. Identification Technique of the “Black 

Box” 
The technique of Volterra kernels identification 

is developed for systems of unknown structure (like 

“Black Box”). 
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1. The greatest possible amplitude of test 

impulses at which identified NDS is still steady (on 

limit of stability) is set. Duration of impulses ∆τ gets 
out of a condition: 

n

min05,0


 ,                              (49) 

where: min – the minimum constant of time of linear 

system part, n – an order of defined Volterra kernels. 

2. Procedure of NDS identification is 

consistently applied at various values of a test 
impulses amplitude and 

 ,2,1,0  ,10  ,1  iaa ii
.           (50) 

For each pilot study of identified system and 

processing of received responses according to one of 
algorithms of identification (4), (5) or (11), (13), 

(14), or (17), since the second identification 

experiment, there is a mean square deviation of ε 
between the next results of n order Volterra kernels 

estimates.  

3. On basis of these results there is quasi-
optimal amplitude of test pulse signals with which 

next results of n order Volterra kernels 

ii aa ww ˆ,ˆ
1

identification will be the closest that is 

criterion of a mean square deviation. The decision 

(estimated value is 
iaŵ ) gets out at value of the 

amplitude ai under condition 

 
i

ii a
aa ww minˆˆ

1




.                          (51) 

The technique is approved on a problem of test 

object identification (Fig. 5) considered as NDS with 

unknown structure. The received results are 
presented in Fig. 16. The dependence diagram of 

MSE identification is given in (Fig. 16, a) from the 

amplitude of test impulses on which values of 
amplitude are marked a=90 (S=1,8) and a=14 

(S=0,28) at which the mean square deviation of 

identification results accept identical values 
(ε=0,024) are noted. Results of Volterra kernels 

identification of second order corresponding to 

them, received by interpolation method at r1=r2=2, 

are given in (Fig. 16, b) and (Fig. 16, c). The result 
of identification corresponding to the minimum 

value of a mean square deviation at ε=0,004 is given 

in (Fig. 16, d). Thus optimum amplitude of impulses 
of is a=76 (S=1,52). 

 

Table 3. Comparative analysis of identification methods on the example of 

estimation Volterra kernel a second order of NDS 

Identification method 

Minimum NPMSE, п, % 
at an error of measurements σ, % 

Regularization 
application 

Application Wavelet-
filtration 

σ=1 σ=3 σ=1 σ=3 

Identification on the basis of the decision of SLAE (35), 

L=50 
6,7 18,4 2,83 5,85 

Identification on the basis of an interpolation method 13,0 26,3 10,9 15,5 

 
 

  
a b 
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c d 

Fig. 16. Result of diagonal identification Volterra kernel sections of the second order NDS with unknown 

structure with using interpolation method at r1= r2=2:  MSE identification (a) and with various means of 
amplitude test impulses:  

S=1,8 (b), 0,28 (c) and 1,52 (d) respectively; 1– result of identification; 2 – etalon 

 

Conclusion 
Methodological and algorithmic bases of 

creation of information models of continuous 

subjects to control in the form of Volterra kernels on 
the basis of data of an experiment an entrance exit 

are developed.  

The statements proving methods of the 
determined identification of nonlinear dynamic 

systems with one entrance and an exit and also for 

systems with many entrances and many exits on the 

basis of Volterra models in a time domain – with use 
as test signals of the irregular sequences of impulses 

are proved. Advantage of the considered methods of 

the determined identification – compensation, 
approximation, interpolation and robust in 

comparison with methods of statistical 

identification, are comparative simplicity of 
generation of test signals and simplicity of 

processing of empirical data. 

It is shown that estimates, optimum on 

accuracy, any diagonal and on diagonal sections of 
Volterra kernels are the choice of parameters of the 

sequence of impulses – duration, amplitude and an 

interval between impulses. 
The analysis of errors of a compensation 

method of identification – the methodical, caused 

uncompensated processing by a contribution in a 

response of a system of members of Volterra serie 
whose order is higher than an order of the estimated 

Volterra kernels measurements of responses is made. 

It is shown that at reduction of amplitude of trial 
impulses the methodical error decreases, but at the 

same time the relative error of measurements 

increases.  
The new interpolation method of identification 

of the NDS in the form of Volterra series based on 

allocation of a partial component of Volterra series – 
the whole uniform regular functionality of Volterra 

n-th is offered degree, by means of n-fold 

differentiation of responses of the NDS in the 
parameter amplitude of test influences, the 

corresponding computing algorithms realizing an 

identification method are developed. The method 
allows to mi NDS caused by influence of partial 

components of a response above n-th. However, 

implementation of a method of identification leads 

to errors of assessment of the Volterra kernels, 
which level depends on amplitude of test signals and 

the accuracy of measurements of responses. 

It is shown that the known amplitudes of test 
signals for use in an approximating method of 

identification which is based on drawing up linear 

combinations of responses of the NDS for test 
influences with different amplitude are not optimum 

and the choice of amplitudes of test influences and 

the corresponding weight coefficients providing the 

minimum error of assessment of multidimensional 
Volterra kernels of the identified system is proved. 

A new robust method of deterministic 

identification of non-linear dynamic systems on the 
basis of model Volterra in time domain, for the 

numerical realization of which can be used 

unlimited top number of experiments with the 

“input-output”, and the application of the method 
of regularization, the processing of noisy 

experimental data allows to increase the accuracy 

and noise immunity of the procedure for 
identification. Set the effectiveness of the 

developed methods and appropriate tools for their 

introduction in the practice of diagnostic studies of 
technical and biological objects in the industry and 

scientific research organizations. 
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The methods of deterministic identification 

considered here were the basis for the creation of 

intellectual information technology for diagnosing 
complex continuous objects of different physical 

nature [41-46]. This the model-based information 

technology of diagnosis was effectively used to 

construct a classifier of the states of the Switched-
Reluctance Electric Motors [42]. This methods of 

the nonlinear dynamical systems identification using 

the Volterra model in the frequency domain are 
developed [47-54]. Identification methods apply for 

simulation of wireless communication channels 

using Volterra model in frequency domain [55 – 61]. 
Also, identification methods for building of 

nonlinear dynamic model oculo-motor system 

human based on Volterra kernels apply [62 – 69]. 

The information model of the photosynthetic 
reaction center in the form of Volterra kernels of the 

first, second and third orders was constructed on the 

basis of deterministic identification methods [70].  

Appendix A. Prove of the Statement 1 и 2 
The model of the test signal, which is an 

irregular sequence consisting of no more than m 
pulses of the same amplitude S1=...=Sm=S acting at 

times i can be written as 





m

i

ii tStx
1

)τ(δθ)( ,                        (A.1) 

where 
iθ – parameter representing amount of 

impulses and time delays between them within the 

test impulse sequence – in case 1θ i
, impulse is 

present in sequence at time moment i, in case 

0θ i
 – impulse is not present. 

After substituting (1) into (A1), we get the NDS 
response as  
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After substituting expression (A.2) to (4) 
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Sum of n elements in expression (A.3) might be 

represented as 
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In (A.6) amount by
m

jj ,,
1
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might be presented 
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where p and q take values from a subset m,1 , pq. 

At (A.6) as the result of sum based on 
mθ,...,θ1

, 

applied to the first operand of sum 
m

jj ,,
1
  where 

m
jj 

1
 (A.7), taking into account that Volterra 

kernels are symmetric functions, which means 
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At (A.6) as the sum result based on 
mθ,...,θ1

, 

applied to the second operand of summarization 
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For equality proving (A.9) sum on 
mθ,...,θ1

 

might be represented as 
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where 
rkk θ,...,θ
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 –  elements from set {
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}, 
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which can be proven with the mathematical 

induction method, то 0
m

 и 
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 . 

Then from (A.8) it appears that 
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It can be shown that first member in a sum 

(A.4) 
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For all n < m  
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Since 


n

k

jk
1

θ consists of elements, which are a subset 

from a set }θ,...,{θ
1 m

 which means that equality 

(A.14) might be proven in the same manner as (A.9).  

Third member in (A.4) is not equal to zero so in 
its place adds the error for Volterra kernels 

definition. In case square S of impulses in a test 

sequence will be taken small enough, then error (S) 

while Volterra kernels identification for m-th 

member based on 
n

  where nm  (A.4) is 

proportional to Sm+1, and appears to be (m-1)-th 
order. 

Which means 

).()τ,...,τ(

)τ,...,τ(ˆ

1

1
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mm
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Statement 1 is proven. Statement 2 can be 

proven in the same manner. 
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МЕТОДИ ДЕТЕРМІНОВАНОЇ ІДЕНТИФІКАЦІЇ НЕЛІНІЙНИХ ДИНАМІЧНИХ 

СИСТЕМ НА ОСНОВІ МОДЕЛІ ВОЛЬТЕРРА 

 

Анотація. Досліджуються методи детермінованої ідентифікації нелінійних динамічних систем на основі моделей 
Вольтерра у часовій області: компенсаційний, апроксимаційний, інтерполяційний і робастний. В якості тестових впливів 
використовуються неперіодичні імпульсні послідовності. Обґрунтовуються обчислювальні методи ідентифікації у вигляді 
ядер Вольтерра для одно– і багатовимірних систем. Запропоновано методику ідентифікації систем з невідомою 
структурою в умовах реального експерименту. Досліджуються похибки, що виникають при застосуванні розглянутих 

методів ідентифікації. Наведено порівняльний аналіз їх ефективності по точності і обчислювальної стійкості. Показано, 
що при виборі відповідних параметрів імпульсної послідовності, таких як тривалість, амплітуда та інтервал часу між 
імпульсами, можна з максимально досяжною точністю знайти перетини ядер Вольтерра. Для підвищення обчислювальної 
стійкості алгоритмів ідентифікації застосовуються процедури шумозаглушення, що засновані на вейвлет-перетворенні. 
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МЕТОДЫ ДЕТЕРМИНИРОВАННОЙ ИДЕНТИФИКАЦИИ НЕЛИНЕЙНЫХ 

ДИНАМИЧЕСКИХ СИСТЕМ НА ОСНОВЕ МОДЕЛИ ВОЛЬТЕРРА 

Аннотация. Исследуются методы детерминированной идентификации нелинейных динамических систем на основе 
моделей Вольтерра во временной области: компенсационный, аппроксимационный, интерполяционный и робастный. В 
качестве тестовых воздействий используются непериодические импульсные последовательности. Обосновываются 
вычислительные методы идентификации в виде ядер Вольтерра для одно– и многомерных систем. Предложена методика 

идентификации систем с неизвестной структурой в условиях реального эксперимента. Исследуются погрешности, 
возникающие при применении рассмотренных методов идентификации. Приведен сравнительный анализ их 
эффективности по точности и вычислительной устойчивости. Показано, что при выборе соответствующих параметров 
импульсной последовательности, таких как длительность, амплитуда и интервал времени между импульсами, можно с 
максимально достижимой точностью найти сечения ядер Вольтерра. Для повышения вычислительной устойчивости 
алгоритмов идентификации применяются процедуры шумоподавления, основанные на вейвлет-преобразовании. 

Ключевые слова: нелинейные динамические системы; идентификация; модель Вольтерра; ядра Вольтерра; вейвлет-
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